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Endocrine disrupting chemicals (EDCs) are synthetic chemicals that alter the function of endocrine 
systems in animals including humans. EDCs are considered priority pollutants and worldwide research is 
ongoing to develop bioremediation strategies to remove EDCs from the environment. An understanding 
of indigenous microorganisms is important to design efficient bioremediation strategies. However, much 
of the information available on EDCs has been generated from developed regions. Recent studies have 
revealed the presence of different EDCs in South African natural resources, but, to date, studies analysing 
the capabilities of microorganisms to utilise/degrade EDCs have not been reported from South Africa. 
Here, we report for the first time on the isolation and enrichment of six bacterial strains from six different 
soil samples collected from the Mpumalanga Province, which are capable of utilising EDC nonylphenol 
as a carbon source. Furthermore, we performed a preliminary characterisation of isolates concerning 
their phylogenetic identification and capabilities to degrade nonylphenol. Phylogenetic analysis using 
16S rRNA gene sequencing revealed that four isolates belonged to Pseudomonas and the remaining 
two belonged to Enterobacteria and Stenotrophomonas. All six bacterial species showed degradation of 
nonylphenol in broth cultures, as HPLC analysis revealed 41–46% degradation of nonylphenol 12 h after 
addition. The results of this study represent the beginning of identification of microorganisms capable 
of degrading nonylphenol, and pave the way for further exploration of EDC-degrading microorganisms 
from South Africa.

Significance:
•	 First report of endocrine disruptor nonylphenol-using bacteria from South Africa

•	 Six bacterial species capable of using nonylphenol as a carbon source were isolated

•	 Results will pave the way for further exploration of endocrine disruptors degrading microbes from 
South Africa

Introduction
Endocrine disruptors or endocrine disrupting chemicals (EDCs) are chemicals that can alter the functioning 
of endocrine systems in humans and other animals including wildlife, and can thus cause cancerous tumour 
development, birth defects and other developmental disorders.1,2 Many chemicals have been identified as EDCs, 
and many are used in the formulation of various pharmaceutical products, pesticides, industrial chemicals, heavy 
metals, persistent organochlorines and other organohalogens, alkylphenols, and synthetic and natural hormones.2,3, 
These environmental pollutants mimic natural hormones of the endocrine system and display either oestrogenic 
or androgenic activities.1,2,4 They can thus have adverse effects by either unnaturally inhibiting or stimulating 
the endocrine system and/or hormonal production.1,2,4 Exposure to EDCs increases the chance of physiological 
abnormalities and alters cognitive function in animals, including humans.1,2 Physiological abnormalities include 
low sperm count and decreased sperm quality5, as well as premature puberty in both girls6 and boys7. Several 
other metabolic disorders have been reported, including different types of cancers and thyroid-related problems 
including obesity.1,2,8 

Investigations have also shown that these types of chemicals also affect other animals. Effects of EDCs on 
aquatic species have been well documented.9 EDCs have been reported to have adverse effects on invertebrates 
and wildlife populations.10 Female snails exposed to tributylin exhibited masculinisation (a disorder called 
imposex in which female snails develop a male sex organ, including a penis and vas deferens), which in turn 
led to a decline in the population.11 Alligators of Lake Apopka (Florida, USA) were reported to have impaired 
sexual development and function as a result of exposure to dichlorodiphenyltrichloroethane (DDT).12 Exposure 
to dichlorodiphenyldichloroethylene (DDE) resulted in a decline in numbers of bald eagles in Europe and 
North America.13

To date, information concerning EDCs has been primarily derived from studies conducted in developed countries.2 
Much information is still, however, lacking from large parts of Africa, Asia and Central and South America.2 Studies 
on EDCs from South Africa in particular are very scarce. A report presented by the Water Research Commission of 
South Africa revealed the presence of EDCs in South African water.14 In addition to this report, studies conducted 
in a few places within South Africa have also revealed the presence of EDCs. DDT, DDE and phthalate esters 
have been found in Limpopo15-17; oestrone, oestradiol and oestriol (steroids hormones) in the Western Cape18 
and in KwaZulu-Natal19; p-nonylphenol, diethylhexyl phthalate and dibutyl phthalate in Gauteng20; and lastly DDT, 
chlordane, hexachlorobenzene, heptachlor and endosulfan in the Eastern Cape21. In addition, a large number of 
EDCs was found in upstream and downstream sections of wastewater treatment plants.22,23 

As a result of their adverse effects on humans and wildlife, EDCs are considered to be priority pollutants, and 
worldwide research is ongoing to develop remediation strategies to remove these chemicals from the environment. 
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Strategies for removal – including advanced oxidation processes24, 
electrochemical separation and degradation technologies25 and bio
remediation and combinatorial techniques26,27 – have been extensively 
investigated. Bioremediation is a particularly attractive approach, as it 
represents natural and economically feasible processes for detoxification 
of environmental pollutants under environmental conditions. An under
standing of indigenous microorganisms is therefore important to 
facilitate the design of efficient bioremediation strategies. However, to 
date, studies on the analysis of the capabilities of microorganisms to 
utilise/degrade EDCs have not been reported from South Africa. This 
study is the first of its kind on the enrichment, isolation, identification 
and further assessment of the EDC-degradation capability of bacteria 
from South African soils. 

Materials and methods
Soil sample collection and preparation
Soil samples were aseptically collected from soil at different coal-fired 
power stations in and around the Mpumalanga Province, South Africa. 
The selected sampling areas are represented in a schematic diagram 
with GPS coordinates (Figure 1). Soil samples (5 g) were re-suspended 
in 30 mL of DNase-free and RNase-free water.28,29 The samples were 
vigorously vortexed for 5 min, followed by incubation on a rotary shaker 
for 1 h at room temperature at 100 rpm.28,29 After incubation, the soil 
was allowed to settle out of solution (30 min), and the supernatants were 
collected and immediately used for isolation of microorganisms. 

Medium preparation
All chemicals and reagents used in this study were purchased from 
Sigma-Aldrich (Johannesburg, South Africa), unless otherwise stated. 
Minimal medium28,29 with added trace element solution30 was used for 

isolation of microorganisms. The minimal medium consisted of 8.5 g/L 
Na2HPO4.2H2O, 3.0 g/L KH2PO4, 0.5 g/L NaCl, 1.0 g/L NH4Cl, 0.5 g/L 
MgSO4.7H2O, 14.2 mg/L CaCl2 and 0.15 g/L KCL. The minimal medium 
was supplemented with 10 mL of trace element solution30, consisting 
of 0.4 mg/L CuSO4, 1.0 mg/L KI, 4.0 mg/L MnSO4.H2O, 4.0 mg/L 
ZnSO4.7H2O, 5.0 mg/L H3BO3, 1.2 mg/L Na2MO4.2H2O and 2.0 mg/L 
FeCl3.6H2O, per litre of medium. Technical grade nonylphenol (catalogue 
number 290858) was added as a sole source of carbon to a final 
concentration of 5 mM.

Enrichment procedure
Supernatant (1 mL) from the soil samples was used to inoculate 100 
mL of minimal medium in a 500-mL conical flask, supplemented with 
nonylphenol as the sole carbon source. A control was set up to contain 
medium and nonylphenol, without inoculation of soil samples. After 4 
weeks of incubation at 37  °C at 100 rpm, 1 mL of culture was used 
to inoculate fresh minimal medium (100 mL) with nonylphenol as the 
sole carbon source. This serial enrichment of bacterial isolates was 
repeated until a single, homogenous culture was obtained. Aliquots 
(100 µL) of cultures were spread on minimal medium agar plates with 
nonylphenol (5 mM) as the sole carbon source, to monitor the growth of 
microorganisms at 37 °C. The minimal medium plates with nonylphenol 
were prepared as described elsewhere.31 Bacterial growth was also 
analysed by measuring the absorbance at 600 nm. 

Isolation of genomic DNA and amplification of 16S rRNA 
gene
Genomic DNA (gDNA) from bacterial isolates was extracted using the 
ZR Fungal/Bacterial DNA MiniPrep kit (catalogue number D6005, Inqaba 
Biotec, Pretoria, South Africa) according to the manufacturer’s protocol. 
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Figure 1:	 Schematic representation of soil sample collection areas in Mpumalanga, South Africa. The numbers 1 to 6 in stars indicate the areas from which 
the soil samples were collected. The GPS coordinates of the sampling areas are given in the figure. 
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The gDNA was visualised using agarose gel electrophoresis, and gDNA 
concentration was measured using a SimpliNano microvolume spectro
photometer (catalogue number GE29-0617-12, Sigma-Aldrich, St. Louis, 
MO, USA). The isolated gDNA was used for amplification of the 16S rRNA 
gene. The 16S rRNA gene was amplified by polymerase chain reaction 
(PCR) using primers 63f and 1387r as described elsewhere.32 A KAPA 
HiFi HotStart PCR kit (catalogue number KK2501, KAPA Biosystems, 
Wilmington, MA, USA) was used to amplify the 16S rRNA gene according 
to manufacturer’s instructions. The PCR products were run on a 0.8% 
agarose gel and were purified using the Wizard® SV Gel and PCR Clean-Up 
System (catalogue number A9281, Promega, Madison, WI, USA). 

16S rRNA gene sequencing 
Samples were prepared for sequencing using the BigDye™ Terminator 
V3.1 Cycle Sequencing Kit (catalogue number 4337455, Thermo Fischer 
Scientific, Waltham, MA, USA). The aforementioned primers 63f and 
1387r32 were used for sequencing. The sequencing reactions were 
performed according to the parameters described by the manufacturer. 
Sequencing reactions were purified using the EDTA-ethanol method 
described by the manufacturer, and submitted for sequencing using a 
3130xl Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). 
Consensus sequences were derived from the sequences obtained 
from the forward and reverse primer reactions for each product, using 
Geneious® R9 9.1.2. software. 

Phylogenetic analysis
16S rRNA gene sequences of bacterial isolates were subjected to BLAST 
analysis at NCBI (the US National Center for Biotechnology Information) 
against 16S ribosomal RNA sequences (Bacteria and Archaea) to identify 
the closest homologs. Among the resulting hits, the 16S rRNA sequences 
with 100% or 99% identity homologs were selected. Based on the 
obtained bacterial species, the type strains belonging to each species were 
selected, and the 16S rRNA sequences were retrieved from elsewhere 
(http://www.bacterio.net/). The Escherichia coli ATCC 11775 type strain 
16S rRNA gene sequence (also retrieved from http://www.bacterio.net/) 
was used as an out-group. Phylogenetic analysis was carried out using 
the maximum likelihood method based on the Tamura–Nei model.33 Initial 
tree(s) for the heuristic search were obtained by applying the neighbour-
joining method to a matrix of pairwise distances estimated using the 
maximum composite likelihood approach. All positions containing gaps 
and missing data were eliminated. Evolutionary analyses were conducted 
in MEGA5.34 Phylogenetic analysis included the isolate 16S rRNA gene 
sequence, hit homologs and type strain 16S rRNA gene sequences. The 
phylogenetic tree was presented with branch lengths, and the bacterial 
isolates identified in this study are highlighted in bold font.

Nonylphenol degradation 
A degradation study using whole cells was carried out as described 
elsewhere35,36 to assess the capabilities of the bacterial isolates to degrade 
nonylphenol. A single colony of isolates from minimal medium plate 
containing nonylphenol as the carbon source was used to inoculate 5 mL 
of Luria–Bertani broth, which was then cultured overnight at 150 rpm at 
37 °C. The growth of the isolates was measured at 600 nm after diluting 
the culture in Luria–Bertani broth. The cultures were then washed twice 
with saline (0.9% sodium chloride solution), followed by inoculation with 
an equal amount of each overnight bacterial culture for all six isolates onto 
separate, fresh minimal media (5 mL) containing nonylphenol (2.5 mM) 
as a carbon source in 50-mL glass tubes (test cultures). The test cultures 
were incubated for 12 h at 37 °C at 150 rpm. After incubation, 5 mL of 
ethyl acetate was added to the test cultures, which were then vortexed 
for 5 min at maximum speed, followed by centrifugation for 5 min at 
2500 g at room temperature. After centrifugation, two distinct fractions 
were separated by a thin middle layer composed of bacterial cell debris. 
The upper organic fraction containing nonylphenol was removed from 
the lower aqueous fraction into a fresh glass tube. The extraction was 
repeated twice, followed by evaporation of the organic fraction. The 
remaining residue was re-suspended in 200 µL of HPLC-grade methanol. 
Minimal medium with nonylphenol but without culture was used as a 
control and treated the same as the test culture. 

HPLC analysis of nonylphenol was carried out following the method 
described elsewhere, with modifications.35,36 Briefly, the abovementioned 
methanol samples were filtered through 0.45-µm glass fibre filters 
and analysed using a Shimadzu Prominence instrument (Shimadzu, 
Roodepoort, South Africa) equipped with a C18 analytical column 
(4.6 mm×250 mm; particle size 5 µm from Sigma-Aldrich, South Africa) 
and with a dual wavelength UV/Vis detector. Separation was achieved 
using a 22.5-min linear gradient of acetonitrile in water (50% to 96.5%, 
and then re-equilibrated for 10 min at 50% acetonitrile at a flow rate of 
1.25 mL/min). A volume of 5 µL of sample was injected for analysis. 
Nonylphenol was detected at 277 nm, and the percentage degradation 
of nonylphenol by test cultures was related to the control nonylphenol, 
which was taken as 100%.

Statistical analysis
All experiments were carried out in triplicate and results were subjected 
to statistical analysis as described elsewhere.35,36 The activities, in 
terms of percentage degradation, of the different bacterial isolates were 
analysed for means and standard deviations and compared for statistical 
differences using a Student’s t-test on GraphPad QuickCalcs software 
package (GraphPad Software Inc., CA, USA). 

16S rRNA gene sequences accession numbers
16S rRNA gene sequences of bacterial isolates identified in this study 
were submitted to GenBank (https://www.ncbi.nlm.nih.gov/genbank/), 
with the following accession numbers: KX364074 (Pseudomonas 
nitroreducens strain LBQSKN1), KX364075 (Pseudomonas putida strain 
LBQSKN2), KX364076 (Stenotrophomonas sp. LBQSKN3), KX364077 
(Enterobacter asburiae strain LBQSKN4), KX364078 (Pseudomonas sp. 
LBQSKN5) and KX364079 (Pseudomonas sp. LBQSKN6). 

Results and discussion
Enrichment and isolation of nonylphenol-utilising bacteria
The sampling areas selected for this study (represented in Figure 1) have 
been reported to harbour polycyclic aromatic hydrocarbons (PAHs).37 
PAHs are hydrophobic compounds well known for their carcinogenicity 
and mutagenicity towards humans.38,39 In this study, we aimed to test 
the ability of bacterial species growing in the presence of PAHs to 
degrade EDCs, as these chemicals are also hydrophobic and aromatic 
in nature. To isolate microorganisms capable of utilising nonylphenol as 
a sole source of carbon, we followed a standard enrichment method. 
Soil samples collected from six different places (Figure 1) were 
inoculated into minimal medium supplemented with nonylphenol as a 
carbon source. After 4 weeks of incubation, growth of bacteria was 
observed on minimal medium plates supplemented with nonylphenol 
as a carbon source, as well as assessed through spectrophotometry. 
The initial bacterial growth on plates was non-homogenous, suggesting 
the presence of more than one type of species. After three successive 
serial cultures, a homogenous population of bacteria was observed 
on minimal medium plates, indicating that successive serial culturing 
resulted in the enrichment of a single type of bacteria that are capable 
of utilising nonylphenol as a sole source of carbon. In this study, six 
bacteria were isolated from the six different soil samples. 

Identification of bacterial isolates
In order to identify the enriched bacterial isolates, 16S rRNA gene 
sequence-based phylogenetic analysis was carried out. The 16S rRNA 
genes from the gDNA of bacterial isolates were PCR amplified using 
the 63f and 1387r primer set as described elsewhere.32 Analysis of the 
PCR amplified products on agarose gel showed prominent DNA bands 
with approximate sizes of ≥1200 base pairs (Figure 2). This analysis 
indicates specific amplification of the 16S rRNA gene. The amplified 16S 
rRNA gene was gel purified and subjected to sequence analysis using 
the same primers used for its amplification. Sequence analysis was 
performed using both forward and reverse primers, yielding a consensus 
sequence of 300–500 overlapping base pairs between the sequences. 
The sizes of the 16S rRNA sequences obtained for each of the bacterial 
isolates are presented in Table 1. The 16S rRNA sequence of Isolates 
1 and 2 showed 100% identity to Pseudomonas spp., while Isolates 5 
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and 6 also had 99% identity to Pseudomonas spp. (Table 1). Isolate 3 
showed 99% identity to Stenotrophomonas spp. and Isolate 4 showed 
99% identity to Enterobacter spp. This indicates that most of the isolates 
belong to Pseudomonas (Table 1). Phylogenetic analysis of isolates 
based on 16S rRNA gene sequences compared to the 16S rRNA gene 
sequences of hit species, highlighted the differential alignment of bacterial 
isolates with different species (Figure 3). Based on the phylogenetic 
alignment, the six bacterial isolates were named as shown in Table 1. 
Furthermore, homology analysis (per cent identity) of 16S rRNA gene 
sequences among bacterial isolates (Table 2) revealed that Isolates 3 
and 4 have low per cent identity compared with that of the other isolates, 
clearly reinforcing that they in fact belong to different bacterial genera. 
Species assigned to Pseudomonas on the other hand showed high per 
cent identity (Table 2), demonstrating that they belong to the same genus. 

Figure 2:	 Agarose gel electrophoresis analysis of 16S rRNA genes 
amplified from six bacterial isolates. PCR amplified products 
were run on 1% agarose gel. Lane M indicates the DNA ladder 
(O’GeneRuler DNA Ladder Mix 100–10 000 base pair, catalogue 
number SM1173, ThermoFisher). Markers with high intensity 
were indicated by their size. Lanes 1 to 6 indicate the PCR 
amplified 16S rRNA gene of the respective bacterial isolates.

Degradation of nonylphenol by bacterial species
Whole-cell nonylphenol degradation experiments were carried out to 
assess the nonylphenol degradation capability of each bacterial isolate. 
As shown in Figure 4, all bacterial isolates showed degradation of 
nonylphenol. The degradation of nonylphenol by bacterial isolates ranged 
from 41% to 46% (Figure 4). However, the difference in percentage of 
nonylphenol degradation by all six bacterial species was considered to 
be the same, because the percentage differences among the isolates 
was not statistically significant (0.2<p<0.7). Nonylphenol degradation 
by the bacterial species identified in this study is reinforced by the 
literature. Species belonging to the genus Pseudomonas have been 
shown to degrade EDCs such as di-n-butyl phthalate40, p-nonylphenol41 
and polyethoxylated nonylphenols42,43. Bacterial species belonging to 
Stenotrophomonas were previously found to be capable of using either 
nonylphenol or octylphenol as a sole carbon source.44 For species 
belonging to the well-known human-pathogenic and plant association 
Enterobacter, degradation of EDCs has been reported particularly 
for bisphenol A45, polychlorinated biphenyls46, endosulfan47, dibutyl 
phthalate48 and nonylphenol49.

All of the bacterial species isolated in this study also have the capability 
to degrade PAHs. PAH degradation by Pseudomonas species is well 
reported.50-54 Degradation of PAHs using Stenotrophomonas55, in 
particular Stenotrophomonas maltophilia56-58, has been investigated. 
Hydrocarbon degradation capabilities for some of these species have 
also been demonstrated with aliphatic59 and aromatic hydrocarbons60. 
This suggests that the soil samples used in this study, from areas where 
PAHs were reported to be present, harbour bacterial species that are 
capable of degrading both classes of xenobiotics, PAHs and EDCs. 

Conclusion
The distribution of EDCs, their effects towards living organisms and 
microorganisms capable of degrading ECDs, and the mechanisms of 
EDC degradation have been thoroughly documented by the developed 
world. Information on these matters is, however, lacking from Africa, 
Asia and Central and South America. 

Figure 3:	 Phylogenetic analysis of the 16S rRNA gene sequences of the bacterial isolates. 16S rRNA gene sequences of the type strains belonging to the 
same genus and an out-group bacterial species (E. coli) were also included in the analysis. Superscript letter ‘T’ next to strain name indicates the 
type strain. Each bacterial isolate was named based on its alignment to the homolog bacterial species. Branch lengths are also shown in the tree. 
Bacterial species isolated and named in this study are highlighted in bold font. 
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Figure 4:	 Analysis of nonylphenol degradation by bacterial isolates. 
Percentage degradation of nonylphenol by bacterial isolates 
was related to the control nonylphenol, which was taken 
as 100% as described elsewhere35,36. The values represent 
mean±s.d. for three biological replicates. Percentage 
degradation among different bacterial isolates was found to be 
not statistically significant (0.2<p<0.7).

Our study is thus the first of its kind from South Africa, in which we 
successfully enriched, isolated, identified and demonstrated nonylphenol 
degradation capabilities of indigenous bacterial strains. The areas 
from which soil samples were collected were previously reported to 
be polluted with PAHs, and their selection resulted in the isolation of 
bacterial species capable of degrading EDC nonylphenol, suggesting that 
these organisms have the capability to degrade a variety of xenobiotic 
chemicals. Further investigations on the capacity of the isolates to 
degrade different EDCs and PAHs are currently underway. The results 
presented in this study will lead to the isolation and characterisation of 
microorganisms from different parts of South Africa that are capable of 
degrading different EDCs, and will thus enrich EDC-related information 
from Africa.
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Table 1:	 Bacterial isolates identified

Sample 
16S rRNA sequenced 
gene size (base pair)

GenBank accession 
number

NCBI Blast hit results

Name assigned to the bacterial isolateDominant bacteria 
genus

% Identity % Query cover 

1 1242 KX364074 Pseudomonas 100 100 Pseudomonas nitroreducens strain LBQSKN1

2 1239 KX364075 Pseudomonas 100 100 Pseudomonas putida strain LBQSKN2

3 1196 KX364076 Stenotrophomonas 99 100 Stenotrophomonas sp. LBQSKN3

4 1240 KX364077 Enterobacter 99 100 Enterobacter asburiae strain LBQSKN4

5 1245 KX364078 Pseudomonas 99 100 Pseudomonas sp. LBQSKN5

6 1237 KX364079 Pseudomonas 99 100 Pseudomonas sp. LBQSKN6

NCBI, US National Center for Biotechnology Information

Table 2:	 Homology (percentage identity) analysis of 16S rRNA gene sequences of bacterial isolates

Pseudomonas 
nitroreducens 

strain LBQSKN1

Pseudomonas 
putida strain 

LBQSKN2

Stenotrophomonas sp. 
LBQSKN3

Enterobacter 
asburiae strain 

LBQSKN4

Pseudomonas sp. 
LBQSKN5

Pseudomonas sp. 
LBQSKN6

Pseudomonas nitroreducens 
strain LBQSKN1

100.00 96.29 85.08 82.33 96.44 95.79

Pseudomonas putida strain 
LBQSKN2

96.29 100.00 85.41 83.63 99.84 99.51

Stenotrophomonas sp. 
LBQSKN3

85.08 85.41 100.00 80.69 85.41 85.26

Enterobacter asburiae strain 
LBQSKN4

82.33 83.63 80.69 100.00 83.83 83.63

Pseudomonas sp. LBQSKN5 96.44 99.84 85.41 83.83 100.00 99.35

Pseudomonas sp. LBQSKN6 95.79 99.51 85.26 83.63 99.35 100.00
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