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Abstract. Quantifying the isolated and integrated impacts of

land use (LU) and climate change on streamflow is chal-

lenging as well as crucial to optimally manage water re-

sources in river basins. This paper presents a simple hydro-

logic modeling-based approach to segregate the impacts of

land use and climate change on the streamflow of a river

basin. The upper Ganga basin (UGB) in India is selected as

the case study to carry out the analysis. Streamflow in the

river basin is modeled using a calibrated variable infiltration

capacity (VIC) hydrologic model. The approach involves de-

velopment of three scenarios to understand the influence of

land use and climate on streamflow. The first scenario as-

sesses the sensitivity of streamflow to land use changes un-

der invariant climate. The second scenario determines the

change in streamflow due to change in climate assuming con-

stant land use. The third scenario estimates the combined ef-

fect of changing land use and climate over the streamflow

of the basin. Based on the results obtained from the three

scenarios, quantification of isolated impacts of land use and

climate change on streamflow is addressed. Future projec-

tions of climate are obtained from dynamically downscaled

simulations of six general circulation models (GCMs) avail-

able from the Coordinated Regional Downscaling Experi-

ment (CORDEX) project. Uncertainties associated with the

GCMs and emission scenarios are quantified in the analysis.

Results for the case study indicate that streamflow is highly

sensitive to change in urban areas and moderately sensitive

to change in cropland areas. However, variations in stream-

flow generally reproduce the variations in precipitation. The

combined effect of land use and climate on streamflow is ob-

served to be more pronounced compared to their individual

impacts in the basin. It is observed from the isolated effects

of land use and climate change that climate has a more dom-

inant impact on streamflow in the region. The approach pro-

posed in this paper is applicable to any river basin to isolate

the impacts of land use change and climate change on the

streamflow.

1 Introduction

Land use (LU) and climate are the drivers of hydrologic pro-

cesses in a river basin (Vörösmarty et al., 2000; Nijssen et

al., 2001; Oki and Kanae, 2006; Wada et al., 2011). Change

in LU is observed to influence the hydrological cycle and

the availability of water resources by altering interception,

infiltration rate, albedo and evapotranspiration (ET) (Rose

and Peters, 2001; Scanlon et al., 2007; Rientjes et al., 2011).

Climate in contrast affects the basic components of hydro-

logic cycle such as precipitation, soil moisture, evaporation

and atmospheric water content (Gleick, 1986; Wang et al.,

2008). Therefore, understanding the hydrologic response of a

river basin to changes in LU and climate forms a critical step

towards water resources planning and management (Vörös-

marty et al., 2000). Moreover, with increase in scarcity of wa-

ter resources, hydrologic impacts of LU and climate change

have drawn significant attention from the hydrologic com-

munity (Scanlon et al., 2007). In this regard, several stud-

ies have been carried out that focus on understanding exclu-

sive impacts of either of the two drivers (Hamlet and Letten-

maier, 1999; Christensen and Lettenmaier, 2007; Beyene et

al., 2010; Wagner et al., 2013; Islam et al., 2014). However,

optimum management of water resources in a river basin

needs an in-depth understanding of the isolated and inte-

grated effects of LU and climate on streamflow. Due to com-

plex response of streamflow to combined effects of LU and
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climate change (Fu et al., 2007; Guo et al., 2008), very few

studies have been carried out on this aspect (Mango et al.,

2011; Guo et al., 2008; Cuo et al., 2013; Wang et al., 2013).

Segregating the individual contribution of LU and climate to

streamflow has recently become the focus of scientific work

(Wang and Hejazi, 2011; Wang et al., 2013; Renner et al.,

2012, 2014).

Methods used to assess the impacts of LU and climate

on streamflow can be broadly classified into four categories:

(i) experimental paired catchment approach, (ii) statistical

techniques such as Mann–Kendall test, (iii) empirical or con-

ceptual models and (iv) distributed physically based hydro-

logic models. Among these techniques, the paired catchment

approach is most difficult but often considered as the best ap-

proach for smaller catchments. However, applicability of the

paired catchment approach over large catchments may not be

possible (Lørup et al., 1998) since it requires years of con-

tinuous monitoring to gather sufficient data for the analysis.

Statistical trend detection tests have been proved to be very

useful in qualitatively determining the presence of a signif-

icant trend in the time series along with direction and rate

of change (Zhang et al., 2008; Li et al., 2009). But these

techniques cannot be used for quantifying the change and

attributing it to a particular cause due to a lack of a physical

mechanism (Li et al., 2009). Empirical or conceptual mod-

els are simple hydrologic models that require only a few pa-

rameters to simulate a catchment. However, a major draw-

back with these models is that the parameters may not be di-

rectly related to the physical conditions of the catchment, and

thus may lack the ability to correctly represent a catchment.

Therefore, one is left with the option of using distributed

physically based hydrologic models, which are by far the

most appealing tools to carry out impact assessment stud-

ies (Ott and Uhlenbrook, 2004; Mango et al., 2011; Wang et

al., 2012). These models operate within a distributed frame-

work to take physical and meteorological conditions of the

basin into account (Refsgaard and Knudsen, 1996). Physi-

cally distributed models include both fully distributed and

semi-distributed models. Owing to their extensive parame-

terization, fully distributed models are difficult to employ at

a large catchment scale which make comparatively less data-

intensive semi-distributed models a practical alternative. This

paper presents a simple hydrologic modeling-based approach

to isolate the impacts of land use and climate on stream-

flow. For this purpose, a physically based macroscale vari-

able infiltration capacity (VIC) hydrologic model (Liang et

al., 1994) has been employed for the analysis.

In the present paper, Ganga River basin in India is se-

lected as the case study to perform the analysis. Few studies

have been reported in literature (Nijssen et al., 2001; Arora

and Boer, 2001; Nohara et al., 2006) wherein Ganga basin is

studied alongside other major river basins of the world (to as-

sess the effect of changing climate on flow regime); however,

there is a dearth of studies that comprehensively examine the

effects of LU and climate change on streamflow exclusively

in this basin. Originating from the Himalayas, the Ganga

River traverses a stretch of 2525 km covering a catchment

area of around 800 000 km2, which is approximately 26 %

of India’s entire land mass making it the largest river basin

in India. During its course, the Ganga River flows through

some of the major states of India harboring about 44 % of

the country’s population (http://censusindia.gov.in/). Due to

presence of alluvium, the basin is very fertile and forms close

to 30 % of India’s cultivable area (http://eands.dacnet.nic.in/

LUS2001-11.htm). Thus, there is a clear consensus that the

river is of great social and economic importance to India.

In this study, the area under investigation is the upstream

reaches of the Ganga basin encompassing the river’s source

(Fig. 1). This region is referred as the upper Ganga basin

(UGB) in the paper. LU analysis carried out by Tsarouchi et

al. (2014) on the UGB suggests that, between 1984 and 2010

the basin experienced an increase in urban and cropland area

and decrease in barren land area.

In order to obtain the isolated impacts of LU and climate

change on streamflow, the following objectives are addressed

in the current work: (i) assessing sensitivity of the streamflow

to changes in different LU categories, (ii) examining impacts

of climate change on the streamflow and (iii) analyzing in-

tegrated impacts of LU and climate change on the stream-

flow. The three objectives are translated into three scenar-

ios wherein the first two scenarios quantify the independent

effects of LU and climate on streamflow under their invari-

ant counterparts; i.e., climate and LU respectively are kept

constant. The third scenario deals with concurrent changes

in LU and climate. Results from the three scenarios are fur-

ther used to segregate the hydrologic impacts of LU and cli-

mate change. The aforementioned objectives are investigated

over the UGB as a case study by employing a calibrated

and validated VIC model to simulate streamflows. To as-

sess the impact of future climate on streamflow in the basin,

dynamically downscaled climate simulations for six general

circulation models (GCMs) obtained from the Coordinated

Regional Downscaling Experiment (CORDEX) project are

used. Climate change related analyses are carried out under

the uncertainty framework to address two issues: (1) climate

model-based uncertainties and (2) emission-scenario-based

uncertainties.

2 Data and methods

2.1 Study area

The UGB (25◦30′ N–31◦30′ N, 77◦30′ E–80◦ E) (Fig. 1)

drains a catchment area of 95 593 km2. While most of the

Ganga basin comprises of agricultural areas with reasonably

flat terrain, this region (UGB) is the only part of the Ganga

basin that is characterized by a wide variation in topogra-

phy with elevations ranging from 21 to 7796 m (Fig. 1), thus

making it an interesting case study for investigation. In ad-
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Figure 1. Location map and details of the UGB.

dition, since the Ganga River originates in this region, any

change in hydrologic response due to LU and/or climate is

likely to affect the entire flow regime downstream. Thus, this

region is critical for assessing the impacts of LU and climate

change on the streamflow of the basin. In the backdrop of a

recent flood event in July 2013 in the UGB, which has been

attributed to climate change (Singh et al., 2014), isolating the

hydrologic impacts of changing LU and climate in this basin

has become much more important.

In this study, the UGB is divided into three regions, up-

stream, midstream and downstream (Fig. 1), based on alti-

tude, topography and land use characteristics. The upstream

region is highly mountainous, characterized by glaciers and

dense forests, with elevations from 297 to 7796 m. From up-

stream to midstream regions, there is a transition from hills

to plains. The midstream region is dominated by forests and

croplands with elevations ranging from 75 to 3079 m. The

downstream region is mostly covered by croplands with con-

sistent elevations of around 100 m. In addition to the varying

land use characteristics, these three regions have different cli-

matology as well. From 1971 to 2005, upstream, midstream

and downstream regions recorded an average annual precip-

itation of 1294, 1009 and 826 mm, respectively. Most of the

precipitation was concentrated during the monsoon months

from June to September (JJAS). Average annual tempera-

tures across the three regions during the same period were 20,

23 and 26 ◦C, respectively. Due to significant variation in the

characteristics of these regions, they are modeled separately

in the paper. Details of data required to drive the hydrologic

model are presented in the following section.

2.2 Input data for the hydrologic model

The current study employs physically based VIC hydrologic

model for the analysis. The VIC model is a semi-distributed

soil–vegetation–atmosphere transfer model that solves cou-

pled water and energy balance equations in a grid to calculate

different hydrologic components (Liang et al., 1994). Within

a grid the VIC model considers sub-grid heterogeneity by

dividing each grid cell into a number of tiles which in turn

depend on different land use types present in the grid. Each

tile generates different responses to precipitation in the form

of infiltration, soil moisture storage, runoff and evaporation,

owing to a difference in land surface properties. When VIC

concludes the computation of energy and water balance cal-

culations for each grid within the watershed, a streamflow

routing model developed by Lohmann et al. (1998) is acti-

vated, which transports the surface runoff generated within

a grid along with the baseflow to the outlet of the grid cell

which is further routed through the river channel to the wa-

tershed outlet.

Hydrologic models in general require topographic, soil,

hydro-meteorological and LU data which can be procured

from various sources. In the present work, topographic in-

formation is obtained from the ASTER (Advanced Space-

borne Thermal Emission and Reflection Radiometer) DEM

(digital elevation model) available at 30 m spatial resolu-

tion. The digital soil map for the region is procured from
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Figure 2. Taylor diagram for (a) rainfall (mm), (b) Tmax (◦C) and (c) Tmin (◦C) for the upstream region.

the National Bureau of Soil Survey and Land Use Planning,

India, at a scale of 1 : 250 000. Meteorological data (rain-

fall, maximum temperature, minimum temperature and wind

speed) for the period 1971–2005 at daily timescales are pro-

cured from two sources: the Indian Meteorological Depart-

ment (IMD) (Rajeevan et al., 2006) and Princeton Univer-

sity (PU) (Sheffield et al., 2006). Meteorological data from

both sources are brought to a common grid resolution of 0.5◦

that also serves as the resolution for executing the VIC hydro-

logic model. Observed streamflow data (Qobs) for two loca-

tions, Bhimgodha (1987–2011) and Ankinghat (1977–2009),

are obtained (at monthly scale) from the Uttar Pradesh Irri-

gation Department and Central Water Commission (CWC).

Between the Bhimgodha and Ankinghat stations, there are

diversions such as the Upper Ganga canal (UGC), Mad-

hya Ganga canal (MGC) and Lower Ganga canal (LGC)

(Fig. 1) that divert water from the main Ganga River. There-

fore, along with Qobs, data corresponding to various diver-

sion channels are also procured from CWC and added to the

observed (regulated) flow thereby converting the observed

streamflow to a naturalized flow (Qn−obs). The flow data thus

obtained (Qn−obs) are used for model calibration and valida-

tion.

For LU data, landsat imageries for the years 1973, 1980,

2000 and 2011 are selected and then classified to determine

the LU change in the basin over 4 decades. A field study is

carried out to collect the training sites for image classifica-

tion. The accuracy of classified images is obtained to be 89,

83, 88 and 79% for 1973, 1980, 2000 and 2011 images, re-

spectively, which is seen to be generally good. Thus, the clas-

sified images can be used as LU maps of the UGB for the cor-

responding time periods. Results of classification and change

in LU are presented in Sect. 3.1.

To carry out hydrologic impact studies related to cli-

mate change, one needs data on future climate variables,

such as rainfall (P ), temperature (T ) and wind speed (W ),

which in the current study are procured from the CORDEX

South Asia group (http://cccr.tropmet.res.in/cordex/index.

jsp) at a daily scale for six Coupled Model Intercomparison

Project 5 (CMIP5) GCM simulations (Table 1). Each model

has a time series for all the requisite variables correspond-

ing to twentieth century climate (historic run) and future cli-

mate using Representative Concentration Pathway (RCP4.5

and RCP8.5) emission scenarios. All the GCM outputs are

brought to a consistent resolution of 0.5◦.

It is now well known that large-scale pattern of climate

variables simulated by GCMs may be realistic, but when

downscaled to a regional level, they may exhibit significant

bias compared to the observed data (Maurer and Hidalgo,

2008; Ghosh and Mujumdar, 2009). This can have a signif-

icant effect on hydrological impact studies which necessi-

tates the need of performing bias correction on the climate

variables obtained. In the current work, climate variables ob-

tained from the GCMs are bias corrected with IMD gridded

data (which are considered as observed data) at a daily scale

using the technique developed by Wood et al. (2002). A dis-

tribution function is fit to the observed daily data and indi-

vidual GCM data. FGCM(x) of a GCM simulation is identi-

fied for a given x and the corresponding observed value x′ is

obtained from the observed cumulative distribution function

(CDF), Fobs(x
′) such that Fobs(x

′) = FGCM(x). GCM value x

is then replaced with the observed value x′ on the CDF of

GCM.

Statistics of GCM simulated (post-bias correction) and ob-

served climate variables for the upstream region are pre-

sented in a Taylor diagram (Fig. 2). It can be observed that

all the models are clustered together, which could be due to

the fact that all the GCM outputs are from the same modeling

center, and the clusters in the case of Tmax (maximum tem-

perature) and Tmin (minimum temperature) (Fig. 2b and c,

respectively) are closer to the observed data (represented by

point “a”) that reflect a better quality of GCM outputs for

T . In the case of P (Fig. 2a), it is observed that the models’

cluster is slightly far from point “a”; nevertheless, a reason-
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Table 1. GCMs from the CORDEX project used in the present study.

Modeling center – Driving GCM Institution

experiment name (abbreviation)

Commonwealth ACCESS1.0 (ACC) CSIRO

Scientific and CNRM-CM5 (CNR) Centre National de Recherches Météorologiques

Industrial Research CCSM4 (CCS) National Center for Atmospheric Research

Organization, GFDL-CM3 (GFD) Geophysical Fluid Dynamics Laboratory

(CSIRO) MPI-ESM-LR (MPI) Max Planck Institute for Meteorology (MPI-M)

Australia – CCAM NorESM1-M (NOR) Norwegian Climate Centre

Figure 3. GCMs climatology compared with observed climatology for monthly (a) rainfall, (b) maximum temperature and (c) minimum

temperature from 1971 to 2005 (represented from January to December as i–xii).

ably good correlation of 0.6–0.7 exists between GCM P and

observed P . Similar inferences are drawn from the analyses

over midstream and downstream regions.

In addition to the correlation coefficient, climatology of

variables for different GCMs is compared with the climatol-

ogy of the observed variable from 1971 to 2005 at a monthly

scale. These results are presented in Fig. 3 for one of the grid

cells within the UGB. The observed and GCM climatology

at a monthly scale for the time period 1971–2005 is repre-

sented following Wood et al. (2002). It can be seen in Fig. 3

that the GCMs successfully reproduce the mean and vari-

ance of the rainfall climatology for most of the months. How-
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Table 2. Structure of the VIC model obtained for upstream and midstream regions along with the performance measures during calibration

and validation phase.

Region No. of Value of Calibration Validation

candidate optimum set R2 ENRMSE ENSE β R2 ENRMSE ENSE β

models of parameters

Upstream 47

B = 0.13,

0.77 0.23 0.77 −0.02 0.83 0.29 0.79 −0.18Ds = 0.0005,

Ws = 0.76

Midstream 80

B = 0.044,

0.88 0.14 0.86 0.12 0.71 0.47 0.53 −0.04Ds = 0.0004,

Ws = 0.62

ever, for the post-monsoon period (i.e., October, November

and December), GCMs overestimate rainfall compared to the

observed rainfall. For Tmax and Tmin (Fig. 3b and c, respec-

tively), GCMs could successfully reproduce the observed cli-

matology across all the months. Other grids within the UGB

were found to demonstrate a similar pattern for both rainfall

and temperature. Based on this analysis, downscaled vari-

ables are considered to reasonably represent the climate of

the region and are further used to drive the VIC model.

In addition to the meteorological data and LU informa-

tion, VIC requires explicit information about the vegetation

type in the study region. In the study area, it is observed from

the agricultural statistics (http://mospi.nic.in/MospiNew/site/

India_Statistics.aspx) that wheat is grown in abundance dur-

ing the rabi season (October–March), while rice and mil-

let are grown during the kharif season (July–October). Fur-

thermore, sugarcane is also grown in the upstream region of

the UGB. Therefore, vegetation parameters corresponding to

these four crops are provided as input to the relevant grid

cells within the UGB.

2.3 VIC hydrologic model: calibration and validation

For the model calibration in the present work, three pa-

rameters as suggested by Lohmann et al. (1998) are cal-

ibrated to obtain an optimum combination such that the

error between observed and simulated streamflow is at a

minimum. The three parameters considered are (i) B – the

variable infiltration curve parameter; (ii) Ds – the fraction

of maximum velocity of baseflow where nonlinear base-

flow begins; and (iii) Ws – the fraction of maximum soil

moisture where nonlinear baseflow occurs. According to

Liang et al. (1994), the parameter B has the largest ef-

fect on runoff hydrograph, and the Ds and Ws parame-

ters are critical in influencing the baseflow. Calibration of

these parameters is necessary since their values vary with

catchments. Moreover, these are the only three parame-

ters which are unknown in the present study. All the other

parameters (http://www.hydro.washington.edu/Lettenmaier/

Models/VIC/Documentation/SoilParam.shtml) are obtained

from the soil map used in this study.

The VIC model is established independently for upstream,

midstream and downstream regions but model calibration is

only possible for upstream and midstream regions since Qobs

is not available for the downstream region. To address this

issue, utilizing the facts that the downstream region has soil

type similar to that of the midstream region (loam and sandy

loam) and the three parameters are essentially influenced by

soil, it is assumed that the calibrated parameters obtained for

midstream will suffice for the downstream region.

To perform model calibration, initially the sensitivity of

the simulated discharge to each of the three parameters is

tested and their rough estimate of range for both upstream

and midstream regions are obtained. Within this range, sev-

eral candidate models for upstream and midstream regions

are created based on several plausible combinations of these

three parameters. The VIC model is executed for all the

combinations and the one that has the maximum predictive

power in terms of coefficient of determination (R2), normal-

ized root mean square error (ENRMSE), Nash–Sutcliffe effi-

ciency (ENSE) and bias (β) for monthly series of simulated

streamflow (Qsim) during the calibration period is consid-

ered. Here, a negative value of β indicates that the model

overestimates the simulated data and vice versa. It is to be

noted that, though the VIC model is executed at a daily scale,

daily Qsim values are aggregated to monthly values to carry

out comparison between Qsim and Qn−obs since Qn−obs is

only available at a monthly scale.

For the current work, the periods of 1987–1999 and 1977–

1995 in upstream and midstream regions, respectively, are

considered for calibration. Figure 4 provides the plots of cor-

responding observed and calibrated VIC simulated monthly

streamflow series for the two regions. It can be observed from

Fig. 4 that simulations during the calibration period captured

the observed pattern and magnitude of hydrograph very well.

In particular, rising and recession limbs of hydrographs are

simulated accurately for both the regions. Shortcomings in

the VIC simulations for both the regions include a mismatch

of peak flows, which could be due to errors in modeling ex-
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Figure 4. Calibration results of (a) upstream and (b) midstream regions.

Figure 5. Validation results of (a) upstream and (b) midstream regions.

treme precipitation by the model. Since we are not dealing

with extremes in the present case study, this error is not of

much concern. In addition, it may also be observed that at

the end of each recession limb, there is a sharp drop, which is

below the level of Qn−obs. It could be due to inconsideration

of baseflow contribution from the groundwater in Qsim that

needs to be included in Indian watersheds, wherein ground-

water serves as major contributor to the streamflow in the

form of baseflow during the months of November to March.

Also, in the upstream region, some infrequent peaks are sim-

ulated by the model during low-flow periods which can be

attributed to the overestimation of snowmelt runoff by the

snow module (which is kept active) in the region. Pre- and

post-monsoon rainfall events could also result in this kind of

behavior.

The calibrated models are validated from 2000 to 2005 and

from 1996 to 2005 for upstream and midstream regions, re-

spectively (presented in Fig. 5). The streamflow pattern and

magnitude of runoff are well simulated during the validation.

Table 2 presents optimum set of parameters for the two re-

gions along with their performance measures during calibra-

tion and validation. Based on the performance measures, it

is seen that the model is able to predict Qn−obs reasonably

well. A slight negative β (which is evident from scatter plot

of Fig. 4a) is observed for the upstream region, which could

be due to overestimation of low-flow values. A positive β for

the midstream region could be due to a lack of groundwater

www.hydrol-earth-syst-sci.net/19/3633/2015/ Hydrol. Earth Syst. Sci., 19, 3633–3651, 2015
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contribution to Qsim. The rigorously calibrated and validated

VIC model is used to simulate the streamflow under different

scenarios considered in the present study.

2.4 GCM and emission scenario uncertainty

Despite strong correlation between the model simulated and

observed climate variables (Fig. 2), it is noticed that the mag-

nitude of uncertainty across different models is quite large

with respect to observed P and T at an annual scale. These

uncertainties may get manifested in the hydrologic response

(Arnell, 2011) when the future projections are used to drive

the VIC hydrologic model for impact assessment. As a result

it is essential to quantify the uncertainties associated with

both climate data and streamflow generated from the VIC

model, which, in the present work, is carried out over six

GCMs and two emission scenarios. The uncertainty is quan-

tified with a root mean square difference (σ ) metric given by

Eq. (1) (Giorgi and Mearns, 2002; Ekström et al., 2007).

σ =

[

1

n

n
∑

i=1

(

1Xi − 1X
)2

]
1
2

, (1)

where n is the number of GCMs for a given RCP, X the

variable under study, 1Xi the change in the ith model mean

value from the mean of the baseline period of the variable X

and 1X the ensemble average of change in the mean given

by Eq. (2):

1X =
1

n

n
∑

i=1

1Xi . (2)

In the present work, 1X is considered as an estimate of the

effect of climate change. σ quantifies the average deviation

of change in individual model mean from the ensemble av-

erage of change in mean. The higher the σ , the greater is the

uncertainty associated with the 1X and consequently less re-

liable are the results. Further, the ensemble mean of models

is statistically analyzed with the baseline period mean to test

for equality of means using two sampled t test. The results of

the t test are interpreted in terms of confidence levels for the

change in future projections with respect to a baseline period.

In order to infer the confidence level in terms of climatol-

ogy, the classification considered by Maurer (2007) is used

whereby a confidence level (i) > 90 % indicates a highly sig-

nificant change, (ii) 67–90 % indicates moderately significant

change and (iii) < 67 % indicates insignificant change. Fur-

thermore, the same test is used to estimate the confidence

level with which it can be claimed that the two emission sce-

narios give statistically different ensemble means. Figure 6

presents the overview of the work.

Table 3. LU analysis of UGB for years 1973, 1980, 2000 and 2011.

Category Area (% of total area of 95 593 km2)

1973 1980 2000 2011

Snow 9.5 10.4 6.5 5.5

Dense forest 14.5 12.8 11.4 14.8

Scrub forest 23.6 14.8 13.9 9.0

Cropland 45.1 53.2 64.3 66.2

Barren land 5.0 6.4 0.6 0.2

Urban area 1.5 1.6 2.3 3.2

Water 0.7 0.9 1.0 1.1

3 Results and discussion

Section 3.1 and 3.2 provide analysis pertaining to the quan-

tification of changes observed in LU and climate. In Sect. 3.3,

these results are used to quantify streamflow variations

within the uncertainty framework.

3.1 Analysis of land use

Classification of landsat imageries resulted in LU maps for

the UGB that are presented in Fig. 7. It can be observed that

the UGB exhibits wide variations in LU wherein upstream

parts are snow covered and downstream parts are cropland.

The dominant LU type in the UGB is cropland that covers

about 56 % of the entire basin (45, 53, 64 and 66 % for 1973,

1980, 2000 and 2011, respectively). Upon visual examina-

tion of figures, it is evident that from 1973 to 2011, area

under forest in the upstream region has diminished signifi-

cantly. The percentage of total basin area under different LU

categories in the UGB for different time periods is provided

in Table 3.

It should be noted that for the present study, detailed snow

cover mapping is not performed. Thus, the percentage area

observed under the snow category in Table 3 should not be

considered as a trend in the snow cover of the region. The

urban category is observed to occupy far less area in the

basin (< 5 %) across all the time periods. For dense forest

area, a decline was observed from 1973 to 2000 followed by

an increase. The reason could be attributed to better forest

management strategies that are introduced in the region after

creation of the Uttarakhand state in November 2000. It is ob-

served that there is a slight increase in the surface area of wa-

ter that could be attributed to the development of structures

such as the Ramganga reservoir (Fig. 1) after 1973. Results

reflect that there has been a massive increase in the area un-

der cultivation in the basin. The dynamics of LU is heavily

supported by a rapid increase in the population of the region

(120 % increase between 2001 and 2011 as per census of In-

dia; http://censusindia.gov.in/). The impact of changes in LU

over streamflow is assessed in Sect. 3.3.1. The following sec-

tion provides analysis of climate change in the UGB.
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Figure 6. Overview of the work.

3.2 Analysis of climate variables

Observed rainfall obtained from IMD and projections of

rainfall (P ) obtained from GCMs are examined for long-

term trends using Mann–Kendall test (Mann 1945; Kendall,

1938). It is noticed that observed P did not show any trend

during the period 1971–2005 for upstream, midstream and

downstream regions. However, projections of P exhibit a

monotonic increase at an annual scale during the period

2010–2099 for all the regions with large inter-annual vari-

ability. In order to determine the change in the climatol-

ogy of the three regions, outputs from GCMs for future

time periods are aggregated into five time slices: T1 (2010–

2020), T2 (2021–2040), T3 (2041–2060), T4 (2061–2080)

and T5 (2081–2100). Further on, comparisons are made be-

tween the means of the future time slices and the baseline pe-

riod (1971–2005). Figure 8 (top panel) shows average change

in annual P over all GCMs (“ensemble mean change”) in fu-

ture time slices from the baseline period which is calculated

using Eq. (2). Associated with the ensemble mean change is

uncertainty, obtained using Eq. (1), which is represented by

error bars in the figure. Uncertainty limits reflect the average

deviation of change in the mean of individual GCMs from

the ensemble mean.

T2 in case of RCP4.5 emission scenario is observed to ex-

hibit maximum change for all the three regions along with

high uncertainties. High confidence level associated with T2

imply probable impacts in hydrologic response associated

with this time slice. The RCP8.5 emission scenario, for most

of the time slices, exhibits moderately significant change

which may result in less probable impacts.

Upon assessing the monthly variability in P , it is observed

that it may decline significantly during monsoon months,

whereas there might be an increase during winter months

(October, November, December, January) across the three re-

gions. This may result in shift in seasonal pattern of P in

the region. Furthermore, if analyzed longitudinally from up-

stream to downstream it is noticed that the variation in P in

the downstream region is much more severe.

On analyzing the trend in observed and projected annual

mean Tmax and Tmin, it is noticed that observed annual mean

Tmax did not show any trend during 1971–2005, while ob-

served annual mean Tmin depicted an increasing trend during

the same period. However, projected annual mean Tmax and

Tmin are observed to show an increasing trend for future sce-

narios. Upon assessing the monthly variability, mean Tmax

and Tmin are observed to increase significantly during win-

ter months and they may decline during April to September
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Figure 7. LU maps for (a) 1973, (b) 1980, (c) 2000 and (d) 2011.

in all the regions. Results corresponding to ensemble change

in mean annual Tmax and Tmin from the baseline are shown

in Fig. 8, center and bottom panels, respectively. Change in

Tmax and Tmin can affect the hydrology by changing rain to

snow ratio, ET and consequently runoff (Christensen et al.,

2004). Therefore, change in T may affect the overall water

availability in the basin. On assessing the change in T lon-

gitudinally over UGB, it is observed that the downstream re-

gion may experience maximum increase in the annual mean

Tmax and Tmin, thus causing serious implication in this part

of the UGB. The downstream region, as mentioned earlier,

may suffer from sporadic P along with significant increase

in T , resulting in severe water availability problem in this

part of the UGB. This condition may prove to be detrimental

from agricultural point of view as this area is heavily under

cultivation (86 % of total downstream area).

Upon evaluating the emission-scenario-based uncertainty,

it is found that there is no significant difference between

the two scenarios RCP4.5 and RCP8.5, which indicates that

the scenario-based uncertainty will be minimum. Impacts

of changes in P and T on streamflow are presented in

Sect. 3.3.2.

3.3 Hydrologic responses to land use and climate

change

To evaluate the effects of LU and climate change on the hy-

drology of the study area, three scenarios are considered. The

first two scenarios are based on the single factor approach (Li

et al., 2009); i.e., one driving factor is changed at an instant

keeping the other constant. In the first scenario, climate is

considered invariant while LU is varied with time, whereas

in the second scenario, LU is considered invariant while cli-

mate is varied with time. These two scenarios are constructed

to understand how streamflow would respond if only one of

the driving forces is changed with time thereby assisting in

quantifying the influence of individual factors on streamflow.

In reality, both LU and climate change simultaneously with

time and the hydrologic response is generated based on their

integrated effect which is addressed by the third scenario. Fi-
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Figure 8. Change in the ensemble mean of rainfall (top panel), Tmax (center panel) and Tmin (bottom panel) from the baseline period for

RCP4.5 (first bar of a time slice) and RCP8.5 scenarios (second bar of a time slice) at each time slice (T1: 2010–2020, T2: 2021–2040,

T3: 2041–2060, T4: 2061–2080 and T5: 2081–2100).

nally, from the integrated response, contributions of LU and

climate on the streamflow variability are segregated using re-

sults from the other two scenarios. In-depth analysis in the

first two scenarios is carried out due to a lack of detailed

studies that examine the effects of LU and climate change on

streamflow in the UGB.

3.3.1 Impact of land use change

In order to investigate hydrological impacts of LU change,

simulations are carried out keeping climate fixed at 1971,

while LU is changed progressively from 1971 to 2011. LU

in any region changes gradually over a period of time, and

therefore starting and ending years may satisfactorily rep-

resent the change that has occurred in each LU class. Con-

sidering this, LU of the intermittent years can be obtained

using rate of change in each LU class between the starting

and ending years. It is to be noted that to obtain LU infor-

mation for 1971 and 1972, rate of change between 1973 and

1980 is considered. LU obtained for each year is then used

to drive the VIC model to obtain simulations under LU effect

with invariant climate. Although simulations are carried out

continuously from 1971 to 2011, for the sake of brevity, re-

sults corresponding to the starting year (1971) and the ending

year (2011) for all the three regions are presented in Fig. 9.

It can be observed in Fig. 9 that from 1971 to 2011 there

is an increase in the magnitude of peak discharge for up-

stream and midstream regions. This observation is consistent

with other studies reported in literature which state that LU

change has a pronounced effect on peak flows due to alter-

ations in the infiltration capacity of the surface (Fohrer et al.,

2001; Naef et al., 2002; Tollan, 2002; McIntyre et al., 2014).

No change in the discharge regime of the downstream region

is noticed. LU and topography of the region is observed to

have a conspicuous effect on the hydrologic response from

the basin which is reflected in the hydrograph patterns for

the three regions. The rising limb of the upstream region

(Fig. 9a) begins during April while for midstream and down-

stream (Fig. 9b and c, respectively) it occurs during May–

June. The early occurrence of a rising limb in the upstream

region can be attributed to the snowmelt-runoff contribution

to the streamflow. However, for midstream and downstream

regions, a rising limb begins with the onset of monsoon.

The recession limb of hydrograph for upstream region falls
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Figure 9. Simulation results for 1971 and 2011 for (a) upstream, (b) midstream and (c) downstream regions.

quickly owing to the steep slope of the region. For the mid-

stream, a sharp drop is observed up to a certain level during

October, indicating the termination of direct runoff contri-

bution to streamflow. Following this, the contribution is pre-

dominantly through baseflow which in this case is observed

to be higher than the baseflow before the monsoon months.

The higher baseflow during post-monsoon period could be

attributed to slow release of water stored by forests (dense

and scrub) in the region aided by low elevation of the terrain

in the region. Downstream region, though entirely a flat ter-

rain, is dominated by cropland and urban areas that lack the

capacity of holding the water, therefore limiting the contri-

bution of baseflow to streamflow which leads to the observed

sharp decline in the recession limb. Furthermore, long-term

impacts of LU change are more evident in annual streamflow

that is observed to increase by 12, 17 and 1 % from 1971 to

2011 for upstream, midstream and downstream regions, re-

spectively.

Sensitivity of the region to different LU categories is as-

sessed in separate simulations. In this case, simulations con-

sidering each LU class are performed and change in stream-

flow under each category is quantified. To quantify the mag-

nitude of change in streamflow caused by change in LU, the

ratio between streamflow and LU is computed. The ratio is

referred to as the runoff / LU ratio (RL) in the present study.

The RL indicates the effect of 1 % change in any LU cate-

gory on streamflow and aids in identifying the significance

of a particular LU class in determining the hydrologic re-

sponse. Based on the ratios obtained, streamflow response

(to a particular LU category) is classified under three cate-

gories: (i) highly sensitive if RL is ≥ 3, which indicates that

a change of 1 % in LU category results in the change of hy-

drologic response by at least 3 times; (ii) moderately sen-

sitive, (1 ≤ RL < 3); and (iii) insensitive, (0 < RL < 1). Sign

associated with the RL indicates the direction of change.

It can be observed from Table 4 that in the upstream re-

gion, RL is maximum for the urban area implying that the

hydrologic response in this region is highly sensitive to the

changes in urban area. It can be inferred that 1 % change in

the urban area results in 4 % increase in the streamflow from

the upstream region. The upstream region has a significant

portion of area under dense forest that has shown a minor in-

crease in the last decade (2000 to 2011) (Table 3). The sim-

ulated streamflow is observed to be moderately sensitive to

this increase, though the observed impact is in the opposite

direction; i.e., an increase in forest results in a decrease in

streamflow. Furthermore, streamflow simulated from the up-

stream region is moderately sensitive to croplands as well.

The midstream region has cropland as the dominant LU type

covering 53 % of the area during 1971 and 81 % of the area

in 2011; streamflow is observed to be moderately sensitive

to it. It is also observed that streamflow is moderately sen-

sitive to urban area in this region. Though the downstream

region is predominantly cultivated land (approximately 85 %

of the area), hydrologic response is observed to be moder-

ately sensitive to changes in the urban area. High sensitivity

of streamflow from the regions to urban area can be attributed

to the fact that increase in urban sprawl could reduce the infil-

tration resulting in the generation of higher surface runoff. In

addition to this, it can be observed that hydrologic response

to a change in forest area in midstream and downstream re-

gions has a positive sign unlike in the upstream region, where

the response has a negative sign. This is due to the fact that

midstream and downstream regions are dominated by scrub

forest, area under which has decreased over the time period,

thereby increasing the streamflow. Thus all three regions of

the UGB are observed to be moderately sensitive to a change

in cropland area while moderately to highly sensitive to a

change in urban area.
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Figure 10. Change in ensemble mean of Qclim from the baseline period for RCP4.5 (first bar of every time slice of all the plots) and RCP8.5

(second bar of every time slice of all the plots) scenarios at each time slice (T1: 2010–2020, T2: 2021–2040, T3: 2041–2060, T4: 2061–2080

and T5: 2081–2100).

Table 4. Runoff / LU ratio for different LU categories for upstream,

midstream and downstream regions.

Region LU classes

Crop Urban Forest Barren

land

Upstream 2.05 4.02 −1.31 0.91

Midstream 1.49 1.17 0.1 0.97

Downstream 0.63 2.69 0.9 0.93

3.3.2 Impact of climate change

Streamflow observed at Bhimgodha (outlet for upstream re-

gion) and Ankinghat (outlet for the midstream region) sta-

tions is examined for the presence of a trend using the Mann–

Kendall test. It is noticed that the observed streamflow for up-

stream (1987–2005) and midstream (1977–2005) regions do

not show any trend. However, in order to investigate the indi-

vidual impact of changing climate on hydrology, simulations

are carried out keeping LU fixed for 1971 and altering cli-

mate continuously for the baseline period (1971–2005) and

future emission scenarios (2010–2100). The simulation re-

sults obtained are referred to as Qclim hereafter. To quantify

the change in streamflow, the VIC model is driven using six

downscaled, bias-corrected GCM outputs and the simulation

results obtained are compared with the baseline simulation

results. Change in ensemble mean annual Qclim for five fu-

ture time slices from the baseline annual streamflow for the

three regions is presented in Fig. 10 with the associated un-

certainties shown as error bars.

From the Fig. 10, it can be observed that change in Qclim

has patterns similar to that of change in mean annual P

(Fig. 8, top panel). Change in Qclim for all the time slices

is observed to be moderate to highly significant in most of

the cases indicating probable impacts of climate change on

hydrologic response of the basin. Uncertainty is observed to

increase through the time slices and maximum uncertainty

in projection results for all the three regions is observed in

T5. Although the two scenarios gave consistent results, to ad-

dress the issue of scenario-based uncertainty, the mean of the

ensemble annual Qclim series of RCP4.5 is compared with

the mean of the ensemble annual Qclim series of RCP8.5.

The two means are found to be moderately different for the

midstream region, indicating the need to consider the two

scenarios as separate cases.

Assessment of the monthly variations in the Qclim across

future time slices indicated that Qclim may decrease for JAS

months for the three regions while it may increase during the

months of October, November and December (OND). The

variations observed in Qclim during JAS and OND are found

to be consistent with that of P . However, this is not true for

all the months such as June, where P is observed to decrease

in the future while Qclim is observed to increase, which can

be attributed to a decrease in T that may reduce evaporation

from the region resulting in higher runoff. A similar kind of

response of streamflow to P and T in a catchment is reported

in literature for a different case study by Fu et al. (2007). To

further assess the sensitivity of Qclim to changes in P and T

and quantify their effect, runoff ratio (RR) is computed using

average annual runoff and rainfall for each time slice. Results

pertaining to the values of RR are presented in Table 5.

The RR is a simple index that reflects the relationship

between P and Qclim by determining the proportion of P

that gets converted to Qclim (Zhang et al., 2011). RR is cal-

culated by normalizing the Qclim with P within the same

timescale. Analyzing RR over a period of time on the same

river basin (under same LU conditions) aids in understand-

ing topographic response and effect of climate on streamflow.
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Table 5. Runoff ratio across time slices for upstream, midstream and downstream regions (terms in parentheses indicate the percent change

from the baseline values).

Region Time Rainfall (mm) Runoff (mm) Runoff ratio

period RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Upstream

Baseline 1294 1294 772 772 0.60 0.60

T1 1196 ± 172 1210 ± 46 697 ± 84 683 ± 32 0.58 0.56

(−8) (−7) (−10) (−12) (−2) (−4)

T2 1084 ± 480 1257 ± 43 619 ± 287 715 ± 30 0.57 0.57

(−16) (−3) (−20) (−7) (−3) (−3)

T3 1377 ± 171 1323 ± 32 816 ± 137 771 ± 26 0.59 0.58

(+6) (+2) (+6) (0) (−1) (−2)

T4 1416 ± 198 1357 ± 42 845 ± 163 800 ± 38 0.60 0.59

(+9) (+5) (+9) (+4) (0) (−1)

T5 1424 ± 182 1405 ± 27 854 ± 148 842 ± 26 0.60 0.60

(+10) (+9) (+11) (+9) (0) (0)

Midstream

Baseline 1009 1009 441 441 0.44 0.44

T1 844 ± 84 871 ± 63 323 ± 31 328 ± 56 0.38 0.38

(−16) (−14) (−27) (−25) (−12) (−4)

T2 787 ± 265 884 ± 53 296 ± 115 332 ± 52 0.38 0.38

(−22) (−12) (−33) (−25) (−12) (−12)

T3 1003 ± 135 952 ± 31 413 ± 77 378 ± 20 0.41 0.40

(−1) (−6) (−6) (−14) (−3) (−4)

T4 1062 ± 159 1016 ± 28 462 ± 101 427 ± 23 0.44 0.42

(+5) (+1) (+5) (−3) (0) (−2)

T5 1071 ± 160 1058 ± 21 471 ± 121 452 ± 21 0.44 0.43

(+6) (+5) (+7) (+3) (0) (−1)

Downstream

Baseline 826 826 192 192 0.23 0.23

T1 579 ± 63 590 ± 55 102 ± 13 107 ± 19 0.18 0.18

(−30) (−29) (−47) (−44) (−5) (−5)

T2 557 ± 183 589 ± 40 89 ± 43 104 ± 13 0.16 0.18

(−32) (−29) (−54) (−46) (−7) (−5)

T3 721 ± 108 663 ± 38 141 ± 34 127 ± 13 0.20 0.19

(−13) (−20) (−27) (−34) (−3) (−4)

T4 743 ± 128 731 ± 23 150 ± 46 148 ± 7 0.20 0.20

(−10) (−11) (−22) (−23) (−3) (−3)

T5 785 ± 101 771 ± 37 173 ± 36 167 ± 16 0.22 0.21

(−5) (−6) (−10) (−13) (−1) (−2)

In the present study, longitudinal variation in RR strikingly

depicts the catchment topography from upstream to down-

stream. RR is observed to be 60 % for the upstream region,

44 % for the midstream region and 23 % for the downstream

region during the baseline period. The upstream region is

characterized by mountainous terrain and steep slopes; thus,

most of the P gets converted to Qclim (high RR), whereas

the downstream region has very flat terrain; thus, much of

the P gets evaporated or infiltrated into soil and little gets

converted to Qclim (low RR). Analysis of RR over the differ-

ent time slices for a particular region indicates that in general,

when P does not change significantly from the baseline pe-

riod, increase in T results in reduced RR. This is intuitive

as increase in T leads to loss of water as evaporation, which

reduces Qclim and consequently lessens RR. The RR is ob-

served to increase and approach towards baseline RR with

slight increase in P (irrespective of change in T ). In such

cases, temperature variations are seen to be of less impor-

tance. In most of the cases, it is observed that a decrease in

P results in a decrease in RR, but in few cases such as T4

and T5 (RCP4.5 and RCP8.5) for a downstream region, P is

observed to reduce accompanied by an increase in T . In such

a case, one might expect RR to reduce significantly, which is

not observed. This anomaly could be attributed to occurrence

of short duration dense rainfall events in the region. Reduc-

tion in RR is observed in the case when P is observed to in-

crease with no significant change in T . This kind of behavior

could be due to a shift in the seasonal pattern of P or due to

an increased inter-arrival time between the two P events. In

summary, Qclim from the downstream region is observed to
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Table 6. Contribution of climate and LU to the streamflow for different time periods.

Region Streamflow P1 P2 P3 P4

(1971–1980) (1981–1990) (1991–2000) (2001–2005)

Upstream

Qint (m3 s−1) 775 772 859 823

Qclim (m3 s−1) 760 741 824 777

Qclim (%) 98 96 96 94

QLU (m3 s−1) 15 31 35 46

QLU (%) 2 4 4 6

Midstream

Qint (m3 s−1) 1130 1183 1266 1195

Qclim (m3 s−1) 1108 1110 1182 1107

Qclim (%) 98 94 93 93

QLU (m3 s−1) 22 73 84 88

QLU (%) 2 6 7 7

Downstream

Qint (m3 s−1) 123 103 85 78

Qclim (m3 s−1) 122 103 85 77

Qclim (%) 100 100 99 98

QLU (m3 s−1) 1 0 1 1

QLU (%) 0 0 1 2

be very sensitive to the changes in P , whereas Qclim is sensi-

tive to P up to a certain threshold for the midstream region,

beyond which Tmax also starts playing a role. Owing to the

complex topography and climatology of the upstream region,

it is difficult to interpret the sensitivity of Qclim to different

climate factors.

3.3.3 Integrated impacts of land use and climate

change

In a real-world situation, change in LU and climate occurs

simultaneously and the impact of both these factors is re-

flected in the streamflow. To carry out analysis pertaining to

this scenario, one needs concurrent information on LU and

climate. Under this notion, VIC model is driven for 1971–

2005 (baseline period) across the three regions in the UGB.

It is to be noted that the process of obtaining projections of

future LU conditions in the basin does not come under the

purview of the present work. Therefore, integrated impact of

LU and climate change on future streamflow could not be

assessed. The results obtained from this analysis can be in-

terpreted as the streamflow simulations under simultaneous

change in LU and climate conditions (hereafter referred to as

Qint). In order to assess decadal variations in streamflow of

the UGB, the baseline period is aggregated to four time peri-

ods: P1 (1971–1980), P2 (1981–1990), P3 (1991–2000) and

P4 (2001–2005), although the VIC model is executed for the

entire duration. Results corresponding to Qint for upstream,

midstream and downstream regions are presented in Table 6.

It is observed that no clear inference about the implication

of LU and climate on streamflow can be achieved from the

obtained Qint values due to large variability in the stream-

flow corresponding to the variability in rainfall. Therefore,

a further analysis is necessary to isolate the impacts of LU

and climate on streamflow response, which is presented in

the following sub-section.

3.3.4 Isolating the impacts of land use and climate

In order to segregate the impacts of LU and climate, the pro-

posed approach primarily requires results of Qint (obtained

from the Sect. 3.3.3) and Qclim (obtained from the Sect.

3.3.2) over the same time period. Herein Qint and Qclim are

comparable based on the fact that the respective simulations

are obtained under identical conditions of hydrologic model

and climatology. This condition reflects that the only chang-

ing subject among the two scenarios is the land use input to

the hydrologic model. Therefore, the residue of the two sce-

narios, Qint − Qclim, is considered to be the exclusive con-

tribution of LU to streamflow (hereafter referred to as QLU).

To segregate the contribution of LU and climate from Qint,

a linear response of LU and climate to the streamflow is as-

sumed.

In the present case study, simulations of Qint and Qclim

are obtained for the time periods P1, P2, P3 and P4 men-

tioned earlier for upstream, midstream and downstream re-

gions. Qint and Qclim are then used to estimate QLU. Further-

more, the percentage contributions of LU and climate to Qint

are also computed (Qclim(LU) (%) =
Qclim(LU)

Qint
× 100). Table 6

presents results pertaining to these.

Results from Table 6 suggest that climate is the dominant

contributor to streamflow across all the regions. The con-

tribution of LU, on the other hand, is observed to be min-

imal. Further insight to the influence of LU to streamflow

is obtained from the inferences drawn from Sect. 3.3.1. It is

observed from the analysis in Sect. 3.3.1 that streamflow is
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Table 7. Contribution of LU and climate to streamflow during the T1 (2010–2020) time slice under RCP4.5 and RCP8.5 emission scenarios.

Streamflow Upstream Midstream Downstream

RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5

Qint (m3 s−1) 800 ± 72 789 ± 28 1008 ± 110 971 ± 138 52 ± 5 56 ± 11

Qclim (m3 s−1) 713 ± 62 703 ± 23 938 ± 132 903 ± 123 51 ± 5 55 ± 11

Qclim (%) 89 89 93 93 98 98

QLU (m3 s−1) 87 ± 10 86 ± 5 70 ± 23 68 ± 16 1 ± 0 1 ± 0

QLU (%) 11 11 7 7 2 2

highly sensitive to changes in urban land in upstream and

downstream regions, while it is moderately sensitive to ur-

ban and cropland areas in the midstream region. The spatial

extent of urban area is observed to be much less in upstream

and downstream regions (less than 10 %), which could have

resulted in a negligible contribution of LU to streamflow. For

the midstream region, despite ∼ 70 % of the area is under

cropland, contribution of LU to streamflow turned out to be

less. This could be due to moderate sensitivity of streamflow

to the changes in the cropland category. It is well understood

that croplands contribute more to the ET than to the stream-

flow. Contribution of urban area to streamflow is negligible

due to its less spatial extent in the midstream region. When

QLU (%) is assessed across the time periods in the three re-

gions, it is observed that there is gradual increase in the con-

tribution of LU to streamflow. This could be attributed to the

fact that area under the sensitive LU categories (urban area

and cropland) is increasing with time in the regions.

Contribution of LU and climate on the streamflow re-

sponse is isolated at a monthly scale as well. It is observed

that climate is a major contributor to the streamflow across

all three regions at a monthly scale as well (see the attached

Supplement).

In the present study, the application of proposed methodol-

ogy of isolating the hydrologic impacts of LU and climate is

limited only to the baseline period due to unavailability of fu-

ture LU information. However, this approach can be applied

to the future time periods as well upon obtaining future LU

projections along with climate simulations. This is illustrated

by conducting the analysis on T1 (2010–2020) wherein Qint

is obtained by driving the VIC model under the LU condition

of 2011 (assuming that LU may not change significantly dur-

ing this decade) and climate simulations from six GCMs for

the corresponding time period. Results for T1 are presented

in Table 7.

From Table 7, it can be observed that the contribution of

LU to streamflow from the upstream region has increased

(compared to P4). This could be attributed to an increase

in area under urban land by 65 % in T1 from P4 in the up-

stream region. No significant increase is observed in crop-

land and urban land areas in T1 from P4 for midstream and

downstream regions, respectively (2 % increase in cropland

in the midstream region and 20 % increase in urban area in

the downstream region), which could have resulted in an un-

varying contribution of LU to streamflow from P4 (Table 6)

to T1 (Table 7) in these regions.

From the analysis, it can be concluded that the proposed

approach can be applied over a catchment with a well-

calibrated and validated hydrologic model. Future work in-

volves generating LU projections for future time periods,

which can be corroborated with climate projections de-

scribed in Sect. 3.3.2, to isolate the impacts of LU and cli-

mate on future streamflow simulations. Although there is the

presence of a snow covered region in the basin, segregating

the contribution of snowmelt runoff from the total streamflow

is not feasible at this stage due to a lack of observed data.

This limits the assessment of impact of temperature changes

on snowmelt and its consequences on the streamflow.

4 Conclusions

In the present paper a hydrologic modeling-based methodol-

ogy is presented to isolate the impacts of LU and climate on

streamflow in a river basin. To achieve this, three objectives

are considered (i) assessing the sensitivity of the streamflow

to the changes in LU, (ii) examining the impact of change in

climate on the streamflow and (iii) integrated impact of LU

and climate change on the streamflow of the UGB. These

three objectives are translated to three scenarios and are used

to segregate the influence of LU and climate change on the

streamflow. Not many studies conducted earlier have consid-

ered the combined effect of LU and climate on the hydrology

of the basin. The VIC hydrologic model is used to under-

stand the impact of LU and climate change on the stream-

flow. The VIC model, owing to its comprehensive ability

to simulate hydrological processes, has been used widely to

perform impact assessment studies. However, being a physi-

cally based distributed model, there are concerns associated

with the model structure and the number of calibration pa-

rameters. Furthermore, due to spatiotemporal variability in

the input variables, a parameter set for the initial or reference

time period may not be suitable for future periods (Viney et

al., 2009). In the present study, these concerns are partially

addressed by calibrating and validating the VIC model over

upstream, midstream and downstream regions of the UGB.
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LU change analysis of the study region indicated an in-

crease in the areas of crop and urban land categories to which

streamflow is observed to be moderately to highly sensitive.

From the climate change analysis, it is observed that rainfall

may decrease during the monsoon months and increase dur-

ing the winter months which may result in a shift in seasonal

rainfall pattern. Annual means of Tmax and Tmin are observed

to increase in the future. Streamflow is observed to reproduce

the variations in rainfall. All the changes in rainfall, Tmax and

Tmin pertaining to climate change scenario are found to be

statistically significant from the baseline period, indicating

that deviation in their magnitudes is likely to cause serious

impacts on the hydrologic response. It may be noted that the

meteorological variables from only six GCMs are used for

the analysis, which is a limitation of the study. There is a

need to consider more GCMs to address the issue of model

and scenario-based uncertainty more comprehensively.

The integrated effect of LU and climate change on stream-

flow is observed to be more prominent in the study area.

From the analysis of isolating the individual impacts of LU

and climate from their integrative effects on streamflow, it

is observed that climate contributes more to the simulated

streamflow (> 90 %). In contrast, LU did not contribute sig-

nificantly to the simulated streamflow that could be attributed

to less spatial extent of sensitive LU categories in the region.

The proposed approach is generic and applicable to any

river basin to isolate the relative impacts of LU and climate

change on streamflow. However, the approach is based on

the assumption of linear response of LU and climate to the

streamflow. The case study analysis indicates that the change

in climate may become a major concern in the UGB for water

resources management.

The Supplement related to this article is available online

at doi:10.5194/hess-19-3633-2015-supplement.
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