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ABSTRACT

Consider the execution of a failing program as a sequence of pro-
gram states. Each state induces the following state, up to the failure.
Which variables and values of a program state are relevant for the
failure? We show how the Delta Debugging algorithm isolates the
relevant variables and values by systematically narrowing the state
difference between a passing run and a failing run—by assessing
the outcome of altered executions to determine wether a change in
the program state makes a difference in the test outcome. Applying
Delta Debugging to multiple states of the program automatically
reveals the cause-effect chain of the failure—that is, the variables
and values that caused the failure.

In a case study, our prototype implementation successfully iso-
lated the cause-effect chain for a failure of the GNU C compiler:
“Initially, the C program to be compiled contained an addition of
1.0; this caused an addition operator in the intermediate RTL repre-
sentation; this caused a cycle in the RTL tree—and this caused the
compiler to crash.”

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—debug-

ging aids, diagnostics, testing tools, tracing

General Terms

Algorithms, Reliability, Experimentation, Verification

Keywords

Automated debugging, program comprehension, testing, tracing

1. INTRODUCTION
Program debugging is commonly understood as the process of iden-
tifying and correcting errors in the program code. Debugging is a
difficult task, because normally, errors can only be detected indi-
rectly by the failures they cause. Now, let us assume we have some
program test that fails. How did this failure come to be?
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Traditionally, approaches to facilitate debugging have relied on
static or dynamic program analysis to detect anomalies or depen-
dencies in the source code and thus narrow the set of potential
failure causes. In this paper, we propose a novel and very differ-
ent approach. Rather than focusing on the source code as failure
cause, we concentrate on program states as they occur during pro-
gram execution—especially, on the difference between the program
states of a run where the failure in question occurs, and the states
of a run where the failure does not occur.

Using automated testing, we systematically narrow these initial
differences down to a small set of variables: “The failure occurs
if and only if variable x has the value y (instead of y′)”. That is,
x = y is a cause for the failure: if x is altered to y′, the failure no
longer occurs. If we narrow down the relevant state differences at
multiple locations in the program, we automatically obtain a cause-

effect-chain that lists the consecutive relevant state differences—
from the input to the failure.

State differences are not only causes of failures, but also effects

of the program code. By increasing the granularity of the cause-
effect chain, one can interactively isolate the moment where the
program state changed from “intended” to “faulty”. This moment
in time is when the piece of code was executed that caused the
faulty state (and thus the failure)—that is, “the error” in the pro-
gram to be examined.

Our approach also differs from program analysis in that it is
purely experimental: All that is needed is the ability to run an au-
tomated test and to access and alter program states. Knowledge
or analysis of the program code is not required, although hints on
dependencies and anomalies can effectively guide the experimental
narrowing process and thus reduce the number of test runs.

This paper is organized as follows. Section 2 summarizes how to
isolate failure-inducing circumstances automatically, using a GCC

failure as example. Section 3 shows how to access program states
and to isolate their difference, obtaining a cause-effect chain for the
GCC failure. Section 4 shows how to narrow down failure-inducing
program code—that is, “the error” in GCC. Section 5 answers why
and when this approach actually works. Section 6 discusses related
work and Section 7 closes with conclusion and consequences.

2. ISOLATING RELEVANT INPUT
In this Section, we recapitulate our earlier work on isolating failure-
inducing input [21]. As an ongoing example, consider the fail.c

program in Figure 1. This program is interesting in one aspect: It
causes the GNU C compiler (GCC) to crash—at least, when using
version 2.95.2 on Intel-Linux with optimization enabled:

$ gcc −O fail.c

gcc: Internal compiler error: program cc1 got fatal signal 11

$ _
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double mult(double z[], int n)
{

int i , j ;

i = 0;
for ( j = 0; j < n; j++) {

i = i + j + 1;
z[i] = z[i] ∗ (z[0] + 1.0);

}

return z[n];
}

Figure 1: The fail.c program that crashes GCC

If we say “fail.c causes GCC to crash”, what do we actually mean?
Generally, the cause of any event is a preceding event without
which the event in question (the effect) would not have occurred.
Indeed, if we remove the contents of fail.c from the input—that is,
we compile an empty file—, GCC works fine. These two experi-
ments (the failing and the passing run) actually prove that fail.c is
a cause of the failure.

2.1 A DivideandConquer Process
In practice, we typically want a more precise cause than just the
contents of fail.c—that is, a smaller difference between the failing
and the passing experiment. For instance, we could try to isolate
the smallest possible difference between two GCC inputs. This can
be done using a simple divide-and-conquer method, as illustrated
in Table 1.

In Step 1, we see the entire input fail.c, causing the GCC failure
(“✘ ”). In Step 2, the contents of fail.c have been deleted (shown
in grey); this empty input compiles fine (“✔ ”). In Step 3, we take
away only the mult body. This input also compiles fine. Thus,
we have narrowed the failure-inducing difference to the mult body:
“Something within the mult body causes GCC to crash”. In Steps
4 and 5, we have narrowed the cause to the for loop.

Continuing this divide-and-conquer method, we eventually nar-
row down the cause to the characters “+1.0” in Steps 18 and 19.
This difference “+1.0” is minimal, as it can not be further reduced:
Removing either “+” or “1.0” would result in a GCC syntax error
(Steps 20 and 21)—a third outcome besides failure and success,
denoted here as “ ”. So, we have isolated “+1.0” as a minimal dif-
ference or precise cause for the GCC failure—GCC fails if and only
if “+1.0” is present in fail.c.

2.2 Delta Debugging
The interesting thing about the divide-and-conquer process to iso-
late failure-inducing input is that it can be automated—all one needs
is a means to alter the input, and an automated test to assess the ef-
fects of the input. In fact, Table 1 does not show the narrowing
process as conducted by a human, but the execution of the Delta

Debugging algorithm, an automatic experimental method to isolate
failure causes [21].

Delta Debugging requires two program runs r✘ and r✔ —one
run r✘ where the failure occurs, and one run r✔ where the fail-
ure does not occur. The difference between these two runs is de-
noted as δ; the difference can be applied to r✔ to produce r✘ , or
δ(r✔ ) = r✘ . Formally, δ is a failure cause—the failure occurs if
and only if δ is applied. The aim of Delta Debugging, though, is
to produce a cause that is as precise as possible. We thus decom-
pose the original difference into a number of atomic differences
δ = δ1 ◦ δ2 ◦ · · · ◦ δn .

Let us illustrate these sets in our GCC example. r✔ is the GCC

# GCC input test
1 double mult(. . . ) { int i , j ; i = 0; for (. . . ) { . . . } . . . } ✘
2 double mult(. . . ) { int i , j ; i = 0; for (. . . ) { . . . } . . . } ✔
3 double mult(. . . ) { int i , j ; i = 0; for (. . . ) { . . . } . . . } ✔
4 double mult(. . . ) { int i , j ; i = 0; for (. . . ) { . . . } . . . } ✔
5 double mult(. . . ) { int i , j ; i = 0; for (. . . ) { . . . } . . . } ✘
6 double mult(. . . ) { int i , j ; i = 0; for (. . . ) { . . . } . . . } ✔
.
.
.

.

.

.
.
.
.

18 . . . z[i] = z[i] ∗ (z[0] + 1.0); . . . ✘
19 . . . z[i] = z[i] ∗ (z[0] + 1.0); . . . ✔
20 . . . z[i] = z[i] ∗ (z[0] + 1.0); . . .
21 . . . z[i] = z[i] ∗ (z[0] + 1.0); . . .

Table 1: Isolating failure-inducing GCC input

run on the empty input, and r✘ is the run on the failure-inducing
input fail.c. We model the difference δ between r✘ and r✔ as a set
of atomic deltas δi , where each δi inserts the i-th C token of fail.c

into the input. We further assume the existence of a testing func-

tion named test that takes a set of atomic differences, applies the
differences to r✔ , and returns the test outcome—✘ if the test fails
(i.e. the expected failure occurs), ✔ if the test passes (the failure
does not occur), and in case the outcome is unresolved—such as
a non-expected failure.

Let us define c✔ = ∅ and c✘ = {δ1, δ2, . . . , δn} as sets of atomic
differences. By definition, test(c✔ ) = ✔ holds (because no changes
are applied to r✔ ); test(c✘ ) = ✘ holds, too (because all changes are
applied to r✔ , changing it to r✘ ).

In our GCC example, test constructs the input from the given
changes and checks whether the failure occurs. test(c✔ ) applies
no changes to the empty input and runs GCC; the failure does not
occur. test(c✘ ) inserts all characters of fail.c into the empty input,
effectively changing the input to fail.c, and runs GCC; the failure
would occur. To make sure that test returns ✘ if and only if the
original failure occurs, we make test return ✘ if and only if the run
crashes at the same location as r✘ —that is, the program counter and
the backtrace of calling functions must be identical. Otherwise, test

returns ✔ if the program exits normally, and in all other cases.
Given c✔ , c✘ , and test, Delta Debugging now isolates two sets

c′
✔ and c′

✘ with c✔ ⊆ c′
✔ ⊆ c′

✘ ⊆ c✘ , test(c′
✔ ) = ✔ , and test(c′

✘ ) =

✘ . Furthermore, the set difference 1 = c′
✘ −c′

✔ is 1-minimal—that
is, no single δi ∈ 1 can be removed from c′

✘ to make the test pass
or added to c′

✔ to make the test fail. Hence, 1 is a precise cause for
the failure.

Applied to the GCC input, Delta Debugging executes exactly the
tests as illustrated in Table 1. Delta Debugging first splits the input
in two parts1. Compiling the header alone works fine (Step 3), and
adding the initialization of i and j to the input (Step 4) does not yet
make a difference. However, adding the “for” loop (Step 5) makes
GCC crash. At this stage, c′

✔ is set up as shown in Step 4, c′
✘ is set

up as in Step 5, and their difference 1 = c′
✘ − c′

✔ is exactly the
“for” loop—in other words, the “for” loop is a more precise cause
of the failure.

Resuming the narrowing process eventually leads to c′
✘ as shown

in Step 18 and c′
✔ as shown in Step 19: The remaining difference

is exactly the addition of “+1.0”. Steps 20 and 21 verify that each
of these two remaining tokens is actually relevant for the failure.
So, the remaining 1-minimal difference “+1.0” is what Delta De-
bugging returns—after only 21 tests, or roughly 2 seconds.2 Let

1In this example, we assume a “smart” splitting function that splits
input at C delimiters like parentheses, braces, or semicolons.
2All times were measured on a LINUX PC with a 500 MHz Pen-
tium III processor.



Let C be the set of all differences (in input or state) between program runs. Let test : 2C → {✘ , ✔ , } be a testing function that determines
for a configuration c ⊆ C whether some given failure occurs (✘ ) or not (✔ ) or whether the test is unresolved ( ).

Now, let c✔ and c✘ be configurations with c✔ ⊆ c✘ ⊆ C such that test(c✔ ) = ✔ ∧ test(c✘ ) = ✘ . c✔ is the “passing” configuration (typically,
c✔ = ∅ holds) and c✘ is the “failing” configuration.

The Delta Debugging algorithm dd(c✔ , c✘ ) isolates the failure-inducing difference between c✔ and c✘ . It returns a pair (c′
✔ , c′

✘ ) =

dd(c✔ , c✘ ) such that c✔ ⊆ c′
✔ ⊆ c′

✘ ⊆ c✘ , test(c′
✔ ) = ✔ , and test(c′

✘ ) = ✘ hold and c′
✘ − c′

✔ is 1-minimal—that is, no single circumstance
of c′

✘ can be removed from c′
✘ to make the failure disappear or added to c′

✔ to make the failure occur.

The dd algorithm is defined as dd(c✔ , c✘ ) = dd2(c✔ , c✘ , 2) with

dd2(c′
✔ , c′

✘ , n) =







































dd2(c′
✔ , c′

✔ ∪ 1i , 2) if ∃i ∈ {1, . . . , n} · test(c′
✔ ∪ 1i ) = ✘

dd2(c′
✘ − 1i , c′

✘ , 2) if ∃i ∈ {1, . . . , n} · test(c′
✘ − 1i ) = ✔

dd2

(

c′
✔ ∪ 1i , c′

✘ , max(n − 1, 2)
)

else if ∃i ∈ {1, . . . , n} · test(c′
✔ ∪ 1i ) = ✔

dd2

(

c′
✔ , c′

✘ − 1i , max(n − 1, 2)
)

else if ∃i ∈ {1, . . . , n} · test(c′
✘ − 1i ) = ✘

dd2

(

c′
✔ , c′

✘ , min(2n, |1|)
)

else if n < |1|

(c′
✔ , c′

✘ ) otherwise

where 1 = c′
✘ − c′

✔ = 11 ∪ 12 ∪ · · · ∪ 1n with all 1i pairwise disjoint, and ∀1i · |1i | ≈ (|1| /n) holds.
The recursion invariant for dd2 is test(c′

✔ ) = ✔ ∧ test(c′
✘ ) = ✘ ∧ n ≤ |1|.

Figure 2: The Delta Debugging algorithm in a nutshell. The function dd isolates the failure-inducing difference between two sets

c✔ and c✘ . For a full description of the algorithm and its properties, see [21].

us assume that an automated test already exists (for instance, as
part of the GCC test suite); also, let us assume we have a simple
scanner to decompose the input (a 10-minute programming assign-
ment). Then, finding the cause in any GCC input comes at virtually
no cost, compared to the manual editing and testing of fail.c.

The actual algorithm is summarized in Figure 2. The number of
required tests grows with the number of unresolved test outcomes.
In the worst case, nearly all outcomes are unresolved; then, the
number of tests is t = |c✘ |2 + 3|c✘ |. However, this worst case
never occurs in practice, because in case of unresolved outcomes,
the Delta Debugging algorithm has been designed to try runs more
similar to c✔ and c✘ . The central assumption is that the closer we
are to the original runs, the lesser are the chances of unresolved test
outcomes—an assumption backed by a number of case studies [21].
In the best case, we have no unresolved test outcomes; all tests are
either passing or failing. Then, the number of tests t is limited by
t ≤ log2

(

|c✘ |
)

—basically, we obtain a binary search.

3. ISOLATING RELEVANT STATES
3

Let us reconsider the isolated cause “+1.0”. Although removing
“+1.0” from fail.c makes the GCC failure disappear, this is not the
way to fix the error once and for all; we rather want to fix the GCC

code instead. Unfortunately, processing such arithmetic operations
is scattered all over the compiler code. Nonetheless, during the
compilation process, “+1.0” eventually induces a faulty GCC state
which manifests itself as a failure. How does “+1.0” eventually
cause the failure? And how do we get to the involved program
code?

The basic idea of this paper is illustrated in Figure 3, which
depicts a program execution as a series of program states—that
is, variables and their values. On the left hand side, the program
processes some input. Only a part of the input is relevant for the
failure—that is, a difference like “+1.0” between an input that is
failure-inducing and an input that is not. This difference in the in-
put causes a difference in later program states, up to the difference
in the final state that determines whether there is a failure or not.

3The process described in Section 3 is patent pending.

δ1 δ2 δ3 δ4
reg rtx no cur insn uid first loop store insn last linenum test

r✘ 32 74 0x81fc4e4 15 ✘
r✔ 31 70 0x81fc4a0 14 ✔

Table 2: Differing variables in two GCC runs

# reg rtx no cur insn uid first loop store insn last linenum test

1 32 74 0x81fc4a0 14 ✔
2 32 74 0x81fc4e4 14
3 32 74 0x81fc4a0 15 ✔

Table 3: Isolating failure-inducing variables

The problem, though, is, that even a minimized difference in the
input may induce a large difference in the program state. Yet, only
some of these differences are relevant for the failure. So, we apply

Delta Debugging on program states in order to isolate the variables
and values that are relevant for the failure; these isolated variables
constitute the cause-effect chain that leads from the root cause to
the failure. This is the contribution of this paper: a fully automatic
means to narrow down program states and program runs to the very
small fraction that is actually relevant for the given failure.

3.1 Accessing and Comparing States
Our requirements are easy to satisfy; all we need is an ordinary
debugger tool that allows us to retrieve and alter variables and their
values. Let us initiate two GCC runs: a run r✘ on fail.c and a run r✔

on pass.c, where fail.c and pass.c differ only by “+1.0”. Using
the debugger, we interrupt both runs at the same location L; then,
we retrieve each GCC state as a set of (variable, value) pairs. As
a mental experiment, let us assume that all variables have identical
values in r✔ and r✘ , except for the four variables in Table 2.

Obviously, this difference in the program state is the difference
which eventually causes the failure: If we set the differing variables
in r✔ to the values found in r✘ and resume execution, then GCC

should behave as in r✘ and fail.
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Figure 3: Narrowing a cause-effect chain. In each state, out of m variables, only few are relevant for the failure. These can be isolated

by narrowing the state difference between a working run and a failing run.

We can use Delta Debugging to narrow down the cause. Now,
the deltas δi become differences between variable values: applying
a δi in r✔ means setting the i-th differing variable in r✔ to the value
found in r✘ . The test function executes r✔ , interrupts execution
at L , applies the given deltas, resumes execution and determines
the test outcome.

As a difference example, consider δ1 and δ2 from Table 2. To test
δ1 and δ2 means to execute GCC on pass.c (run r✔ ), to interrupt it
at L , to set reg rtx no to 32 and cur insn uid to 74, and to resume
execution. If we actually do that, it turns out that GCC runs just
fine—test returns ✔ and we have narrowed the failure cause by
these two differences.

Unfortunately, things are not so simple. If we continue the nar-
rowing process using Delta Debugging, we end up in trouble, as
shown in Table 3. Step 1 is the application of δ1 and δ2, as dis-
cussed before—everything fine so far. In Step 2, though, we would
apply the change δ3, setting the pointer first loop store insn to the
address found in r✘ . This would cause an immediate core dump
of the compiler—not really surprising, considering that an address
from r✘ probably has little meaning in r✔ .

In Step 3, we can exclude last linenum as a cause and thus ef-
fectively isolate first loop store insn as remaining failure-inducing
difference, so we can easily see that our process is feasible. How-
ever, our state model is insufficient: We must also take derived

variables into account—that is, all memory locations being pointed
to or otherwise accessible from the base variables.

3.2 Memory Graphs
To fetch the entire state, we capture the state of a program as a
memory graph [22]. A memory graph contains all values and all
variables of a program, but represents operations like variable ac-
cess, pointer dereferencing, struct member access, or array element
access by edges.

As a memory graph example, consider Figure 4, depicting a sub-
graph of the GCC memory graph. The immediate descendants of
the 〈Root〉 vertex are the base variables of the program. For in-
stance, the base variable first loop store insn can be found by fol-
lowing the leftmost edge from 〈Root〉. The dereferenced value is
found following the edge labeled *()4—a record with three mem-
bers value, fld[0].rtx, and fld[1].rtx. The latter points to another
record which is also referenced by the link variable.

4Each variable name is constructed from the incoming edge, where
the placeholder () stands for the name of the parent.

<Root>

0x81fc4e4

first_loop_store_insn

0x820e23c

link

{...}

*()

{...}

*()

SET

().code

0x81fc494

().fld[0].rtx

0x820e23c

().fld[1].rtx

PLUS

().code

0x820e230

().fld[0].rtx

0x820e224

().fld[1].rtx

*()

Figure 4: A simple memory graph. Pointers reference records,

each referencing its members.

Memory graphs are obtained by querying the base variables of
a program and by systematically unfolding all data structures en-
countered; if two values share the same type and address, they are
merged to a single vertex. (More details on memory graphs, includ-
ing formal definitions and extraction methods, are available [22].)
Memory graphs give us access to the entire state of a program
and thus avoid problems due to incomplete comparison of program
states. They also abstract from concrete memory addresses and
thus allow for comparing and altering pointer values appropriately.

However, memory graphs also indicate another problem: The
set of variables itself may differ in the two states to be compared.
As an example, consider Figure 5. In the upper left corner, you
can see two memory graphs G ✔ and G ✘ , obtained from the two
runs r✔ and r✘ . As a human, you can quickly see that, to change
G ✔ into G ✘ , one must insert element 15 into the list and delete el-
ement 20. To detect this automatically for arbitrary data structures,
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Figure 5: Determining structural differences between memory graphs. Any node not contained in the common subgraph (dotted

lines) is either inserted or deleted (top left). Applying δ15 on r✔ creates the list element 15, applying δ20 deletes list element 20.

Applying both deltas (bottom right) transforms r✔ to (δ15 ◦ δ20)(r✔ ) = r✘ .

one must compute a common subgraph of G ✔ and G ✘ : Any vertex
that is not in the common subgraph of G ✔ and G ✘ has either been
inserted or deleted.

How does one compute a large common subgraph? We actually
use two different algorithms. For small graphs, we compute the
largest common subgraph, for larger graphs, we quickly compute a
large subgraph.

• To compute the largest common subgraph, we use the ap-
proach of Barrow and Burstall [4], starting from a correspon-

dence graph as computed by the algorithm of Bron and Ker-
bosch [5]. The correspondence graph matches correspond-
ing vertex contents and edge labels. This is very suitable in
our case, since we normally have several differing contents
and labels. However, in the worst case (all contents and la-
bels are equal), computing the largest common subgraph is
an NP-complete problem.

• To compute a large common subgraph, we use simple par-

allel traversal: Starting from the 〈Root〉 vertex, we deter-
mine all matching edges originating from the current node
and ending in a vertex with matching content. These edges
and vertices become part of the common subgraph; the pro-
cess is then repeated recursively. The resulting common sub-
graphs are not necessarily the largest, but sufficiently large
for our purposes. Also, the complexity is that of a simple
graph traversal.

In Figure 5, we have determined the largest common subgraph,
drawn using dotted lines as a matching between G ✔ and G ✘ .5 It is

5An edge is part of the matching (= the common subgraph) if its
vertices match; there is no such edge in this example.

plain to see that element 15 in G ✘ has no match in G ✔ ; likewise,
element 20 in G ✔ has no match in G ✘ .

For our purposes, we translate these differences into atomic deltas
that create or delete new variables—one delta for each non-matched
variable. In this example, we obtain a delta δ15 that creates the
list element 15 and a delta δ20 that deletes list element 20. Both
deltas can be applied independently (upper right and lower left).
Altogether, we thus obtain deltas that change variable values, as
sketched in Section 3.1, as well as deltas that alter data structures.

3.3 Isolating the GCC CauseEffect Chain
Let us now put all these building blocks together. We have built a
prototype called HOWCOME that relies on the GNU debugger (GDB)
to extract the program state (Figure 6). Each δi is associated with
appropriate GDB commands that alter the state.

From Section 2, we already know the failure-inducing difference
in the input, namely the token sequence “+1.0”, which is present

Debuggee

Debugger (GDB)

State Extraction and Comparison

Isolation of Relevant States (Delta Debugging)

Extraction of Cause-Effect Chains

Relevant Deltas

State Deltas

State

Test
Results

Deltas

Event
Selection

Control State

Figure 6: HOWCOME components



Figure 7: The GCC G ✔ memory graph

in fail.c, but not in pass.c. HOWCOME’s test function is also set up
as discussed in Section 2.

At which locations do we compare executions? For technical
reasons, we require comparable states—since we cannot alter the
set of local variables, the current program counter and the backtrace
of the two locations to be compared must be identical. From the
standpoint of causality, though, any location during execution is as
causal as any other.

HOWCOME thus starts with a sample of three events, occurring
in both the passing run r✔ and the failing run r✘ :

1. After the program start (in our case, when GCC’s subprocess
cc1 reaches the function main)

2. In the middle of the program run (when cc1 reaches the func-
tion combine instructions)

3. Shortly before the failure (when cc1 reaches the function
if then else cond for the 95th time—a call that never returns)

3.3.1 At main

HOWCOME starts by capturing the two program states of r✔ and r✘

in main. Both graphs G ✔ and G ✘ have 27139 vertices and 27159
edges (Figure 7); to squeeze them through the GDB command-line
bottleneck requires 15 minutes each.

After 12 seconds, HOWCOME determines that exactly one vertex
is different in G ✔ and G ✘ —namely argv[2], which is "fail.i"
in r✘ and "pass.i" in r✔ . These are the names of the prepro-
cessed source files as passed to cc1 by the GCC compiler driver.
This difference is minimal, so we do not need a Delta Debugging
run to narrow it further.

3.3.2 At combine instructions

As combine instructions is reached, GCC has already generated the
intermediate code (called RTL for “register transfer list”) which is
now optimized. HOWCOME quickly captures the graphs G ✔ with
42991 vertices and 44290 edges as well as G ✘ with 43147 ver-
tices and 44460 edges. The common subgraph of G ✔ and G ✘ has
42637 vertices; thus, we have 871 vertices that have been added
in G ✘ or deleted in G ✔ .

The deltas for these 871 vertices are now subject to Delta De-
bugging, which begins by setting 436 GCC variables in the passing
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Figure 8: Narrowing at combine instructions

run to the values from the failing run (G ✘ ). This obviously is a
rather insane thing to do, and GCC immediately aborts with an error
message complaining about inconsistent state. Changing the other
half of variables does not help either. After these two unresolved
outcomes, Delta Debugging increases granularity and alters only
218 variables. After a few unsuccessful attempts (with various un-
common GCC messages), this number of altered variables is small
enough to make GCC pass (Figure 8). Eventually, after only 44
tests, HOWCOME has narrowed the failure-inducing difference to
one single vertex, created with the GDB commands

set variable $m9 = (struct rtx def *)malloc(12)

set variable $m9→code = PLUS

set variable $m9→mode = DFmode

set variable $m9→jump = 0

set variable $m9→fld[0].rtx = loop mems[0].mem

set variable $m9→fld[1].rtx = $m10

set variable first loop store insn→fld[1].rtx→

fld[1].rtx→fld[3].rtx→fld[1].rtx = $m9

That is, the failure-inducing difference is now the insertion of a
node in the RTL tree containing a PLUS operator—the proven effect
of the initial change “+1.0” from pass.c to fail.c. Each of the tests
required about 20 to 27 seconds of HOWCOME time, and 1 second
of GCC time.

3.3.3 At if then else cond

Shortly before the failure, in if then else cond, HOWCOME cap-
tures the graphs G ✔ with 47071 vertices and 48473 edges as well
as G ✘ with 47313 vertices and 48744 edges. The common sub-
graph of G ✔ and G ✘ has 46605 vertices; 1224 vertices have been
either added in G ✘ or deleted in G ✔ .

Again, HOWCOME runs Delta Debugging on the deltas of the
1224 differing vertices (Figure 9). As every second test fails, the
difference narrows quickly. After 15 tests, HOWCOME has iso-
lated a minimal failure-inducing difference—a single pointer ad-
justment, created with the GDB command

set variable link→fld[0].rtx→fld[0].rtx = link

This final difference is the difference that causes GCC to fail: It cre-
ates a cycle in the RTL tree—the pointer link→fld[0].rtx→fld[0].rtx

points back to link! The RTL tree is no longer a tree, and this
causes endless recursion in the function if then else cond, even-
tually crashing cc1.
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3.4 The GCC CauseEffect Chain
The total cause-effect chain for cc1, as reported by HOWCOME,
looks like this:
This is what happens when you invoke cc1 as “cc1 -O fail.i”:
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1. Execution reaches main.

Since the program was invoked as “cc1 -O fail.i”,

variable argv[2] is now “fail.i”.

2. Execution reaches combine instructions.

Since argv[2] was “fail.i”,

variable *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx is now 〈new rtx def〉.

3. Execution reaches if then else cond (95th hit).

Since *first loop store insn→fld[1].rtx→fld[1].rtx→

fld[3].rtx→fld[1].rtx was 〈new rtx def〉,

variable link→fld[0].rtx→fld[0].rtx is now link.

4. Execution ends.

Since variable link→fld[0].rtx→fld[0].rtx was link,

the program now terminates with a SIGSEGV signal.

The program fails.

With this summary, the programmer can easily follow the cause-
effect chain from the root cause (the passed arguments) via an in-
termediate effect (a new node in the RTL tree) to the final effect (a
cycle in the RTL tree). The whole run was generated automatically;
no manual interaction was required. HOWCOME required 6 runs to
extract GCC state (each taking 15–20 minutes) and 3 Delta Debug-
ging runs (each taking 8–10 minutes) to isolate the failure-inducing
differences.6

It should be noted again that the output above is produced in a
fully automatic fashion. All the programmer has to specify is the
program to be examined as well as the passing and failing invo-
cations of the automated test. Given this information, HOWCOME

then automatically produces the cause-effect chain as shown above.

4. ISOLATING THE ERROR
The ultimate aim of debugging is to break the cause-effect chain
such that the failure no longer occurs. Our cause-effect chain for

6A non-prototypical implementation could speed up state access by
1–3 magnitudes by bypassing the GDB command line.

main if_then_else_condcombine_instructions

combine.c:1758
combine.c:4011

combine.c:4271

✔ ✔ ✔ ✘ ✘ ✘

Execution time

Figure 10: Narrowing down relevant events

GCC lists some possibilities: One could prevent an input of “+1.0”,
avoid PLUS operators in RTL or break cycles in the RTL tree. Again,
from the standpoint of causality, each of these fixes is equivalent in
preventing the failure.

For the programmer, though, these fixes are not equivalent—
obviously, we need a fix that not only prevents the failure in ques-
tion, but also prevents similar failures, while preserving the existing
functionality. The programmer must thus choose the best place to
break the cause-effect chain—a piece of code commonly referred
to as “the error”. Typically, this piece of code is found by determin-
ing the transition between an intended program state and a faulty

program state. In the absence of an oracle, we must rely on the
programmer to make this distinction: A cause can be determined
automatically; the fault is in the eye of the beholder.

Nonetheless, cause-effect chains can be an effective help for the
programmer to isolate the transition: All the programmer has to
do is to decide whether the isolated state in the failing run is in-
tended or not. In the GCC example, we assume that the states at
main and at combine instructions are intended; the RTL cycle at
if then else cond obviously is not. So, somewhere between the in-
vocation of combine instructions and if then else cond, the state
must have changed from intended (“✔ ”) to faulty (“✘ ”). We focus
on this interval to isolate further differences.

Figure 10 shows the narrowing process. We isolate the failure-
inducing state at some point in time between combine instructions

and if then else cond, namely at combine.c in line 1758: Here, the
newpat variable points back to link—the cause for the cycle and
thus a faulty state. The transition between intended and faulty state
must have occurred between combine instructions and line 1758.

Only two more narrowing steps are required: At line 4011, HOW-

COME again isolates an additional PLUS node in the RTL tree—
an intended effect of the “+1.0” input (not faulty);7 at line 4271,
HOWCOME again finds a failure-inducing RTL cycle (faulty). This
isolates the transition down to lines 4013–4019. In this piece of
code, executed only in the failing run, the RTL expression

(MULT (PLUS a b) c)

is transformed to

(PLUS (MULT a c1)(MULT b c2))

where c = c1 = c2 holds.8 Unfortunately, c1 and c2 are created
as aliases of c, which causes the cycle in the RTL tree! To fix the
error, one should make c2 a true copy of c1—and this is how the
error was fixed in GCC 2.95.3.

Do we really need the programmer to narrow down the point in
time where the state becomes faulty? Not necessarily:

• First, one could simply increase the granularity of the cause-
effect chain, and thus present more detailed information.

7Actually, HOWCOME reports this PLUS node as being located at
undobuf .undos→next→next→next→next→next→next→next→
next→next, which indicates that finding the most appropriate de-
nomination for a memory location is an open research issue.
8This application of the distributive law allows for potential opti-
mizations, especially for addresses.



• Second, one could attempt to isolate cause transitions au-
tomatically. For instance, the narrowing process as shown
above could also have been guided by the fact whether the
RTL tree difference PLUS is relevant or not—and would have
isolated the very same location.

• Third, one could apply heuristics to automatically focus on
events that are likely to be relevant—such as code being ex-
ecuted in only one of the two runs. We are currently exper-
imenting with different anomaly detection methods listed in
Section 6.2.

5. WHY DOES THIS WORK?

AND WHEN DOES THIS WORK?
Besides GCC, we have applied HOWCOME to some more well-
known programs to isolate cause-effect chains (Table 4):

• In the sample example from the DDD manual, Delta Debug-
ging quickly isolated a bad shell sort call.9

• In the bison parser generator, a shift/reduce conflict in the
grammar input causes the variable shift table to be altered,
which in turn generates a warning.

• In the diff file comparison program, printing of file differ-
ences is controlled by changes, whose value is again caused
by files→changed flag.

• Invoking the gdb debugger with a different debuggee changes
18 variables, but only the change in the variable arg is rele-
vant for the actual debuggee selection.

In all cases, the resulting failure-inducing difference contained only
one element; the number of tests was at most 42.

What we found most surprising about these experiments was that
one can alter program variables to more or less meaningless values
and get away with it. We made the following observations, all used
by Delta Debugging:

1. The altered values are not meaningless; they stem from a
consistent state, and it is only a matter of statistics (e.g. which
and how many variables are transferred) whether they in-
duce an inconsistent state. The chances for consistency can
be increased by grouping variables according to the program
structure (which HOWCOME does not do yet).

2. The remainder of the program (and the final test function)
acts as a filter: If anything happens that did not happen in the
two original runs, the test outcome becomes unresolved, and
the next alternative is sought. If variables have been altered
and the outcome is still similar to the original two runs, then
these variables are obviously irrelevant for the outcome. Pre-
cision can be arbitrarily increased by making the test function
pickier about similarity [21].

3. In a program with a good separation of concerns, only a few
variables should be responsible for a specific behavior, in-
cluding failures—and this small number makes Delta Debug-
ging efficient.

4. Program state has a structure and can thus easily be decom-
posed. In contrast, decomposing input as sketched in Sec-
tion 2 requires the input syntax to be specified manually for

9A HOWCOME demonstration program for this example, is avail-
able online, including sample Delta Debugging source code [2].

Event Edges Vertices Deltas Tests

sample at main 26 26 12 4
sample at shell sort 26 26 12 7
sample at sample.c:37 26 26 12 4
cc1 at main 27139 27159 1 0
cc1 at combine instructions 42991 44290 871 44
cc1 at if then else cond 47071 48473 1224 15
bison at open files 431 432 2 2
bison at initialize conflicts 1395 1445 431 42
diff at analyze.c:966 413 446 109 9
diff at analyze.c:1006 413 446 99 10
gdb at main.c:615 32455 33458 1 0
gdb at exec.c:320 34138 35340 18 7

Table 4: Summary of case studies

each new program. And, of course, isolating relevant states
is much more valuable than isolating input alone, since we
can actually look at what’s going on inside the program.

Nonetheless, isolating cause-effect chains as presented here has its
weaknesses, all to be considered:

• Delta Debugging always requires an alternate run in order
to compare states.10 This alternate run also determines the
causes Delta Debugging can infer: A variable can be isolated
as a cause only if it exists in both runs and if its value differs.

• An isolated cause may be helpful only indirectly. If the value
reported for the failing run is not “faulty”, we found an ac-
complice, but not yet the scoundrel: One must infer how
the isolated cause interacts with the common state. In most
cases, though, we expect this to be indicated by the remain-
der of the cause-effect chain.

• Delta Debugging as presented here isolates only one cause
from several potential causes—for instance, fail.c can be
changed in several ways besides removing “+1.0”, and so
can the induced states. Although Delta Debugging could eas-
ily be extended to search for alternative causes—which is the
“best” cause, then, to present to the programmer?

• Delta Debugging may require a large number of tests to find
that a large difference can no longer be narrowed. Such large
differences will typically occur in programs where a large
part of the state decides whether a test passes or fails; typical
examples are numerical or cryptographic programs.

In general, weaknesses in searching algorithms can be overcome
by increasing the knowledge about the search domain, and Delta
Debugging is no exception. Hence, we expect weaknesses in Delta
Debugging to be overcome by combining Delta Debugging with
analysis methods as discussed in the next Section.

6. RELATED WORK

6.1 Program Slicing
Program slicing [17, 18] facilitates debugging by focusing on rele-
vant program fragments. Roughly spoken, a slice for a statement s

in a program consists of all other statements that could possibly in-
fluence some variable at s (“all statements that s depends upon”).

10For an “almost correct” program, this should not be too difficult; if
a program fails under all conditions, anomaly detection techniques
(Section 6.2) are probably a better choice.



As a very simple slicing example, consider the code

if p then x ′ := x ∗ y fi

Here, the variable x ′ is control dependent on p and data dependent
on x and y (but not on, say, z); the slice of x ′ would also include
earlier dependencies of p, x , and y. The slice allows the program-
mer to focus on relevant statements; a slice also has the advantage
that it is valid for all possible program runs and thus needs to be
computed only once.

In practice, slicing is not yet as useful as would be expected,
since each statement is quickly dependent on many other state-
ments. The end result is often a program slice which is not dramat-
ically smaller than the program itself—the program dependencies
are too coarse [11]. Also, data and control-flow analysis of real-life
programs is non-trivial. For programs with pointers, the necessary
points-to analysis makes dependencies even more coarse [9].

Dynamic slicing [3, 7, 13] is a variant of slicing that takes a con-

crete program run into account. The basic idea is that within a
concrete run, one can determine more accurate data dependencies
between variables, rather than summarizing them as in static slic-
ing. In the dynamic slice of x ′, as above, x ′ is dependent on x , y,
and p only if p was found to be true.

In cause-effect chains, p, x , and y are the cause for the value
of x ′ if and only if altering them also changes the value of x ′, as
proven by test runs. If x = 0 holds, for instance, p can never be
a cause for the value of x ′, because x ′ will never alter its value; y

cannot be a cause, either. Consequently, cause-effect chains have
a far higher precision than static or dynamic slices. On the other
hand, cause-effect chains require several test runs (which is possi-
bly slower than analysis), apply to a single program run only, and
give no hints on the involved statements. The intertwining of pro-
gram analysis and testing promises several mutual advantages.

6.2 Detecting Anomalies
Dicing [14] determines the difference of two program slices. For
instance, a dynamic dice could contain all the statements that may
have influenced a variable v at some location in a failing run r✘ , but
not in a passing run r✔ . The dice is likely to include the statement
relevant for the value of v.

Running several tests at once allows one to establish relation-

ships between the executed code and the test outcome. For in-
stance, one could isolate code that was only executed in failing
tests [12]. This differential approach would also have isolated the
erroneous code in our GCC example.

Dynamic invariants [6] can be used to detect anomalous program
behavior [8]. During execution, a tool checks the program against
a model that is continuously updated; invariant violations can be
immediately reported. This approach has several exciting uses; one
related to our work is to check a failing run against invariants ob-
tained from a passing run.

As discussed in Section 4, the idea that an automated process
could isolate “the” erroneous code automatically in the absence of
an oracle can only be based on heuristics, and this is what these ap-
proaches provide—including the risk of being misleading. Nonethe-
less, a heuristic can be very good at isolating possible causes; and
it can be even more helpful when guiding a divide-and-conquer ap-
proach like Delta Debugging.

6.3 The Debugging Process
Algorithmic debugging [16] automates the debugging process. The
idea is to isolate a failure-inducing clause in a PROLOG program by
querying systematically whether subclauses hold or not. The query
is resolved either manually by the programmer or by an oracle re-

lying on an external specification. This could easily be combined
with our approach to narrow down the failure-inducing code as dis-
cussed in Section 4: “Is PLUS in the RTL tree correct (y/n)?”

6.4 Testing for Debugging
Surprisingly, there are very few applications of testing for pur-
poses of debugging or program understanding. Our own contri-
butions [21] as well as inferring relationships between code and
tests [12] have already been mentioned.

Specifically related to our GCC case study is the isolation of
failure-inducing RTL optimizations in a compiler, using simple bi-
nary search over the optimizations applied [19]. An experimental
approach comparable to Delta Debugging is change impact analy-

sis [15], identifying code changes that are relevant for a failure.

7. CONCLUSION AND CONSEQUENCES
Cause-effect chains explain the causes of program failures automat-
ically and effectively. All that is required is an automated test, two
comparable program runs and access to the state of an executable
program. Although relying on several test runs to prove causality,
the isolation of cause-effect chains requires no manual interaction
and thus saves valuable developer time.

As the requirements are simple to satisfy, we expect that future
automated test environments will come with an automatic isolation
of cause-effect chains. Whenever a test fails, the cause-effect chain
could be automatically isolated, thus showing the programmer not
only what has failed, but also why it has failed. Although fixing the
program is still manual (and creative) work, we expect that the time
spent for debugging will be reduced significantly.

All this optimism should be taken with a grain of salt, as there
is still much work to do. Our future work will concentrate on the
following topics:

Optimization. As stated in Section 3.4, HOWCOME could be run-
ning faster by several orders of magnitude by bypassing the
GDB bottleneck and re-implementing HOWCOME in a com-
piled language. Regarding Delta Debugging, we are working
on grouping variables such that variables related by occur-
ring in the same function or module are changed together,
rather than randomly assigning variables to subsets.

Program analysis. As hinted at in Section 6, the integration of
program analysis could make extracting cause-effect chains
much more effective. For instance, variables that cannot in-
fluence the failure in any way could be excluded right from
the start. Anomaly detection could help to guide the search
towards specific variables or specific events.

Greater state. Right now, our method only works on the state that
is accessible via the debugger. However, differences may
also reside outside of the program state—for instance, a file
descriptor may have the same value in r✘ and r✔ , but be tied
to a different file. We are working on how to capture such
external differences.

More case studies. We are currently building a debugging server

named AskIgor [1] where anyone can submit failing pro-
grams via the Web (Figure 11) to have HOWCOME deter-
mine and report their cause-effect chains. As AskIgor re-
quests feedback from its users, we will be able to evaluate
the effectiveness and usability of our diagnoses for a large
number of real-life case studies. We plan to extend AskIgor

to accomodate and combine a variety of services for program
comprehension, including program slicing and anomaly de-
tection.



Figure 11: The AskIgor public debugging server

A discipline of debugging. Notions like causes and effects and ap-
proaches like running experiments under changed circum-
stances can easily be generalized to serve in arbitrary debug-
ging contexts. We are currently compiling a textbook [20]
that shows how debugging can be conducted as systemati-
cally and as all other software engineering disciplines—be it
manually or automated.

Overall, we expect that debugging may become as automated as
testing—not only detecting that a failure occurred, but also why it
occurred. And since computers were built to relieve humans from
boring, monotonous tasks—let’s have them do the debugging!
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