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ABSTRACT

The evolving roles of anthropogenic aerosols (AER) and greenhouse gases (GHG) in driving large-scale

patterns of precipitation and SST trends during 1920–2080 are studied using a new set of ‘‘all-but-one-forcing’’

initial-condition large ensembles (LEs) with the Community Earth SystemModel version 1 (CESM1), which

complement the original ‘‘all-forcing’’ CESM1LE (ALL). The large number of ensemblemembers (15–20) in

each of the new LEs enables regional impacts of AER and GHG to be isolated from the noise of the model’s

internal variability. Our analysis approach, based on running 50-yr trends, accommodates geographical and

temporal changes in patterns of forcing and response. AER are shown to be the primary driver of large-scale

patterns of externally forced trends inALL before the late 1970s, andGHG to dominate thereafter. TheAER

and GHG forced trends are spatially distinct except during the 1970s transition phase when aerosol changes

are mainly confined to lower latitudes. The transition phase is also characterized by a relative minimum in the

amplitude of forced trend patterns in ALL, due to a combination of reduced AER and partially offsetting

effects of AER andGHG. Internal variability greatly limits the detectability of AER- andGHG-forced trend

patterns in individual realizations based on pattern correlationmetrics, especially during the historical period,

highlighting the need for LEs. We estimate that,20% of the spatial variances of observed precipitation and

SST trends are attributable to AER and GHG forcing, although model biases in patterns of forced response

and signal-to-noise may affect this estimate.

1. Introduction

Anthropogenic aerosols (AER) and greenhouse gases

(GHG) are the dominant drivers of forced climate

change on a global scale over the past century, with

opposing effects on the planetary radiative energy

balance (Myhre et al. 2013; Zhao et al. 2019). AER

cause a net cooling through increased absorption and

scattering of shortwave radiation (direct effects) and

changes in cloud microphysical properties (indirect ef-

fects, also referred to as aerosol–cloud interactions) [see

the recent review by Bellouin et al. (2020)], while GHG

induce warming through enhanced absorption of long-

wave radiation. AER and GHG differ not only in their

radiative impacts, but also in their geographical distri-

butions and temporal evolutions. AER are spatially

heterogeneous, originating primarily over the major

industrial centers of the Northern Hemisphere (NH)

and Southeast Asia, with additional sources from bio-

mass burning, while GHG are globally predominantly

well mixed. Temporal changes in AER are regionally
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specific, whereas GHG concentrations have risen ap-

proximately monotonically in all locations. For exam-

ple, AER over North America and western Europe

increased rapidly from the 1940s to 1970s followed by a

gradual decline, while those over Southeast Asia have

risen continuously since the late 1940s (Lamarque et al.

2010; Stevens 2015; Persad and Caldeira 2018; Samset

et al. 2019). These contrasting aspects ofAER andGHG

complicate the study of anthropogenic climate change

on regional scales, including physical understanding,

detection and attribution, and model projections. In

addition, the magnitude of AER forcing remains un-

certain (Wilcox et al. 2015; Samset et al. 2019; Wilcox

et al. 2020; Bellouin et al. 2020).

The physical mechanisms underpinning the large-

scale response of the climate system to radiative per-

turbations associated with AER and GHG have been

investigated using a range of approaches, including

theoretical considerations, simplified modeling experi-

ments with idealized forcings, and full complexity Earth

system model (ESM) simulations with realistic radiative

forcing scenarios. Collectively, these approaches have

led to the following insights and understanding. On a

global scale, energetic constraints dictate that enhanced

NH cooling induced by AER sources in Eurasia and

North America will cause an interhemispheric climate

shift, including a southward displacement of the zonal-mean

intertropical convergence zone (ITCZ) (e.g., Rotstayn and

Lohmann 2002; Ming and Ramaswamy 2009; Hwang et al.

2013; Wang et al. 2016; Chung and Soden 2017; Soden and

Chung 2017; Wang et al. 2019). In contrast, GHG-induced

global warming will produce a zonal mean response that

is largely symmetric about the equator, with additional

asymmetries introduced by the mean state and continental

configuration. In general, the zonal-mean response toGHG

is characterized by enhanced rainfall in the deep tropics and

drying in the subtropics, following the ‘‘wet-get-wetter’’ and

‘‘upped ante’’ paradigms (e.g., Held and Soden 2006; Xie

et al. 2010, 2013; Wang et al. 2016; Neelin et al. 2003). The

zonal-mean responses to both AER and GHG are strongly

mediated by dynamical ocean–atmosphere interactions, in

particular oceanic meridional heat transports associated

with the wind-driven subtropical overturning cells and the

Atlantic meridional overturning circulation (Kang et al.

2018, 2019; Tomas et al. 2016;Wang et al. 2018). In addition,

both types of radiative forcing induceamplified temperature

(and associated precipitation) responses in the Arctic as a

result of positive ice-albedo feedback (Deng et al. 2020;

Zhao et al. 2019).

Regional aspects of the precipitation and sea surface

temperature (SST) responses to AER and GHG

changes have been widely studied. These include im-

pacts on Sahel rainfall (e.g., Haywood et al. 2013; Dong

et al. 2014;Giannini andKaplan 2019;Hirasawa et al. 2020,

manuscript submitted to J. Climate, the Asian monsoon

(Ganguly et al. 2012; Undorf et al. 2018a; Li et al. 2018;

Zhao et al. 2019), Eurasian climate (Undorf et al. 2018b),

and regional patterns of SST change (Xie et al. 2010, 2013;

Wang et al. 2016). Air–sea interactions are important

modulators of these responses, with both thermodynamic

and dynamic processes contributing (Li et al. 2018; Kang

et al. 2018, 2019). For example, thewind–evaporation–SST

(WES) feedback mechanism, SST–cloud interactions,

and wind-driven changes in ocean gyre-scale circulations

contribute to the formation of regional patterns of SST

response (Xie et al. 2010). These air–sea feedback

mechanisms operate under both AER and GHG forc-

ing, and thus impart a degree of commonality to the

regional patterns of SST response to AER and GHG

changes (Xie et al. 2013). Aerosol–cloud interactions

also play an important role in the response of the climate

system to AER forcing (Chung and Soden 2017; Soden

andChung 2017), with impacts on climate feedbacks and

climate sensitivity (Gettelman et al. 2016; Ghan et al.

2016; Gryspeerdt et al. 2020).

A majority of the studies cited above adopt a ‘‘time

slice’’ approach to their analysis of climate model sim-

ulations by contrasting two different periods, for ex-

ample preindustrial vs. present-day (e.g., Li et al. 2018;

Chung and Soden 2017; Soden and Chung 2017; Deng

et al. 2020), early vs. late twentieth century (Hwang et al.

2013), 1970s vs. 2010s (Zhao et al. 2019), and present-

day vs. late twenty-first century (Xu et al. 2018). Others

prescribe idealized time-invariant radiative perturba-

tions in a hierarchy of models to probe dependencies

upon amplitude, geographical location, and degree of

air–sea coupling (Seo et al. 2014; Persad and Caldeira

2018; White et al. 2018; Kang et al. 2018, 2019). One

recent multimodel ensemble compared two different

greenhouse gas and two different aerosol forcings (Myhre

et al. 2017). Such idealized and time-slice approaches are

fruitful for establishing a mechanistic understanding of

the response to a particular configuration of radiative

forcing, which may or may not lend itself to ‘‘pattern

scaling’’ for future projections (Tebaldi and Arblaster

2014; Pendergrass et al. 2015). However, by design, these

studies do not take into account the full complexity of the

observed spatiotemporal evolution of AER over the

historical period, nor do they consider how the changing

geographical distribution ofAERmay interact with rising

GHGs as a function of time, nor to what extent the

evolving forced responses may be obscured by multi-

decadal trends driven by internal variability. Nonlinear

interactions between AER and GHG were investigated

in Gettelman et al. (2016), Deng et al. (2020), and Zhao

et al. (2019), but only for a particular time period.
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Apart from the idealized modeling studies, the ma-

jority of aforementioned studies were based on a limited

collection of ‘‘single forcing’’ AER and GHG historical

simulations conducted with a subset of models partici-

pating in phase 5 of the CoupledModel Intercomparison

Project (CMIP5; Taylor et al. 2012). Because of the

limited number (1–5) of simulations for each of the eight

models in this single-forcing archive, the analyses relied

on the multimodel mean to estimate the forced re-

sponse. However, averaging across models confounds

model structural uncertainty and uncertainty due to in-

ternal variability (i.e., Hawkins and Sutton 2009; Deser

et al. 2012). This may be particularly problematic in the

case of AER, since each model differs in its represen-

tation of aerosol direct and indirect effects (e.g., Zelinka

et al. 2014; Bellouin et al. 2020). In addition, structural

uncertainty may be an issue for responses that are

closely tied to the mean state, as is the case for tropical

precipitation (Xie et al. 2010).

To circumvent the issue of structural uncertainty,

initial-condition large ensembles (LEs) have been used

to determine the forced response in a given climate

model (e.g., Deser et al. 2020). In such a LE, each sim-

ulation is conducted with the same model and radiative

forcing scenario but begins from a different initial state;

thus, ensemble spread is solely attributable to unpre-

dictable internal variability and the forced response can

be estimated from the ensemble mean (e.g., Deser et al.

2012; Kay et al. 2015; Maher et al. 2019; Lehner et al.

2020). Almost all LEs to date prescribe the full suite of

anthropogenic and natural radiative forcing factors (see

Table 1 in Deser et al. 2020), including the widely used

40-member Community Earth System Model version 1

(CESM1) LE (Kay et al. 2015). Here, we introduce a

new set of CESM1 LEs in which industrial AER, bio-

mass burning AER, or GHG is kept fixed at 1920 con-

ditions, while all other external anthropogenic and

natural forcings evolve following those in the original

‘‘all-forcing’’ CESM1 LE (i.e., historical and future

RCP8.5 scenarios over the period 1920–2080). These

new LEs provide a unique community resource for

studying the regional impacts of AER and GHG over

the twentieth and twenty-first centuries. To the best of

our knowledge, the only other comprehensive models

with complementary historical and future all-forcing

and single-forcing LEs are the Canadian ESM version

2, which begins in 1950 and also employs CMIP5 forc-

ings (Santer et al. 2019; Bonfils et al. 2020), and the

Canadian ESM version 5, which begins in 1850 and

employs CMIP6 forcings (Swart et al. 2019).

The purpose of this study is to use the new set of

CESM1 LEs 1) to isolate the evolving patterns of pre-

cipitation and SST response to AER and GHG forcing

over the period 1920–2080; 2) to quantify as a function of

time the relative contributions of AER and GHG forc-

ing to externally driven climate trends; and 3) to assess

the degree to which AER- and GHG-induced effects

can be detected in a single ensemble member and ob-

servations. Our simple analysis approach, based on

running 50-yr trends, accommodates temporal changes

in the spatial patterns of forcing and response, an aspect

that has been largely neglected in previous studies.

Such a perspective is particularly advantageous forAER

(and its interactions with GHG) due to pronounced

changes in the geographical distribution of emissions

over time. The rest of this paper is organized as follows.

The model simulations, observational datasets, and anal-

ysis approach are described in section 2. Results are pre-

sented in section 3, summarized in section 4, and discussed

in section 5.

2. Data and methods

a. Model simulations

All experiments use the same model version and

nominal 18 spatial resolution as the 40-member fully

coupled global CESM1LE described inKay et al. (2015).

CESM1 consists of interactive atmosphere, ocean, land,

and sea ice component models, as well as a terrestrial

carbon cycle, and diagnostic biogeochemistry calcula-

tions for the ocean ecosystemand the atmospheric carbon

dioxide cycle, which do not feed back on the model’s

physical climate. The atmospheric model component is

CommunityAtmosphereModel version 5 (CAM5;Neale

et al. 2012), which includes a three-mode modal aerosol

scheme (Liu et al. 2012) with prognostic aerosols and

indirect effects (aerosol–cloud interactions) for both liq-

uid and ice phase clouds in the ‘‘stratiform regime’’

(Morrison and Gettelman 2008; Gettelman et al. 2010).

CESM1 has a present-day value of aerosol effective ra-

diative forcing of 21.37Wm22 (Zelinka et al. 2014),

which falls within the one standard deviation range of

plausible estimates (from 21.6 to 20.6Wm22; Bellouin

et al. 2020). The 40-member CESM1LE (Kay et al. 2015)

is configured as follows. The first ensemble member be-

gins in 1850 from year 401 of a long preindustrial control

simulation, and is integrated forward under historical

(prior to 2006) and future (RCP8.5 for 2006–2100) emis-

sions scenarios. All other members are branched from the

first member in 1920 and are subject to the same forcing

protocol, but differ by a small (order 10214K, the level of

‘‘round-off’’ error inCAM5) randomnoise perturbation to

their initial atmospheric temperature fields. The CESM1

‘‘all forcing’’ LE (hereafter referred to as ‘‘ALL’’) realis-

tically simulates the evolution of global-mean surface air
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temperature (GMST) during 1920–2019, with observations

lying within the ensemble spread nearly every year

(Fig. 1a). The observed linear trend in GMST during this

period [0.898C (100yr)21] is also within the ensemble

spread [0.648–0.958C (100yr)21].

The new set of CESM1 LEs conducted for this study

use the same forcing protocol as ALL, except that one

forcing agent is held fixed at 1920 conditions as follows:

1) a 20-member ensemble with fixed GHGs (hereafter

‘‘XGHG’’); 2) a 20-member ensemble with fixed in-

dustrial AER (hereafter ‘‘XAERindus’’); and 3) a 15-

member ensemble with fixed biomass-burning AER

(hereafter ‘‘XAERbmb’’). Each member of the ‘‘X’’

ensembles begins from the same state as the first mem-

ber of ALL in 1920 and is initialized in the same manner

as described above for ALL. The XAERindus and

XGHG ensembles end in 2080, while the XAERbmb

ends in 2030 (note that biomass-burning aerosols in

RCP8.5 do not change appreciably after 2030).

To determine the effect of the forcing factor that was

held fixed in the ‘‘X’’ ensembles, we subtract the en-

semble mean of the ‘‘X’’ ensemble from the ensemble

mean of ALL and term these residuals AERindus,

AERbmb, and GHG. Note that these residuals in-

clude any nonlinear interactions among AERindus,

AERbmb, and GHG that are present in ALL. For ex-

ample, AERindus may interact nonlinearly with GHG

in the ALL ensemble, but this interaction is absent in

XAERindus. The conversions from XAERindus to

AERindus, and from XGHG to GHG, are illustrated

for GMST in Figs. 1b and 1c (the effect of AERbmb on

GMST is negligible; not shown). GMST in XGHG (red

curve and pink shading, Fig. 1b) decreases by approxi-

mately 0.58C from about 1940–90, while in XAERindus

(blue curve and shading, Fig. 1b) it increases by ap-

proximately 1.48C from about 1930 to the present, which

is nearly 0.48C more than the increase in ALL (black

curve and gray shading, Fig. 1b). Synchronous episodic

cooling associated with volcanic eruptions in 1963, 1982,

and 1991 is evident in all three records. The GMST time

series in GHG (red curve and pink shading, Fig. 1c) is

very similar to that in XAERindus, and GMST in

AERindus (blue curve and shading, Fig. 1c) is very

similar to that in XGHG except for the lack of volcanic

signatures. This close resemblance attests to the domi-

nant influence of AERindus and GHG on ensemble-

mean GMST compared to other anthropogenic and

natural forcings (with the notable exception of volcanic

eruptions).

The combined effects of internal variability and

forced response in any individual member of the GHG,

AERindus, and AERbmb ensembles can be calculated

as follows:

FIG. 1. Time series of annual global-mean surface air tempera-

ture (GMST) anomalies (8C) during 1920–2020 in (a) CESM1

ALL (black curve shows the ensemble mean and gray shading

shows the ensemble spread) and observations (1920–2019 from

Berkeley Earth Surface Temperature; Rohde et al. 2013; blue

curve); (b) CESM1 ALL (black curve and gray shading),

CESM1 XGHG (red curve and pink shading), and CESM1

XAERindus (light blue curve and shading); and (c) CESM1

ALL (black curve and gray shading), GHG (red curve and pink

shading), and AERindus (light blue curve and shading).

Anomalies are defined relative to the 1920–70 long-term

means. See text for details.
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GHG
i
5 XGHG

i
2 2XGHG

em
1 ALL

em
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5 XAERindus
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2 2XAERindus

em
1 ALL

em
,

(2)

AERbmb
i
5 XAERbmb

i
2 2XAERbmb

em
1 ALL

em
,

(3)

where the subscript ‘‘i’’refers to an individual ensemble

member, and the subscript ‘‘em’’ refers to the ensemble

mean. These equations follow from the definition of in-

ternal variability in member i of the ‘‘X’’ ensemble (i.e.,

XGHGi 2 XGHGem), and the definition of the response

to the withheld forcing (i.e., ALLem 2 XGHGem).

Hereafter, we focus on the combined effects of AERindus

and AERbmb (termed AER) by summing their contri-

butions. Data from the new CESM1 LEs are publicly

available at http://www.cesm.ucar.edu/working_groups/

CVC/simulations/cesm1-single_forcing_le.html.

b. Observational datasets

We make use of the following observational datasets

over the period 1920–2018, all at monthly resolution: 1)

precipitation from the Global Precipitation Climatology

Centre (GPCC) version 7, a gridded gauge-analysis

product with a spatial resolution of 2.58 latitude 3 2.58

longitude (Schneider et al. 2015); 2) near-surface air

temperatures (SAT) from the Berkeley Earth Surface

Temperature (BEST) station-based dataset at 18 spatial

resolution (Rohde et al. 2013); and 3) SSTs from

the NOAA Extended Reconstruction Sea Surface

Temperature version 5 (ERSSTv5) dataset at 58 spatial

resolution (Huang et al. 2017). We also include com-

parison to theGlobal Precipitation Climatology Product

(GPCP) version 2.3 (Adler et al. 2018), which provides

near-global coverage by incorporating satellite data and

is available for the period 1979–2018, as well as to the

Hadley Centre Sea Ice and Sea Surface Temperature

(HadISST) version 1 dataset (Rayner et al. 2003).

c. Analysis methods

We compute linear trends using least squares regres-

sion analysis and assess statistical significance at the

90% confidence level using a two-tailed Student’s t test.

These trends are calculated over 50-yr periods, but our

results are insensitive to small changes in trend length

(i.e., 40- and 60-yr trends yield similar results). All ob-

servational data are regridded to match the spatial res-

olution of CESM1 using bilinear interpolation. Area

weighting is used for constructing all regional and global

time series, as well as for computing spatial correlation

coefficients (the latter are computed after removing the

spatial mean of each field). All results are based on

annual means. Henceforth, for convenience we shall use

the term ‘‘historical period’’ to refer to the interval from

1920–2019, with the understanding that all simulations

are subject to RCP8.5 forcing protocols after 2005 (re-

call section 2a).

3. Results

a. Evolution of aerosol optical depth

Aerosol optical depth (AOD) at a wavelength of

550 nm provides a proxy for the magnitude of AER

forcing. Over the historical period (1920–2019), the en-

semble mean AOD in AER shows distinctive behavior

over key regions (Fig. 2). In particular, North America

and Europe combined exhibit a slight increase from

1920 to 1950, followed by a rapid rise from about 1955–

75 and a subsequent and similarly rapid decline to the

present (Fig. 2a). In contrast, the southeastern portion of

the Asian continent (hereafter referred to as ‘‘Southeast

Asia’’ for convenience, although our usage differs from

geographical convention) shows a steady increase in

AOD from the 1930s until the present (Fig. 2b), while

tropical South America and Africa show a pronounced

rise from 1945 to 1990 and remain relatively steady

thereafter (Fig. 2c).

The evolving spatial patterns of AOD changes in

AERover the historical period are portrayed inFigs. 2d–f

based on ensemble-mean trends for three overlapping 50-

yr intervals: 1930–79, 1950–99, and 1970–2019 (these in-

tervals, henceforth referred to respectively as ‘‘early,’’

‘‘middle,’’ and ‘‘late,’’ provide a succinct way of summa-

rizing the evolution of slow changes inAODduring 1930–

2019). Note that we omit the first 10 years of the model

simulations from our analysis to guard against potential

memory from the single ocean initial condition used for

the LEs (Yeager et al. 2018). Consistent with the regional

AOD time series, the early period shows positive AOD

trends in the NH, South America, and Africa, with maxi-

mum values in the main AER source regions (Europe,

Southeast Asia, and tropical Africa and South America),

and slight declines in parts of the SH (Fig. 2d). The AOD

increases over tropical Africa and South America are

largely a result of biomass burning AER precursor emis-

sions resulting from human interference (van Marle et al.

2017), while those over SoutheastAsia, Europe, andNorth

America are primarily due to industrial AER precursor

emissions (note that biomass burning decreases offset

to a large extent industrial emissions over eastern North

America during this early period; see Fig. S1 in the online

supplemental material). In the middle period, the main

regions of AOD increase shift to the tropics, with maxi-

mum trends over Southeast Asia and weaker values over
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tropical Africa and South America (Fig. 2e). The late pe-

riod exhibits pronounced declines in AOD over Europe

and eastern North America, and strong increases over

India and Southeast Asia (Fig. 2f). The striking differences

in the spatial distribution of aerosol-induced AOD trends

among the three periods has important implications for the

evolving large-scale patterns of SST and precipitation re-

sponse discussed next.

b. Evolution of forced SST trends

In this section, we present the evolution of forced

changes in SST in the AER, GHG, and ALL ensembles

using the same framework of overlapping 50-yr trends as

for AOD above. Global trend maps and associated zonal

mean trends for each period are shown in Fig. 3; results

for SAT (with coverage over ocean, land, and sea ice) are

shown in Fig. S2. During the early period (1930–79), SST

trends in ALL are dominated by an interhemispheric

structure, with generally negative values over the NH

and positive values over the SH (Fig. 3a), consistent with

the lack of an appreciable global-mean trend (recall

Fig. 1a). Notable regional features include enhanced

warming over the southeastern tropical Pacific and

Indian Oceans, and enhanced cooling over the north-

western subtropical Pacific and subpolar NorthAtlantic.

In the middle period (1950–99), SST trends in ALL are

positive in both hemispheres (except near Nova Scotia),

resulting in a more spatially homogenous pattern than

the early period, although a remnant of interhemi-

spheric asymmetry remains (more warming in the SH

compared to the NH; Fig. 3b). The late period (1970–

2019) in ALL is characterized by amplified warming

FIG. 2. Aerosol optical depth (AOD) at a wavelength of 550 nm (no units, multiplied by 100) from the AER

ensemble mean. Regional anomaly time series relative to the 1920–2020 base period for (a) eastern North America

and Europe, (b) Southeast Asia, and (c) tropical South America and Africa [regions identified in (d)–(f)]. Spatial

distribution of linear trends in AOD during (d) 1930–79, (e) 1950–99, and (f) 1970–2019. AOD values in polar

regions (hatching) are omitted for plotting purposes only.
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and a large degree of equatorial symmetry (Fig. 3c). In

particular, maximum warming occurs along the equa-

tor in the Pacific and Atlantic, with reduced warming

over the subtropical eastern basins of both hemi-

spheres; cooling is seen over the central subpolar North

Atlantic.

The large-scale SST trend pattern driven by AER in

the early period is similar to that in ALL (with some

regional exceptions such as the subpolar North Atlantic),

but with an overall offset due to global cooling (Fig. 3d).

The spatial correlation coefficient between the SST trends

in ALL and AER [denoted r(ALL, AER)] is 0.64 based

on the global domain and 0.86 for the tropics (308N–308S).

In the middle period, AER continues to cool most of the

global oceans, with the most pronounced SST declines

along the northern and eastern margins of the North

Pacific; a localized center of warming occurs to the south

of Greenland (Fig. 3e). The imprint of the AER-induced

pattern is evident over the Pacific sector inALL, but other

regions such as the subpolar North Atlantic show differ-

ences [r(ALL, AER) 5 0.40 global, 0.48 tropics]. In the

late period, the NH cooling due to AER weakens, and is

replaced by warming over the entire North Atlantic; this

pattern bears little resemblance to that in ALL [r(ALL,

AER)5 0.27 global, 0.37 tropics] (Fig. 3f). The reversal of

the cooling trends in the North Atlantic sector and the

Mediterranean Sea in the late period is likely a result of

concurrent AOD declines over North America and

Europe. The localized warming of the subpolar North

Atlantic, which develops in the early period and subse-

quently intensifies and persists, may be associated with a

gradual strengthening of AMOC in response to global

cooling. The decreasing resemblance betweenAER and

ALL with time is also evident in the zonal mean trend

profiles.

The pattern of GHG-induced SST trends is largely

static, with an increase in magnitude over the his-

torical period (Figs. 3g–i). This pattern consists of

amplified warming over the equatorial Pacific and

Atlantic, the western Indian Ocean, the North Pacific,

and portions of the Southern Ocean, and cooling over

the subpolar North Atlantic, consistent with previous

studies (e.g., Manabe and Stouffer 1993; Xie et al.

2010; DiNezio et al. 2009). Pattern correlations be-

tween SST trends in ALL and GHG [r(ALL, GHG)]

increase with time, from 0.26 and 0.24 in the early and

middle periods, respectively, to 0.74 in the late period

based on the global domain (similar values are found

for the tropical domain: 0.24, 0.26, and 0.74, respec-

tively). The increasing resemblance between GHG

FIG. 3. Linear trends in CESM1 ensemble-mean SST [K (50 yr)21] based on (a) ALL 1930–79; (b) ALL 1950–99; (c) ALL 1970–2019;

(d) AER 1930–79; (e) AER 1950–99; (f) AER 1970–2019; (g) GHG 1930–79; (h) GHG1950–99; and (i) GHG1970–2019. Stippled regions

indicate insignificant values at the 90% confidence level based on a two-sided t test. Gray shading at the poles denotes regions with sea ice.

Panels on the right show zonal-mean profiles (608S–658N) of the trend maps in each row: ALL (black), AER (blue), and GHG (red).
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and ALL with time is also evident in the zonal mean

trend profiles.

c. Evolution of forced precipitation trends

Global trend maps and associated zonal mean trends

of precipitation for each period are shown in Fig. 4

(precipitation trends as a percentage of the climatology

in each period are shown in Fig. S3). Like SST, the large-

scale pattern of forced precipitation trends in ALL

changes markedly over the course of the historical re-

cord, from a predominantly interhemispheric contrast in

the early period (Fig. 4a and associated zonal-mean

profile) to a more equatorially symmetric structure in

the late period (Fig. 4c and associated zonal-mean pro-

file). While there are many regional exceptions to how

these large-scale patterns are manifest, the early period

has preferentially more drying north of the equator,

particularly over Southeast Asia, the Maritime Continent,

the western North Pacific, and northern South America,

and more wetting south of the equator, especially over the

Indian Ocean, central Pacific, and Australia (Fig. 4a),

while the late period is dominated by precipitation in-

creases along the equatorial Pacific in addition to the

equatorial Atlantic and central Africa, drying over por-

tions of the subtropics, and wetting at middle and high

latitudes (Fig. 4c). In relation to the model’s climatology,

the early period trends represent an eastward extension of

the South Pacific convergence zone (SPCZ), a southward

shift of the IndianOcean convergence zone (IOCZ), and a

weakening of the rainfall maximum over the western

tropical Pacific (Fig. 4a). In contrast, the late period trends

represent an equatorward intensification of the Pacific

(and Atlantic) ITCZ, a retraction of the SPCZ, and a

weakening of the IOCZ (Fig. 4c). Precipitation trends in

the middle period resemble those in the early period but

with reduced amplitude over the Pacific sector (Fig. 4b).

Regional exceptions to the large-scale patterns described

above include drying trends over South Africa in the early

and middle periods and wetting trends over the north-

western Indian Ocean in all three periods. The Southern

Ocean shows positive precipitation trends in all three pe-

riods, which amplify and expand with time.

Like SST, the resemblance between the large-scale

patterns of precipitation trends in AER (Figs. 4d,e) and

ALL (Figs. 4a–c) is highest in the early period [r(ALL,

AER) 5 0.72 global, 0.84 tropics] and gradually dimin-

ishes over time [middle period r(ALL, AER) 5 0.56

global, 0.55 tropics; late period r(ALL, AER) 5 0.23

global, 0.21 tropics]. This behavior is also evident in the

zonal-mean trend profiles. In the early period, the spa-

tial trend amplitudes are generally larger in AER com-

pared to ALL (Figs. 4d,a). In the middle period, the

AER-induced drying over the equatorial Pacific and

weak wetting within the ITCZ to the north are in

FIG. 4. As in Fig. 3, but for precipitation [mmday21 (50 yr)21]. The contours show the 6mmday21 isopleth of the precipitation climatology

(1930–2019) from ALL.
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striking contrast to the features in ALL, as are the

opposite-signed trends over the Southern Ocean (cf.

Figs. 4e,b). Although the pattern correlation is low in the

late period, AER and ALL share certain regional fea-

tures, for example wetting over eastern North America,

Europe, and Africa, and drying over Southeast Asia

(Figs. 4f,c).

It is interesting to note the differences in AER-

induced precipitation trends over the tropical Pacific

between the early and middle periods (Figs. 4d,e). In

particular, there is a large degree of equatorial symme-

try within the tropical Pacific in the middle period, with

drying along the equator and wetting within the ITCZ

and SPCZ, in contrast to the antisymmetric pattern that

prevails in the early period. A similar structural change

is also apparent in the SST trends (Figs. 3d,e). We

speculate that this structural change results from the

altered distribution of regional AOD trends in the AER

simulations, in particular the fact thatAOD trends in the

middle period are predominantly located in the tropics,

whereas those in the early period also include a NH

midlatitude component which would drive an inter-

hemispheric shift (recall Figs. 2a,b). The negative AOD

trends over Europe and eastern North America in the

late period are likely responsible for inducing positive

precipitation trends north of the equator in the tropical

Atlantic and Africa, as well as local precipitation in-

creases over Europe and easternNorthAmerica (Fig. 4f).

Like SST, the patterns of GHG-induced precipitation

trends are similar in all three periods, with generally

increasing amplitudes over time (Figs. 4g–i and accom-

panying zonal-mean profiles). GHGs produce an in-

crease in precipitation along the equator in the Pacific

and Atlantic, with compensating drying directly to the

north and south. In addition, wetting occurs in the ex-

tratropics of both hemispheres and over the northern

Indian Ocean and Southeast Asia, while bands of drying

occur over the equatorial Indian Ocean and the sub-

tropical North Atlantic. These signals become more

statistically significant over time as their amplitudes in-

crease. Consistent with SST, the pattern correlations

between precipitation trends in ALL and GHG

strengthen over time, with low values in the early period

(0.16 global, 0.15 tropics), increasing slightly in the

middle period (0.28 global, 0.24 tropics) and attaining

maximum values in the late period (0.78 global, 0.79

tropics). This behavior is also seen for the zonal-mean

trend profiles.

Finally, it is interesting to note the structural similarity

(but opposing sign) of the AER and GHG induced

precipitation trends during the middle period, especially

in the tropics [r(AER, GHG) 5 20.40; Figs. 4e,h]. This

is also apparent for the accompanying SST trends, not

just in the tropics but also in the extratropics [r(AER,

GHG) 5 20.62; Figs. 3e,h]. The structural similarity

between AER and GHG in the middle period is also

clear from the zonal-mean profiles for both SST (Fig. 3)

and precipitation (Fig. 4). We speculate that the com-

mon structure during the middle period results from the

predominance of tropical AER forcing, which may

mimic the way well-mixed GHGs affect the climate

system (albeit with opposite sign).

d. Evolving pattern correlations of forced trends:

1930–2080

Here, we provide a more systematic evaluation of the

evolving contributions of AER and GHG to large-scale

patterns of forced trends in ALL by calculating r(AER,

ALL) and r(GHG, ALL) for running 50-yr trends dur-

ing 1930–2080 (note the extension beyond the historical

period for this analysis). The pattern correlations are

computed for both global and tropical domains. Results

for precipitation are insensitive to the domain chosen,

since precipitation trend amplitudes are much larger in

the tropics than the extratropics; hence, we report only

the tropical values. For precipitation, r(ALL, AER) is

highest (.0.8) for trends beginning in the 1930s, drop-

ping rapidly to between 0.2 and 0.3 for trends starting in

the 1960s–90s, followed by a slight rise to around 0.5 for

trends beginning after 2010 (Fig. 5a). The increase at the

end of the record is associated with a projected reversal

of AER-induced AOD trends over Southeast Asia in

the RCP8.5 scenario (Fig. S4). The opposite behavior is

seen for r(ALL, GHG), with minimum values (,0.3) for

trends beginning before 1950, rising rapidly to a maxi-

mum of about 0.9 for trends starting in the mid-1980s

and thereafter (Fig. 5a). The two pattern correlation

curves cross in 1954 (i.e., the 1954–2003 trend period)

at a value of 0.42. This 50-yr period, centered in the late

1970s, marks the transition between an aerosol-dominated

pattern of forced trends inALL to aGHG-dominated one.

Similar results are found for SST in terms of r(AER,ALL)

and r(GHG, ALL), with nearly identical timing and

comparable magnitude of the crossover point (Figs. 5b,c).

Compared to precipitation and tropical SST, global SST

shows a more abrupt rise of r(AER, ALL) around 1980 to

peak values of about 0.8 thereafter (Fig. 5c). This sharp

transition is coincident with the onset and projected con-

tinuation of declining AOD over North America and

Eurasia, and is manifest as a reversal in the sign of SST

anomalies in both the North Pacific and North Atlantic

(not shown).

It is also interesting to compare the evolving pattern

correlations between AER and GHG (Figs. 5d–f). Both

precipitation and SST show sizeable negative r(AER,

GHG) for trends beginning in the late 1940s to mid-1950s
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(minimum values of 20.41 for precipitation; 20.63

and 20.65 for tropical and global SST, respectively),

consistent with the middle period trend maps shown in

Figs. 3 and 4. As discussed earlier, these anticorrelations

may be related to a geographical shift in aerosol emis-

sions, in particular strong tropical AOD increases in

the absence of extratropical AOD changes (recall

Fig. 2e). It is noteworthy that the strongest anti-

correlations occur at about the same time as the tran-

sition between an aerosol-dominated pattern of forced

trends in ALL to a GHG-dominated one, which has

implications for the amplitude of forced trends in ALL

(see section 3e). Global SST also shows a sharp tran-

sition to positive r(AER, GHG) values (0.4–0.6) for

trends beginning after 1980 (Fig. 5f), coincident with

the onset of AOD reductions over the northern conti-

nents mentioned above.

e. Evolving magnitudes of forced trend patterns:

1930–2080

Pattern correlations convey the degree of structural

similarity between pairs of trend maps, but do not in-

dicate their relative magnitudes. Here we use a spatial

‘‘root-mean-square’’ (rms) measure for quantifying the

amplitude of a trend pattern. To compute the spatial

rms, we square the ensemble mean trend values at each

grid box, take their spatial average over the domain in

question (global or tropical) using area-weighting, and

then take the square root. This procedure is repeated for

each running 50-yr trend interval. For SST, we first

subtract the domain-mean trend from the individual

trends at each grid box in order to isolate the spatially

varying component (i.e., pattern) of the trends (this step

is not needed for precipitation trends, which are domi-

nated by spatial variations). Consistent with the trend

maps shown in Figs. 3 and 4, the spatial rms of AER-

forced tropical precipitation and SST trendsmaximize at

the beginning of the analysis period (i.e., 50-yr trends

starting in the 1930s) whereas those of GHG-induced

tropical trends increase steadily with time (Figs. 6a,b).

The spatial rms magnitudes of the AER and GHG in-

duced tropical trends are comparable for trend start

years ranging from 1955 to 1970 (Figs. 6a,b). The spatial

rms characteristics in ALL represent a hybrid between

those in AER and GHG, with a relative maximum for

tropical trends beginning in the 1930s, a minimum for

those beginning in the 1950s, and a monotonic increase

thereafter (Figs. 6a,b). Theminimum spatial rms inALL

FIG. 5. Pattern correlations between ensemble-mean running 50-yr trends in ALL and AER [r(ALL, AER); blue curves] and between

ALL and GHG [r(ALL, GHG); red curves] for (a) tropical precipitation, (b) tropical SST, and (c) global SST. Pattern correlations

between ensemble-mean running 50-yr trends in GHG andAER [r(GHG, AER); green curves] for (d) tropical precipitation, (e) tropical

SST, and (f) global SST. The time axis denotes the start year of each 50-yr trend. Note that (a)–(c) share the same y-axis labels, and (d)–(f)

share the same y-axis labels. All pattern correlation curves have been smoothed with a three-point average for clarity. Dashed curves are

based on industrial AER only. Results for global precipitation are nearly identical to those for tropical precipitation.
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results from a combination of reduced AER-driven

magnitudes and anticorrelated r(AER, GHG). That is,

the minimum amplitude of forced patterns of trends in

ALL during the second half of the twentieth century

(i.e., 50-yr trends beginning in the 1950s) compared to

earlier and later periods is a consequence of reduced

aerosol forcing in the NH extratropics combined with

similar patterns of response but opposite sign for AER

and GHG. The global and tropical SST spatial rms

curves are grossly similar, with a more well-defined

crossover point (in 1953) between AER and GHG for

global SST (Fig. 6c).

f. Additivity of individual forced responses

The comparisons shown above raise the question: To

what extent do the forced responses in AER and GHG

dominate the forced response in ALL? Recall that

ALL includes additional anthropogenic forcings beyond

AER and GHG (i.e., stratospheric and tropospheric

ozone and land use/land cover changes) as well as nat-

ural radiative forcings (i.e., solar and volcanic) and po-

tential nonlinear interactions between the AER and

GHG influences. The forced trends in ALL are com-

pared with the sum of the forced trends in AER and

GHG (denoted SUM) for each historical period (1930–

79, 1950–99, and 1970–2019) in Fig. 7 for SST and Fig. 8

for precipitation (Fig. S5 for precipitation trends as a

percentage of the climatology in each period). The

large-scale patterns of trends in ALL (panels a–c) and

SUM (panels d–f) are very similar, with pattern corre-

lations in excess of 0.9 for all three periods and both

variables. Indeed, the differences between ALL and

SUMare statistically insignificant overmost of the globe

(differences shown in panels g–i of Figs. 7 and 8), with

some regional exceptions as follows. SST trends in the

early period show significantly larger cooling over the

western North Pacific and subpolar North Atlantic

(Fig. 7g) while those in the late period show significantly

stronger warming over the sub-Arctic North Pacific and

Atlantic (Fig. 7i) in SUM compared to ALL. Portions of

the Southern Ocean also show significant differences in

SST trends in the middle and late periods, in addition

to the Gulf Stream Extension in the middle period

(Fig. 7h). Precipitation trends over the central tropical

Pacific in the early period and the northeastern North

Atlantic in the middle period are significantly greater in

SUM compared to ALL (Figs. 8g,h, and accompanying

zonal means), whereas those over the Southern Ocean

in the late period are significantly weaker (Fig. 8i and

accompanying zonal means). The physical origins of

these statistically significant regional differences merit

further investigation, including the roles of natural ra-

diative forcings (Stevenson et al. 2019), southern polar

stratospheric ozone changes (Solomon et al. 2015), and

nonlinear interactions betweenAER- andGHG-induced

changes in ocean circulation, sea ice, and terrestrial snow

cover (Deng et al. 2020; Zhao et al. 2019). Over most of

the globe, however, the combined effects of AER and

GHG dominate the forced trends in temperature and

precipitation in ALL during the historical period.

g. How detectable is the forced trend in a single

realization?

Up to now, we have focused on the evolution of forced

(i.e., ensemble mean) trends in the ALL, AER, and

GHG LEs. How detectable are these forced responses

in any single ensemble member? The answer to this

question has direct implications for the attribution

trends in the observational record (see section 3h). To

illustrate the diversity of 50-yr trends across individual

FIG. 6. Spatial RMS of ensemble-mean running 50-yr trends in ALL (black curves), AER (blue curves), and GHG (red curves) for

(a) tropical precipitation, (b) tropical SST*, and (c) global SST*, where the asterisk denotes that the domain-mean SST trend has been

removed before computing the spatial RMS. The time axis denotes the start year of each 50-yr trend. All curves have been smoothed with

a three-point average for clarity. Dashed blue curves are based on industrial AER only. Results for global precipitation are nearly

identical to those for tropical precipitation.
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members of a given LE (see also Deser et al. 2016), we

select two members of ALL with contrasting trends in

the early period (Figs. 9a–f) and two members with

contrasting trends in the late period (Figs. 9g–l). In the

early period, member A shows positive precipitation

trends in the eastern tropical Pacific and negative trends

in the west (Fig. 9e), similar to the pattern of the forced

trend but with much larger amplitude (Fig. 9d). In

contrast, member B shows a pronounced drying trend

across the entire equatorial Pacific, accompanied by

weaker wetting trends to the north and south, a pattern

that bears almost no resemblance to the forced trend

(Fig. 9f). The associated tropical Pacific SST trends also

show distinctive patterns that are physically consistent

with the precipitation trends: member A shows warming

in the east and cooling in the west, while member B

shows cooling that extends across most of the equatorial

Pacific (Fig. 9b). The late period shows a similar diver-

sity as the early period, despite the larger global warm-

ing signal (Figs. 9h,i,k,l). Indeed, precipitation trends in

members A and B during 1970–2019 are of opposite sign

over the tropical Pacific, consistent with their contrast-

ing trends in zonal SST gradient. The fact that 50-yr

trends in individual ensemble members can be so

different, and can contrast so markedly from the forced

trends, attests to the large contribution from internal

variability. Such internal variability must be taken into

account when interpreting transient and inferred equi-

librium climate sensitivity estimates based on observa-

tions during the last 50 years, particularly in light of

recent work that highlights the sensitivity of these

quantities to patterns of SST trends in the tropical Indo-

Pacific as a result of their outsized effects on global-scale

radiative feedbacks (Jiménez-de-la-Cuesta and Mauritsen

2019; Dong et al. 2019).

We now generalize these anecdotal results on the

relative contributions of internal variability and external

forcing in individual realizations to the full set of en-

semble members and all 50-yr running trend periods

during 1930–2080. We use pattern correlations as a

metric to summarize the degree of structural resem-

blance between each individual member’s trend and the

ensemble-mean trend. For the ALL ensemble, this

pattern correlation is denoted r(ALLi, ALLem), where i

is the trend in ensemble member i and em is the en-

semble mean trend. Similar definitions are used for the

AER and GHG ensembles [i.e., r(AERi, AERem) and

r(GHGi, GHGem)].We also assess the likelihood that an

FIG. 7. Linear trends in CESM1 ensemble-mean SST [K (50 yr)21] based on (a) ALL 1930–79; (b) ALL 1950–99; (c) ALL 1970–2019;

(d) AER 1 GHG 1930–79; (e) AER 1 GHG 1950–99; (f) AER 1 GHG 1970–2019; (g) ALL minus AER 1 GHG 1930–79; (h) ALL

minus AER 1 GHG 1950–99; and (i) ALL minus AER 1 GHG 1970–2019. Stippled regions indicate insignificant values at the 90%

confidence level based on a two-sided t test. Gray shading at the poles denotes regions with sea ice. Panels on the right show zonal-mean

profiles (608S–658N) of the trend maps in each row: ALL (black), AER 1 GHG (purple), and their difference (green).
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individual member’s trend pattern could have occurred

in the absence of external forcing by making use of the

1800-yr CESM1 preindustrial control simulation (Kay

et al. 2015). Specifically, we compute trends for 72

overlapping 50-yr segments of the control simulation

(i.e., years 401–450, 426–475, 451–501, etc.), and then

compute pattern correlations between each of these

control trends and the trends in ALLem, AERem, and

GHGem. If less than 5% of these control pattern corre-

lations exceeds the value of r(ALLi, ALLem), then the

trend in member i of the ALL ensemble is unlikely to

have occurred without external forcing. Similar logic is

applied to the AER and GHG ensembles.

Individual members of ALL show a wide range of

pattern correlations with the forced response, especially

for trends starting before 2000 (Figs. 10a,d,g). For ex-

ample, r(ALLi, ALLem) for precipitation and tropical

SST ranges from about 0.2 to 0.85 for trends beginning in

the 1930s and from about 0.1 to 0.7 for trends beginning

in the 1950s–early 1960s (Figs. 10a,d), with a slightly

narrower spread (approximately 0.3–0.8) for global SST

during these periods (Fig. 10g). These ranges narrow

considerably for future trends beginning after 2010, to

about 0.6–0.9 for precipitation and tropical SST, and

about 0.8–0.95 for global SST. The pattern correlations

r(ALLi, ALLem) are unlikely to have occurred by

chance without external forcing, except for precipitation

trends beginning between 1940–74, tropical SST trends

beginning in the 1930s and 1950s–60s, and global SST

trends beginning in the late 1950s (with some inter-

mittent exceptions; maroon bars along the bottom of

Figs. 10a,d,g).

The average r(ALLi, ALLem) across the individual

ensemble members indicates the degree to which the

forced trend pattern is detectable in a single realization,

on average. For precipitation and tropical SST, the

average r(ALLi, ALLem) is about 0.60–0.65 for trends

starting in the 1930s, falling to about 0.45 for trends

starting in the mid-1950s; the ‘‘1930s’’ value is not

reached again until trend start years in the early 1990s,

and rises thereafter to a maximum value of 0.80–0.85 for

trends starting after 2015 (thick black curves in Figs. 10a

and 10d). The average r(ALLi, ALLem) is slightly higher

for global SST than the other variables, with values

around 0.6 for trends starting before about 1960 and

increasing to 0.9 for trends beginning after 2000 (thick

black curve in Fig. 10g). The temporal character of the

average r(ALLi, ALLem) curves is consistent with the

changing amplitudes of the forced trend patterns (re-

call Fig. 6).

Another useful metric of detectability of forced trend

patterns in individual realizations is the percentage of

FIG. 8. As in Fig. 7, but for precipitation [mmday21 (50 yr)21]. The contours show the 6mmday21 isopleth of the precipitation cli-

matology (1930–2019) fromALL. Panels on the right show zonal-mean profiles of the trendmaps in each row:ALL (black), AER1GHG

(purple), and their difference (green).
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ensemblememberswith r(ALLi, ALLem). 0.71 (.0.86),

corresponding to .50% (.75%) of shared spatial vari-

ance with the forced response. This metric is displayed by

the horizontal colored bars centered at the two pattern

correlation thresholds in Fig. 10. For precipitation,,10%

of members exceed the 50% threshold for trends

beginning earlier than themid-1990s, while.70%of the

members do so for trends beginning after the early

2010s; less than 10% of members exceed the 75%

threshold for all trends regardless of start year (Fig. 10a).

Similar percentages are found for tropical SST (Fig. 10d).

For global SST, more than 90% of members exceed the

FIG. 9. Linear trends from CESM1ALL for (a) ensemble-mean SST 1930–79; (b) member A SST 1930–79; (c) member B SST 1930–79;

(d) ensemble-mean precipitation 1930–79; (e) member A precipitation 1930–79; (f) member B precipitation 1930–79; (g) ensemble-mean

SST 1970–2019; (h) member A SST 1970–2019; (i) member B SST 1970–2019; (j) ensemble-mean precipitation 1970–2019; (k) member A

precipitation 1970–2019; and (l) memberB precipitation 1970–2019. SST is in units of K (50 yr)21, and precipitation is in units ofmmday21

(50 yr)21. Stippled regions indicate insignificant values at the 90% confidence level based on a two-sided t test. Gray shading at the poles in

SST panels denotes regions with sea ice. The contours on the precipitation panels show the 6mmday21 isopleth of the precipitation

climatology (1930–2019) from ALL.
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50% variance threshold for trends beginning after the

mid-1970s, and about 50% of members exceed the 75%

threshold for trends starting after 2000 (Fig. 10g). These

results are a sobering reminder that the chances of

obtaining a trend pattern that closely resembles the

forced trend pattern in a single ensemblemember are low

for any 50-yr interval during the historical period, with

clear implications for interpreting the observational re-

cord (model biases aside).

The AER (Figs. 10b,e,h) and GHG (Figs. 10c,f,i) en-

sembles also show a large range of pattern correlations

with the forced response across individual members,

typically about 0.4 units for precipitation and tropical

SST, and 0.3 units for global SST. Like ALL, the aver-

age r(AERi, AERem) and r(GHGi, GHGem) evolve in

concert with the amplitude of the forced trend patterns,

decreasing over time for AER (from about 0.6–0.8 for

trends starting in the 1930s to about 0.4–0.6 for trends

starting in the 2030s: thick curves in Figs. 10b,e,h) and

increasing over time for GHG (from about 0.3–0.4 for

trends starting in the 1930s to about 0.8 for trends

starting in the 2030s: thick curves in Figs. 10c,f,i). There

is also a conspicuous minimum in average r(AERi,

AERem) for tropical and global SST trends starting in

FIG. 10. Pattern correlations (gray curves) of running 50-yr trends between each individual ensemblemember and the ensemblemean of

(a) ALL tropical precipitation; (b) AER tropical precipitation; (c) GHG tropical precipitation; (d) ALL tropical SST; (e) AER tropical

SST; (f) GHG tropical SST; (g) ALL global SST; (h) AER global SST; and (i) GHG global SST. Thick black curves are the average of the

gray curves. Lower and upper horizontal colored bars across the top of each panel show the percentage of ensemble members with a

pattern correlation exceeding 0.71 and 0.86, corresponding to 50% and 75% variance explained, respectively.Maroon line segments at the

bottom of each panel indicate the trend intervals that are significant with respect to the control simulation (see text for details). The time

axis denotes the start year of each 50-yr trend. Results for global precipitation are nearly identical to those for tropical precipitation.
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the 1950s (values around 0.45–0.50; Figs. 10e,h). In both

the AER and GHG ensembles, ,10% of members ex-

ceed the 75% variance threshold throughout the anal-

ysis period for all three quantities (upper horizontal bar

in Figs. 10b,c,e,f,h,i). The 50% variance threshold is

exceeded by 70%–80%ofAERmembers for global SST

trends starting in the 1930s, and by 70%–80% of GHG

members for trends in all three quantities starting later than

the mid-2010s (lower horizontal bar in Figs. 10b,c,e,f,h,i).

These results indicate that even for the AER and GHG

ensembles, the chances of obtaining a trend pattern that

closely resembles the forced trend pattern in a single en-

semblemember are low, except at the very endof the record

for GHG and the very beginning of the record for AER

global SST. A complementary analysis of the ensemble

spread in the amplitude of large-scale trend patterns is given

in Fig. S6.

h. Interpretation of observed trends in the context

of CESM1

The model results shown above have implications for

the interpretation of trends in observations, model biases

notwithstanding. In particular, if the model’s signal-to-

noise ratio is realistic, then the prominence of internal

variability relative to the forced response in any single

ensemble member suggests that it is challenging to ex-

tract the forced response in observed patterns of 50-yr

SST and precipitation trends (see alsoDeser et al. 2016).

In addition, analysis of observations is hampered by is-

sues of data quality, homogeneity, and spatial and

temporal coverage. Although it is beyond the scope of

this study to conduct a formal ‘‘detection and attribu-

tion’’ analysis (e.g., Santer et al. 2019; Bonfils et al.

2020), we examine the observed evolution of 50-yr SST

and precipitation trend patterns within the context of

the CESM1 ALL, AER, and GHG LEs whose sizes

allow for the first time a quantitative assessment of AER

and GHG effects on regional scales during 1930–2018.

Maps of observed SST and precipitation trends for the

three overlapping 50-yr periods are shown in Fig. 11,

along with ensemble-mean trends from ALL (ALLem)

for direct comparison. On a global scale, observed SST

trends show an acceleration of warming over the his-

torical period (Figs. 11a–c), consistent with the forced

signal in ALL (Figs. 11c–f; see also Fig. 1a for GMST).

The spatial patterns of observed SST trends, as expected

from the internal variability inherent in the single ob-

served realization, show similarities and differences with

the forced trends in ALL. In the early period and similar

to ALL, observed SSTs cool over most of the North

Atlantic and eastern North Pacific, and warm over much

of the Indian Ocean, South Atlantic, and South Pacific,

although their amplitudes are considerably larger than

those of themodel’s forced response (Figs. 11a,d). Other

areas show opposite sign trends between observations

and ALLem in the early period, such as the western half

of the North Pacific and the southeastern tropical Pacific

and Atlantic. Note that data coverage over the Southern

Ocean and southeast tropical Pacific is very limited

(Fig. S7), so that uncertainty in SST trends in these re-

gions is higher than elsewhere. The pattern correlation

between SST trends in observations andALLem [r(OBS,

ALLem)] for the early period is 0.03 for the tropics and

0.39 for the global domain. The large-scale structure of

observed SST trends evolves in the middle period, with

an amplification of warming over the Indian Ocean and

eastern tropical Pacific and Atlantic, a reduction in

cooling over the North Atlantic and an opposite-signed

pattern over the North Pacific compared to the early

period (Fig. 11b). The observed trend magnitudes in the

middle period are considerably larger than those in

ALLem (Fig. 11e), and the pattern correlation with

ALLem is modest (0.23 for the tropics and 0.25 for the

global domain). The observed warming pattern con-

tinues to evolve in the late period, with relative maxima

near the equator in all three ocean basins as well as the

subpolar North Pacific and most of the North Atlantic,

and relative minima south of Iceland, the tropical South

Atlantic and southeast Pacific, and the Southern Ocean,

which exhibit cooling (Fig. 11c). Some of these features

are evident in ALLem (Fig. 11f), but the pattern corre-

lations remain modest (0.28 for the tropics and r 5 0.31

for the global domain).

A comparison of precipitation trends in observations

(GPCC) and ALLem is limited to land areas before the

satellite era (Figs. 11g–i). Overall, the resemblance of

large-scale spatial patterns of terrestrial precipitation

trends between observations and ALLem is low, as evi-

denced by the weak pattern correlations: 0.16 for 1930–

79, 0.07 for 1950–99, and 0.04 for 1970–2018 in the

tropics, with similar values for the global domain. In the

early period (Figs. 11g,j), similarities between GPCC

and ALLem include drying of the Sahel, the Caribbean,

and theMaritimeContinent, andwetting overAustralia,

northeast Brazil, and parts of the United States and

eastern Eurasia (although GPCC shows generally larger

amplitudes than ALLem). In addition, the pronounced

early-period drying over Southeast Asia in ALLem is

confined to coastal locations in GPCC, and early-period

trends over South Africa and Argentina are opposite in

GPCC and ALLem. Precipitation trends in the middle

period (Figs. 11h,k) are similar to those in the early period,

except for the increasedwetting over northernEurope and

the reversal to drying over the Mediterranean in both

GPCC and ALLem; there is also increased drying over

the Sahel and South Africa in GPCC, opposite to that in
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ALLem. In the late period (Fig. 11i), observed trends over

theMaritime Continent, eastern Australia, Brazil, and the

Sahel have reversed sign from the earlier periods; of these,

only the wetting trend over the Sahel is consistent with the

sign of the trends in ALLem (Fig. 11l).

Without better spatial coverage over the oceans, it is

difficult to make any statements about observed pre-

cipitation trends in marine areas including the tropical

convergence zones. However, precipitation trends dur-

ing 1979–2018 from GPCP, which provides near-global

coverage by incorporating satellite data, also show

limited spatial correspondence with ALLem (pattern

correlation 5 0.17; see maps in Fig. S8).

Last, we provide an integrated perspective on the

relative roles of internal variability, GHG, and AER in

the evolution of large-scale patterns of 50-yr precipitation

and SST trends in observations and ALL. Figures 12a,

12d, and 12g show r(OBS, ALLem) for running 50-yr

trends during 1930–2018 (blue curves), superimposed

upon r(ALLi, ALLem) over the extended period 1930–

FIG. 11. Linear SST trends [K (50 yr)21] for (a) observations 1930–79; (b) observations 1950–99; (c) observations 1970–2018; (d) ALL

ensemble-mean 1930–79; (e) ALL ensemble-mean 1950–99; and (f) ALL ensemble-mean 1970–2019. Also shown are linear precipitation

trends [mmday21 (50 yr)21] for (g) observations 1930–79; (h) observations 1950–99; (i) observations 1970–2018; (j) ALL ensemble-mean

1930–79; (k) ALL ensemble-mean 1950–99; and (l) ALL ensemble-mean 1970–2019. Gray shading at the poles in SST panels denotes

regions with sea ice. The contours on the precipitation panels show the 6mmday21 isopleth of the precipitation climatology. ERSSTv5

and GPCC are used for observations of SST and precipitation, respectively. White regions over the oceans in the observed precipitation

panels indicate missing data.
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2080 (repeated from Fig. 10). The r(OBS, ALLem) ranks

near the bottom or below the ensemble spread of r(ALLi,

ALLem) regardless of trend start year for precipitation

and SST. Masking the simulated precipitation trends ac-

cording to the evolving spatial coverage in GPCC in-

creases r(ALLi, ALLem) by about 0.15, on average, for

trends starting before about 1980, widening the gap with

r(OBS, ALLem) (Fig. 13a). Many factors may play a role

in the discrepancy between r(OBS, ALLem) and r(ALLi,

ALLem), including some combination of the following: 1)

uncertainty in anthropogenic aerosol emissions; 2) biases

in the model’s pattern and/or amplitude of forced re-

sponse; 3) biases in the model’s patterns of internal var-

iability; 4) biases in the model’s signal-to-noise of forced

response relative to internal variability; 5) a highly un-

usual occurrence of internal variability in observations;

and 6) observational error. Further investigation is

needed to address the relative importance of each of

these factors; additional discussion is provided in

section 5.

FIG. 12. Pattern correlations (gray curves) of running 50-yr trends between the individual ensemblemembers (i) of ALL (ALLi) and the

ensemble mean (em) of (a) ALL, tropical precipitation; (b) AER, tropical precipitation; (c) GHG, tropical precipitation; (d) ALL,

tropical SST; (e) AER, tropical SST; (f) GHG tropical SST; (g) ALL, global SST; (h) AER, global SST; and (i) GHG, global SST. Thick

black curves are the average of the gray curves. Lower and upper horizontal colored bars across the top of each panel show the percentage

of ensemblemembers with a pattern correlation exceeding 0.71 and 0.86, corresponding to 50%and 75%variance explained, respectively.

Maroon line segments at the bottom of each panel indicate the trend intervals that are significant with respect to the control simulation

(see text for details). Blue curves show the pattern correlations between observations and the ensemble means from ALL, AER, and

GHG. GPCC and ERSSTv5 are used for observations of precipitation and SST, respectively (results based on HadISST SST are similar;

not shown). The time axis denotes the start year of each 50-yr trend. Results for global precipitation are nearly identical to those for

tropical precipitation.
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To determine the individual contributions of AER

andGHG to the trend patterns in eachmember of ALL,

we compute r(ALLi, AERem) and r(ALLi, GHGem).

The large spread in r(ALLi, AERem) and r(ALLi,

GHGem) across the ensemble members indicates sub-

stantial uncertainty in the detectability of AER- and

GHG-driven trend patterns in any single realization

according to our metrics (gray curves in Figs. 12b,c,e,f,h,i).

Further, the average r(ALLi, AERem) and average r(ALLi,

GHGem) values (thick black curves in Figs. 12b,c,e,f,h,i) fall

well below the 50%variance threshold (pattern correlation

of 0.71) throughout the historical period. Indeed, this

threshold is only met or exceeded for GHG-induced pre-

cipitation and tropical SST trends beginning after 2010, and

for AER- and GHG-induced global SST trends beginning

after 1990. Of these, only the future GHG-induced SST

trends exceed the 50% threshold in a majority of ensemble

members (colored horizontal bars in Figs. 12f and 12i).

Turning to the observations, we compute r(OBS,

AERem) and r(OBS, GHGem) in analogy with r(ALLi,

AERem) and r(ALLi, GHGem) and superimpose the

results in Fig. 12 (blue curves). Note that masking the

simulated precipitation trends by the evolving spatial

coverage in GPCC does not substantially alter the av-

erage values of r(ALLi, AERem) and r(ALLi, GHGem),

although it narrows their ensemble spread (Figs. 13b,c).

r(OBS, AERem) mostly falls within the ensemble spread

of r(ALLi, AERem), although generally below the av-

erage value of r(ALLi, AERem): Figs. 12b,e,h and 13b.

Similarly, r(OBS, GHGem) lies near the middle of the

distribution of r(ALLi, GHGem) for trends starting be-

fore about 1950 and within the lower end of the distri-

bution thereafter (Figs. 12c,f,i and 13c). While the

observed pattern correlations with the forced trends in

AER and GHG are thus generally within the distribu-

tions expected from the combined influence of external

forcing and internal variability (according to CESM1),

their weak amplitudes (,0.4) indicate that,20% of the

spatial variance in the observed trend patterns is driven

by AER or GHG. This estimate pertains only to the

pattern correlation metrics used here, and is subject to

all of the caveats mentioned above (see further discus-

sion in section 5).

4. Summary

We have studied the evolving roles of anthropogenic

aerosols (AER) and greenhouse gases (GHG) in driving

large-scale patterns of forced precipitation and SST

trends during 1920–2080 using a new set of CESM1

initial-condition large ensembles (LEs). In these new

LEs, either industrial aerosols, biomass burning aero-

sols, or greenhouse gases are kept fixed at early-

twentieth-century conditions while all other external

anthropogenic and natural forcings vary in time ac-

cording to historical and future (RCP8.5) scenarios.

These new LEs use the same model version and exper-

imental design as the ‘‘all forcing’’ (ALL) CESM1 LE

(Kay et al. 2015), allowing a direct assessment of the

individual roles of each forcing factor within the context

of a background changing climate, obtained by differ-

encing the new LEs from the all-forcing LE. The large

number of ensemble members (15–20) in each of the

new LEs enables regional impacts of AER and GHG

forcing to be isolated from the noise of internal vari-

ability. Conversely, the LEs provide a unique per-

spective on the role of internal variability in limiting

detection and attribution of AER and GHG effects in

any single realization, and by extension the observa-

tional record. Our analysis approach, based on running

50-yr trends, accommodates geographical and temporal

changes in both the patterns of forcing and response.

The main findings of our study are summarized as

follows.

FIG. 13. As in Figs. 12a–c, but for precipitation masked according to the evolving spatial coverage in observations (GPCC).
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1) Large-scale patterns of forced precipitation and SST

trends in ALL evolve over the historical period

1930–2019 from an interhemispheric structure dom-

inated by aerosol effects to a more equatorially

symmetric pattern dominated by greenhouse gas

influences, with the transition occurring in the late

1970s. The transition phase is characterized by a

relative minimum in trend pattern amplitudes in

ALL, due to a combination of reduced AER forcing

and offsetting effects from AER and GHG. During

this phase, AER and GHG drive similar patterns of

response, albeit of opposite polarity.

2) Over most of the globe, the sum of the forced trends

in AER and GHG is statistically indistinguishable

from the forced trends in ALL for both precipitation

and SST throughout the historical period. This con-

firms the dominant roles of AER and GHG exter-

nally forced climate change over the historical period.

Those areas that do show significant differences are

mainly associated with strong ocean currents, deep

water formation and sea ice, which could arise from

nonlinear interactions between AER and GHG, or

from additional (natural and anthropogenic) external

influences (e.g., stratospheric ozone depletion, volca-

nic eruptions, etc.).

3) Internal variability greatly limits the detectability of

forced trend patterns in individual realizations of the

AER, GHG, and ALL ensembles, especially during

the historical period, according to our pattern corre-

lation metric. The average pattern correlation be-

tween an individual member’s trend and the forced

trend in ALL ranges from approximately 0.4 to 0.7

over the course of the historical period, rising to 0.8–

0.9 in the future. However, a singlemember can show

pattern correlations as low as 0.2 or as high as 0.8 for

the same 50-yr trend interval during the historical

period. Qualitatively similar ranges are found for the

AER and GHG ensembles. It should also be noted

that the forced trend patterns themselves are subject

to uncertainty due to the finite number of ensemble

members used for estimating them.

4) The model results summarized above highlight a

number of challenges for attributing trends in the

observational record, an endeavor that is further

hampered by data coverage and quality issues as

well as model bias. Pattern correlations between

observed trends and forced trends in the ALL,

AER, and GHG ensembles rank near the bottom

of (or in some cases below) the model distributions.

This implies likely model biases in one or more of the

following: patterns of internal variability; patterns of

forced response; and relative magnitudes of forced

response and internal variability (i.e., signal-to-noise).

The low (generally ,0.4) pattern correlations with

observations imply that,20%of the spatial variances

of observed SST and precipitation trend patterns are

forced, regardless of which 50-yr interval during 1930–

2018 is considered, but model biases in addition to

uncertainty in the magnitude of anthropogenic aero-

sol forcing will undoubtedly affect this estimate.

5. Discussion

Our findings are based on a single model with a single

scenario of anthropogenic and natural radiative forc-

ings. Structural model uncertainty related to physics and

parameterizations as well as uncertainty in radiative

forcings, especially those associated with anthropogenic

aerosols, remain important caveats to this work. In

particular, there is also no consensus to date on how

strong aerosol forcing is in the real world (Wilcox et al.

2015), although we note that the magnitude of effective

aerosol radiative forcing in CESM1 (21.37Wm22: Zelinka

et al. 2014) lies within the one-standard-deviation range of

plausible estimates (from 21.6 to 20.6Wm22) according

to a recent comprehensive review (Bellouin et al. 2020).

Another important caveat is the degree to which

CESM1 realistically simulates both the patterns and

magnitudes of internal variability and forced responses,

with implications for the signal-to-noise ration and the

detectability of forced trends in individual realizations

and in the real world. Evaluating internal variability in

models is a challenging endeavor, particularly with re-

spect to multidecadal trends given the brevity of the

observational record (McKinnon et al. 2017; McKinnon

and Deser 2018; Deser et al. 2020). Existing efforts have

focused on evaluation of internal variability of trends

in terrestrial air temperatures and precipitation (e.g.,

Thompson et al. 2015; McKinnon and Deser 2018;

Beusch et al. 2020. These studies indicate that CESM1

overestimates internal variability of 50-yr trends in ter-

restrial air temperature at many locations; however,

precipitation trend variability shows regions of both

underestimation and overestimation. The extent to which

these biases in internal trend variability over land extend to

marine areas remains to be assessed, along with implica-

tions for signal-to-noise and detectability of forced trends.

We have emphasized a large-scale pattern perspective

in our analysis, using spatial correlations—over tropical

and global domains—as a metric. Our conclusions re-

garding detectability of forced trends in observations

based on this metric may be compromised by model

biases in the patterns of internal variability and forced

response. Alternate metrics that place less emphasis on

regional detail, such as spatially aggregated quantities

(Fischer and Knutti 2015), interhemispheric contrasts
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(Friedman et al. 2013, 2020), or the use of a limited

number of empirical orthogonal functions (EOFs; Bonfils

et al. 2020), may result in a higher level of detectability of

forced signals in the real world. Conversely, specific re-

gions with greater sensitivity to anthropogenic aerosols,

such as the Sahel, Southeast Asia, and Europe, may also

have higher and/or more accurate detectability. Finally,

application of more sophisticated statistical approaches

such as optimal fingerprinting (e.g., Hegerl et al. 1996;

Ting et al. 2009), formal detection and attribution (Santer

et al. 2019; Bonfils et al. 2020), and novel pattern recog-

nition methods (Barnes et al. 2019; Sippel et al. 2019;

Wills et al. 2020) to this new collection of CESM1 LEs

may be promising avenues for future work aimed at as-

sessing detectability of trends forced by anthropogenic

aerosols and GHGs. Adopting a framework that allows

for temporal changes in both the patterns of forcing and

of climate response, especially as they relate to regional

aerosol emissions, will be important regardless of the

approach used. In particular, using a single EOF to cap-

ture the evolving impacts of anthropogenic aerosol ef-

fects may be inadequate.

The above caveats notwithstanding, our results em-

phasize the need for caution when using individual re-

alizations from a given model to assess climatic impacts

of anthropogenic aerosols and GHGs during the his-

torical period due to confounding effects from internal

variability. Combining individual simulations from dif-

ferent models (such as those in the CMIP5 and CMIP6

archives) to reduce internal variability may also be

problematic due to the models’ diverse representation

of aerosol direct and indirect effects (e.g., Bellouin et al.

2020). Further, anthropogenic aerosol precursor emis-

sions differ between CMIP5 and CMIP6, both over the

historical period and in future projections, thereby in-

troducing additional uncertainty into their climatic im-

pacts (Samset et al. 2019; Wilcox et al. 2020). These

issues emphasize the need for additional ‘‘single-forc-

ing’’ large ensembles with other comprehensive Earth

systemmodels to obtain amore robust assessment of the

climate impacts of anthropogenic aerosols and associ-

ated uncertainties (Bonfils et al. 2020; Swart et al. 2019;

Dittus et al. 2020). The ensemble size requirements for

such single-forcing LEs remain to be determined and

will depend on the particular application and model

(Deser et al. 2012; Milinski et al. 2019).

A number of outstanding issues are raised by our

findings and remain to be addressed in future work. For

example, additional research is needed to understand

why the CESM1-simulated patterns of precipitation and

SST trends forced by AER and GHG share a common

structure during the latter half of the twentieth century

(50-yr trends centered in the late 1970s), whereas they

are dissimilar in earlier and later periods of the historical

record. We hypothesize their common structure may be

due to the fact that trends in regional aerosol emissions

during the period centered in the late 1970s are located

primarily within the tropics, unlike earlier and later

periods when there are additional prominent sources

and sinks in the northern extratropics, respectively.

While additional targeted experiments are needed to

test our hypothesis, the results reported by Stuecker

et al. (2020) may provide circumstantial evidence for the

role of tropical aerosol forcing. In particular, Stuecker

et al. (2020) show that when GHG increases are artifi-

cially confined to the tropics in CESM1, the structure of

the zonal-mean response within the tropics is very sim-

ilar (albeit of opposite sign) to those of our AER-

induced trends during 1950–99 for both SST and pre-

cipitation.More generally, additional research is needed

to understand the physical mechanisms governing the

evolving forced responses toAER andGHG in CESM1,

including the potential role of nonlinear interactions

between these forcing agents.

Other outstanding issues raised by our findings remain

to be addressed in future work. For example, what role

do CESM1 biases play in limiting detectability of AER

and GHG influences on observed large-scale patterns of

precipitation and SST, and what particular aspects of

model bias are most important (e.g., patterns versus

amplitudes, forced responses versus internal variability,

and signal-to-noise ratio)? How much can the signal-to-

noise ration of forced climate trends in the CESM1

ALL, AER, and GHG ensembles be enhanced through

the application of more advanced statistical approaches,

and how does this affect our conclusions regarding de-

tectability of AER and GHG influences on observed

large-scale patterns of precipitation and SST trends?

Finally, there is scope for repeating our analysis on the

all-forcing and single-forcing LEs available fromCanESM2

(Bonfils et al. 2020) and CanESM5 (Swart et al. 2019), and

from other models as they become available.
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