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Resumo 

Recentemente tem-se verificado um aumento de microrganismos patogénicos resistentes a 
antibióticos, doenças infecciosas e o aparecimento de novas ameaças à saúde humana e à economia. A 
incapacidade dos fármacos inspirados em produtos naturais terrestres para resolver estas questões 
levou os cientistas a olhar para habitats inexplorados à procura de novos fármacos. O meio ambiente 
marinho estabeleceu-se como um tesouro notavelmente rico de novos compostos bioativos com uma 
vasta gama de propriedades biológicas, incluindo anti-microbiana, anti-fúngica, anti-cancerígena, 
anti-inflamatória e citotóxica. No curto espaço de tempo em que o ambiente marinho tem vindo a ser 
explorado, a sua bioprospecção resultou na aprovação de sete fármacos, encontrando-se actualmente 
23 compostos em ensaios clínicos e centenas no pipeline pré-clínico. 

Neste trabalho, utilizou-se uma abordagem guiada por ensaios biológicos para o estudo de metabolitos 
secundários bioativos da estirpe Salinispora arenicola PTM-99 recolhida a partir de sedimentos 
oceânicos ao largo da costa do arquipélago da Madeira. Técnicas cromatográficas, tais como 
cromatografia flash e Cromatografia Líquida de Alto Desempenho (HPLC), foram utilizadas para 
fazer o isolamento e purificação de metabolitos secundários. Cerca de 52 compostos foram isolados 
de uma cultura resultante de 7 dias de incubação e 82 compostos foram isolados de uma cultura de 14 
dias de incubação (contando os compostos da fracção F8-F9). A cultura de 7 dias foi testada quanto à 
actividade antibacteriana contra as estirpes de bactérias patogénicas Enterococcus faecium VRE EF82 
resistente à vancomicina e Staphylococcus aureus resistente à meticilina MRSA COL, tendo 20 
compostos revelado actividade. Os compostos exibiram actividade antibacteriana numa gama de MIC 
250 a 62,5 μg /ml. 

Os compostos bioativos e outros relevantes foram estruturalmente analisados através de métodos 
espectroscópicos incluindo Ressonância Magnética Nuclear unidimensional e bidimensional, 
ultravioleta, infra-vermelho e o método não-espectroscópico de rotação óptica específica. Verificou-se 
que a maioria dos compostos isolados contém núcleo de lactama, núcleo de piperazina e/ou estrutura 
aromática. Duas diceptopiperazinas conhecidas são descritas pela primeira vez no género Salinispora. 
Dois macrólidos encontram-se correntemente a ser elucidados estruturalmente.  
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Abstract 

Recently there has been an increase in pathogenic microorganisms resistant to antibiotics, infectious 
diseases and the appearance of new threats to human health and the economy. The inability of 
terrestrial natural product-based drugs to solve these problems has led scientists to look at unexplored 
habitats in search of new drugs. The marine environment has established itself as a remarkably rich 
treasure of new bioactive compounds with a wide range of biological properties, including 
antimicrobial, anti-fungal, anti-cancer, anti-inflammatory and cytotoxic. In the short time the marine 
environment has been explored, its bioprospecting has resulted in the approval of seven drugs, with 
currently 23 compounds in clinical trials and hundreds in the pre-clinical pipeline. 

In this work, a bioassay-guided approach was used to study the bioactive secondary metabolites of the 
Salinispora arenicola strain PTM-99 collected from oceanic sediments off the coast of the Madeira 
archipelago. Chromatographic techniques, such as flash chromatography and High Performance 
Liquid Chromatography (HPLC), were used for the isolation and purification of secondary 
metabolites. About 52 compounds were isolated from a resulting culture of 7 days of incubation and 
82 were isolated from a culture of 14 days of incubation (counting the F8-F9 fraction compounds). 
The 7-day-old culture was tested for antibacterial activity against pathogenic bacteria Enterococcus 
faecium VRE EF82 resistant to vancomycin and Staphylococcus aureus resistant to methicillin MRSA 
COL, having 20 compounds revealed activity. The compounds exhibited antibacterial activity in the 
range of MIC 250 to 62.5 μg/ml. 

Bioactive and other relevant compounds were structurally analyzed through spectroscopic methods 
including one-dimensional and two-dimensional Nuclear Magnetic Resonance experiments, ultra-
violet, Infra-red and the non-spectroscopic method specific optical rotation. It was found that most of 
the compounds isolated contain lactam core, piperazine core and/or aromatic backbone. Two known 
diketopiperazines are reported for the first time from the Salinispora genus. Two macrolides are 
currently being structurally elucidated. 
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1. INTRODUCTION 

1.1. Bioprospecting 

Nature has been the major source, and inspiration, of products used in the daily life. From medicine 
(e.g. chemicals and genes) to mechanical engineering (e.g. transportation and construction) through 
nutraceuticals (e.g. nutrients and dietary supplements) and cosmetics, there is a systematic search for 
products from Nature with a commercial purpose, which is designated bioprospecting, or biodiversity 
prospecting (Newman et al., 1999; Artuso, 2000). Within the wide range of beneficial properties of 
natural products, their use as antibiotics and drugs has received the most attention (Cragg and 
Newman, 2013; Martins et al., 2014; Demain and Sanchez, 2009). Current biodiscovery efforts 
employ genome mining and genetic approaches, alongside the more traditional bioassay-guided 
approaches (Jensen et al., 2015). 
 

1.2. Natural products: secondary metabolites 

Natural products are defined as any substance produced by living organisms. In the bioprospecting 
context, they are commonly referred to as secondary metabolites (Cannell, 1998). While primary 
metabolites are indispensable building blocks keeping the producing organism alive and functional, 
secondary metabolites are usually produced at a later stage (idiophase), usually the end of the life 
cycle of the organism, derived from the primary metabolism (Ruiz et al., 2010), as a response to 
abiotic (e.g. nutrient limitation) or biotic stress (e.g. predator) (Assmann et al., 2000; Manzo et al., 
2011; Penesyan et al., 2011). The dependence of the biosynthesis of secondary metabolites upon the 
ever changing environmental elicitors and the subsequent enzymatic modifications of the secondary 
metabolite down the biosynthetic pathways contribute for a vast degree of diversity among those 
metabolites (Rao and Ravishankar, 2002; Ferrari, 2010). 
 
Four primary metabolic pathways are responsible for providing the precursors for the most part of the 
produced secondary metabolites; 1) Acetate pathway (precursor: acetyl coenzyme A), 2) 
Methylerythritol phosphate pathway (precursor: methylerythritol 4-phosphate), 3) Mevalonate 
pathway (precursor: mevalonic acid) and 4) Shikimate pathway (precursor: shikimic acid) (Dewick, 
2001). The products of these pathways may also combine to originate secondary metabolites. This 
hybridization of pathways plays a key role in the buildup of structural diversity (Shen et al., 2001), 
combined with natural enzyme-mediated reactions of oxidation, methylation, cyclisation, 
halogenation, reduction, elimination and rearrangement of the pathways (Staniek et al., 2013). 
Consequently, secondary metabolites are more diverse structurally and functionally compared to 
primary metabolites (Firn and Jones, 2003; Fischbach and Clardy, 2007). It is noteworthy the fact that 
only bacteria possess all four pathways, as shown in the above mentioned references (Dewick, 2001; 
Shen et al., 2001; Staniek et al., 2013; Firn and Jones, 2003; Fischbach and Clardy, 2007). 
 
The secondary metabolites garnering most attention are those capable of producing an effect upon 
living organisms or living tissues, the so-called bioactive secondary metabolites.  At present time, 
roughly 60% of available pharmaceutical drugs are natural product-based (Cragg et al., 2009; Lam, 
2007; Carter, 2011), with one-quarter being derived from microbes (Patridge et al., 2016).  
 
It is a known fact that bacteria engage in both warfare and communication using secondary 
metabolites, which essentially shapes the microbial community and its surrounding environment. So, 
understanding those interactions promoted by bioactive compounds, such as antibiotics, is an essential 
drive in biodiscovery efforts (Long and Azam, 2001; Rypien et al., 2010; Slattery et al., 2001). Such 
interactions are particularly interesting in the marine environment, as the poor exploration of this 
habitat coupled with its overwhelming complexity, comparing to other habitats, constitutes a rich new 
trove for bioprospecting and biodiscovery (Jensen et al., 2015; Imhoff et al., 2011). 
 



 

1.3. Marine environment 

Although, geographically, the terrestrial 
ease of access to the resources, especially plants, recent advances in the technologies of self
underwater breathing apparatus (SCUBA) and underwater vehicles, has made it possible to exp
the depths of the oceans as never before for 
et al., 2015). The oceans, covering approximately 
unexpected environment, harboring an estimated 50
animal phyla having no terrestrial counterpart
Palumbi, 2015; Margulis and Chapman, 2009)
 
Since Bergaman and Feeney kick-started 
ago (Huang et al., 2010), the exploration of the marine habitat has yield
remarkable new compounds in the last few decades, with properties ranging from pigments and 
fragrances to cosmetics and drugs (
2013). So far, over 30,000 secondary metabolites have been 
al., 2016). Although these compounds have been reported as isola
algae and microorganisms (Davidson, 1995; 
pointing out microorganism associated with the supposed source macroorganism as the real origin 
most of the isolated compounds (Hu 
2013). One example of such case is bryostatin 1, an antitumor agent currently fac
clinical trials. Bryostatin 1 was originally isolated from the bryozoan animal
later from the bacterial symbiont “Candidatus
this affirmation are the fact that the biosynthetic genes for the metabolite are present in the bacteria 
but not in the animal, and an observed decreas
decrease of bacterial symbiont fo
evidence for this shift in what is thought to be the producer of the compounds lies with the 
between the chemical structure of compounds isolated from macroorganisms and microorganisms.
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It is postulated that the complex ecological system of the oceans is a process in the making, spanning 
3.5 billion years, driving the evolution of the microbial community. Factors such as pressure, light 
availability, temperature, predators, salinity and nutrient availability vary greatly in the oceans, 
conditioning the microbial community into specific habitats with different niches (Ray, 1988; Du, 
2006; Dionisi, 2012; De Carvalho and Fernandes, 2010). The microorganisms are found in 
association, with inert or biotic surfaces, or as free-living in the ocean water or sediments. As result, 
the marine microbial community presents a wider range of physiological and chemical capabilities 
compared to its terrestrial counterpart (Jayanth et al., 2002). 
 
The adaptation of the marine microorganisms has established them as a source of structurally unique 
and biologically active natural products (Huang et al., 2010), with interesting properties such as 
antimicrobial, anti-fungal, anti-cancer, anti-inflammatory, and other pharmacological activities 
(Faulkner, 2001; Gul and Hamann, 2005; Mayer and Hamann, 2005), and the progress made in water 
oriented technologies such as Remotely Operated Vehicles (ROVs) and Autonomous Underwater 
Vehicles (AUVs), has allowed the exploration of the most diverse and extreme marine habitats (Russo 
et al. 2015). However, the evolutionary drive has made the common laboratory-based approach of 
secondary metabolite production a very difficult task (Taylor, 2007, Webster and Taylor, 2012). It is 
estimated that the uncultured marine microorganisms account for an astonishing 99.1%, lagging 
behind the terrestrial microorganisms in 0.9 percentage point, in a phenomenon which is designated 
ominously “the great plate count anomaly” (Stafsnes, 2013). This hindrance comes from the fact that 
it is difficult to mimic the optimal conditions that form the elicitor leading to the production of 
secondary metabolites, or the secondary metabolites of interest (Bertrand et al. 2014). Bioinformatics 
analyses have shown that a considerable number of metabolites are not produced under laboratory 
conditions, leaving the biosynthetic potential of these microorganisms relatively untapped (Gomez-
Escribano and Bibb, 2013). Consequently, new strategies such as genome mining – combination of 
bioinformatics, molecular genetics and natural product analytical chemistry to obtain the product of 
an identified gene cluster, has been developed (Challis, 2008; Nett et al., 2009). Therefore, it proves 
necessary to collect the microorganism directly from the source, be it water, sediments or host 
macroorganisms.  
 

1.4. Marine secondary metabolites: pharmaceuticals 

In the span of 40 years since the approval of the first marine-derived drug by the Food and Drug 
Administration (FDA, USA), the subject of marine natural products has established itself as a key 
player in the area of drug development, with thousands of compounds being characterized annually 
giving origin to drugs either directly or indirectly through lead structures inspiring synthetic drugs 
(Molinski et al., 2009). As of mid-2016, there are six Food and Drug Administration (FDA, USA)-
approved drugs from marine origin (Table 1.1, Figure 1.2). Not surprisingly, more than half of the 
approved drugs target different types of cancer: cytarabine (Cytosar-U®, 1969) targets leukemia, 
eribulin mesylate (Halaven®, 2010) aims at metastatic breast cancer, trabectedin (Yondelis®, 2015) is 
promising against soft tissue sarcoma and ovarian cancer, and brentuximab vedotin (Adcetris®, 2011) 
is efficient against anaplastic large t-cell systemic malignant lymphoma and Hodgkin’s disease. As for 
the remaining drugs, ziconotide (Prialt®, 2004) targets severe chronic pain and omega-3-acid ethyl 
esters (Lovaza®, 2004) targets hipertriglyceridemia (Mayer et al. 2016; Marine Pharmacology: 
Clinical Development, 2016). 
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Table 1.1. FDA-approved marine derived drugs. Modified from Marine Pharmacology: Clinical Development (data from April 2016). 
Compound 

Name 
Trademark 
(FDA Approved 

Year) 
Marine 

Organism 
Chemical 

Class 
Molecular 

Target 
Disease 

Area 

Trabectedin 
(ET-743)  

Yondelis® 
(2015) Tunicate Alkaloid Minor groove of 

DNA Cancer 

Brentuximab 
vedotin 

(SGN-35)  

Adcetris® 
(2011) 

Mollusk/ 
cyanobacterium ADC(MMAE) CD30 & 

microtubules Cancer 

Eribulin 
Mesylate (E7389)  

Halaven® 
(2010) Sponge Macrolide Microtubules Cancer 

Omega-3-acid 
ethyl esters 

Lovaza® 
(2004) Fish Omega-3 fatty 

acids 
Trygliceride-
synthesizing 

enzymes 

Hypertri- 
-

glyceridemia 

Ziconotide  

Prialt® 
(2004) Cone snail Peptode DNA polmerase Pain 

Cytarabine 
(Ara-C) 

Cytosar-U® 
(1969) Sponge Nucleoside DNA polymerase Cancer 

ADC (MMAE): Antibody Drug Conjugate (Monomethylauristatin E) 

Aside from the approved drugs, there are currently dozens of marine derived compounds in the 
clinical pipeline, with three of them already undergoing Phase III (plinabulin (n.a.), plitidepsin 
(Aplidin) and tetrodotoxin (Tectin), being the first two for cancer treatment and the later for chronic 
pain), and another five of them are in Phase II being one of them evaluated for treatment of 
schizophrenia, Alzheimer’s disease and other central nervous system diseases. The remaining drugs in 
the clinical pipeline, target different types of cancer (Pharmacology: Clinical Development, 2016; 
Sawadogo et al., 2013). Cancer is a very hot topic in drug discovery as it is the second largest cause of 
death worldwide. The use of natural products in cancer treatment has proved to be remarkable and 
very promising (Sawadogo et al., 2013; Russo et al., 2011). Hundreds of compounds with promising 
bioactivity, including antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, 
antituberculosis, and antiviral, in addition to activities affecting the nervous system, are currently in 
the preclinical pipeline (Mayer et al., 2013).             
Among the approved drugs, only zirconolite and trabectedin are commercialized in their original 
chemical structure, while the remaining five are synthetically manufactured with inspiration from 
marine lead chemical structures (Gerwick and Moore, 2012). It is estimated that for each five million 
extracts screened, one compound reaches the marketplace, out of the only five compounds that make 
it to the clinical phase (Cragg et al., 2012). It is estimated that several new compounds will hit the 
marketplace in the near future as the marine biota keeps on revealing novel compounds with unique 
structures (Mayer et al., 2010; Boobathy et al., 2009; Gram et al., 2010). 

 

 



 

 

 

                                                         

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 1.2. Chemical structures of marine secondary metabolites 
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1.4.1. Case study: Salinosporamide A

A fairly recent success story in the field of marine
proteasome inhibitor (PI) salinosporamide A (Marizomib) (Figure 
marine obligate actinobacterium Salinispora tropica
lactam-β-lactone pharmacophore which strongly inhibits the full range of activities of the 20S 
proteasome by binding to its catalytic β
its chloroethyl group (Gulder and Moore, 2010), consequently inhibiting the cell’s primary route of 
regulated proteolysis. Furthermore, salinosporamide A is also efficient against bortezomib 
(Velcade®)-resistant multiple myeloma cells. Currently undergoing phase I of clinical trials, the data 
obtained so far evidence exciting clinical benefits for the treatment of multiple myeloma in relapsed 
and relapsed/refractory patients (Gerwick and Moore, 2012
 

 
Figure 1.3. Chemical structure of the drug candidate salinosporamide A (NPI
Pharmaceuticals).  
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1.4.2. Marine secondary metabolites: 

Recent years have seen an increase in pathogenic microorganisms resistant to antibiotics, culminating 
with the appearance of the so-called superbugs. The biofilm, a complex organized bacterial 
community usually surrounded by a 
80% of microbial infections (Singh 
prompted a search for new sources of bioactive products with
considered sources, marine environment has presented itself as “particularly promising”. Although, 

Salinosporamide A 

A fairly recent success story in the field of marine actinomycetes biodiscovery comes from the rare 
proteasome inhibitor (PI) salinosporamide A (Marizomib) (Figure 1.3), isolated from a lab

Salinispora tropica. Salinosporamide A is characterized by a 
lactone pharmacophore which strongly inhibits the full range of activities of the 20S 

proteasome by binding to its catalytic β-subunit site S1, and makes this process irreversible through 
its chloroethyl group (Gulder and Moore, 2010), consequently inhibiting the cell’s primary route of 
regulated proteolysis. Furthermore, salinosporamide A is also efficient against bortezomib 

multiple myeloma cells. Currently undergoing phase I of clinical trials, the data 
obtained so far evidence exciting clinical benefits for the treatment of multiple myeloma in relapsed 

Gerwick and Moore, 2012, Potts et al., 2011).  

 
 
 
 

. Chemical structure of the drug candidate salinosporamide A (NPI-0052, Nereus 

Studies of the biosynthetic pathway through chemical synthesis and metabolic engineering led to the 
production of novel analogues which displayed very interesting and potent bioactivity, as is the 

potent but slowly reversible and salinosporamide X7 which is more potent
(Eustaquio and Moore, 2008; Nett et al., 2009). The use of a seawater-based fermentation 

process and the implementation of artificial regulation of the biosynthetic pathway are proof
concept milestones in marine drugs development, being salinosporamide A reference example as its 

of 100 fold to 450 mg/L (Gerwick and Moore, 2012; Fenical et al.

itself possesses 20S proteasome machinery, so it is only logical that the 
question about how the bacterium copes with its self-made PI arises. Analysis of the whole

, revealed the existence of a redundant β-subunit, salI, peripheral to the 
whose protein product has a 30-fold resistance to salino

bortezomib (the first therapeutic proteasome inhibitor tested in humans
This altered substrate specificity is thought to be due to an A49V mutation in the

et al., 2011, Franke et al., 2011) 

Marine secondary metabolites: antimicrobial  

Recent years have seen an increase in pathogenic microorganisms resistant to antibiotics, culminating 
called superbugs. The biofilm, a complex organized bacterial 

community usually surrounded by a matrix of extracellular polymeric substances (EPS)
(Singh et al., 2016; Motlagh et al., 2016). This phenomenon has 

prompted a search for new sources of bioactive products with antibiotic properties. Among the
considered sources, marine environment has presented itself as “particularly promising”. Although, 
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only recently being more deeply explored, 
wide and highly potent range of biological activity, including antimicrobial.  Therefore, it is believed 
that the solution to the world’s antibiotic crisis may lie in the oceans (Donia and Hamann, 2003
the past few years, several compounds possessing anti
1.2 and Figure 1.4 summarize some of those with the greatest potential. 

Table 1.2. Selected marine secondary metabolites with antimicrobial activity
2003; Habbu et al., 2016). 

Compound 
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Fungus 

 
Squalamine 

 

 
Fish 

Phenanthroviridone 
 

Actinomycete

A point worthy of note is the co-culture of a marine fungus with a unicellular marine bacterium to 
yield pestalone. This mixed fermentation could be a potential method for the discovery of novel 
antibiotics (Donia and Hamann, 2003

 

 

 

 

 

 

 

Figure 1.4. Selected chemical structure of marine

Marinopyrrole A 
(Bacteria) 

only recently being more deeply explored, the marine compounds characterized so far have shown a 
wide and highly potent range of biological activity, including antimicrobial.  Therefore, it is believed 
that the solution to the world’s antibiotic crisis may lie in the oceans (Donia and Hamann, 2003
the past few years, several compounds possessing anti-bacterial activity have been identified. 
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1.5. Marine secondary metabolites: antifoulants 

A very common occurrence in aquatic environment is the encrustation of microorganisms and 
macroorganisms to surfaces and of the first to the surfaces of the latter.  This process is designated as 
biofouling. Although this unwanted attachment is essential for the colonizing organisms, it represents 
an engineering, health and economic hindrance to humans. Submerged men-mad surfaces, such as oil 
and gas platforms, ship hull, aquaculture systems, drinking water systems, power plants and medical 
equipment, are rapidly inhabited by biofilm forming microorganisms and, given the conditions, 
subsequently by macroorganisms (Davey and O’toole, 2000; Huggett et al., 2009). Biofouling poses a 
direct threat to human health by their proliferation on hospitals on medical apparatus such as catheters 
(Trautner and Darouiche, 2004), pacemakers (Marrie et al., 1982; Santos et al., 2011), cardioverter 
defibrillators (Symeon and Dimitris, 2011) heart valves and vascular prostheses (Amirante and Miró, 
2008). The estimated additional hospital costs associated with cardiac devices alone ranges from 30 to 
€140 million per year (Kuehn et al., 2010). The shipping industry is one of the most affected 
economic areas. An additional rise in the fuel consumption, estimated in $56 million per year for, and 
$1 billion over 15 years, is linked to hydrodynamic drag caused by hull biofouling (Schultz et al., 
2011). Power plants are another hot-spot area of biofouling with an estimated $15 billion annual 
expenditure to control the problem on vital parts cooled by seawater. Furthermore, there are 
environmental costs derived from an increase in the emission of greenhouse gases and introduction of 
alien species by fouled hulls (Vimala, 2016). Therefore, finding efficient antifouling agents presents 
itself as a pressing matter. The solutions presented so far have involved toxic substances, such as 
organotin compounds incorporated into paint, which have been shown to cause adverse effects in the 
marine life (e.g. mussel larvae mortality and oyster shell malformation) (Alzieu, 2000), leading to 
their subsequent banning by the International Maritime Organization (IMO) and Marine 
Environmental Protection Committee (MEPC) in 2003 (Kotake, 2012; Sonak et al., 2009). This 
restriction has led to a shift on the focus of the search for antifouling solutions, with the efforts 
concentrating now on environmentally friendly antifoulants (Dobresov, 2006; Magin et al., 2010). 
 
 

1.5.1. Microfouling 

For the biofouling to occur, the necessary conditions must be met. For the initial phase of biofouling, 
which is designated microfouling, usually, these conditions are provided by dissolved organic matter 
which accumulates on the submerged surfaces forming a conditioning film, in what is known as 
molecular fouling or biochemical conditioning. This occurs in a matter of seconds to minutes after 
submerging the surface. Afterwards, in minutes to hours, fouling microorganisms (microfoulers), 
mainly bacteria and diatoms, move on to attach to the surface, forming a biofilm (Qian and Xu, 2012; 
Abarzua and Jakubowski, 1995; De Beer et al., 1994; Stoodley et al., 1994). The organization of the 
microbial community is managed through quorum sensing. This cell-density dependent mechanism 
regulates communication, through molecular compounds, and, subsequently, access to nutrients and 
stress resistance (Reading and Sperandio, 2005; Dobretsov, 2009). 
 
 

1.5.2. Macrofouling 

The biofouling process starts with the unwanted accumulation of microorganisms on man-made 
surfaces and culminates with the colonization by macroorganisms, or macrofouling. In the 
macrofouling level, larva and spore attach to the surface in a span of days, and take weeks to years to 
grow (Qian and Xu, 2012; Abarzua and Jakubowski, 1995; De Beer et al., 1994; Stoodley et al., 
1994). The macrofouler organisms include algae and invertebrates, classified as soft foulers or shell 
free, and barnacles and tube worms, belonging to the class of hard foulers or shelled organisms. The 
microfoulers are the basis of biofouling, but macrofoulers are the main responsible for the damages 
observed on submerged man-made surfaces. This damage is due, for example, to the calcium 
carbonate skeletal structures of shelled microorganisms, which upon tightly holding them to ship 
hulls, result in increased hydrodynamic drag (Qian et al., 2007; Kirschner et al., 2012; Salta, 2012). 
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Biofouling occurs both on man-made structures and on marine species. Sessile or slow moving 
organisms such as sponges, sea weeds and corals are the main victims, constantly facing the threat of 
being overgrown by biofouling organisms (Worm et al., 2003). Not surprisingly, there is a wide 
variety of species that have developed diverse strategies for preventing biofouling or removing 
already established biofoulers (antifouling) (Dafforn, 2011). The strategies range from symbiotic 
relationships, physical defense to highly potent chemical arsenal (Burns and Ilan, 2003; Burns et al., 
2003). The observation of these natural antifouling processes has motivated scientists to extract and 
examine marine natural products for the production of novel antifouling agents (Salta, 2012). Current 
approaches to antifouling solutions include incorporation of antifouling agents into paints, biological 
mimicking through bio-inspired surface modifications (e.g. antifouling surface topographies) and bio-
materials (e.g. surfaces with self-renewing properties) (Palumbi and Palumbi, 2015; Liu and Jiang, 
2012; Nir and Reches, 2016). 
 
 

1.5.3. Butyrylcholinesterase: a valid target for antifouling agents development 

The cholinesterase (ChE) is an enzymatic family specialized in hydrolyses of choline-based esters. 
This family includes the acetylcholinesterase (AChE), or true cholinesterase, and 
pseudocholinesterase (PChE) to which the butyrylcholinesterase (BuChE) belongs to (Lane et al., 
2005; Johnson and Moore, 2012a). The AChE plays a major role in neurotransmission as it is 
responsible for terminating cholinergic synapses by degrading acetylcholine (ACh) (Girard et al., 
2007). The inhibition of AChE causes disruption of several biological functions, including respiration, 
feeding and behavior (Cunha et al., 2007). BuChE also seems to play a role in this disruption process, 
although auxiliary, at a much smaller rate than AChE; the preferential substrate of BuChE is 
butyrylcholine (Pezzementi et al., 2011). Furthermore, BuChE has a toxicologically important role by 
acting as a scavenger of anticholinergic compounds, such as organophosphorus poisons (OP), 
(Masson and Lockridge, 2010; Johnson and Moore, 2012) and a protective role towards AChE, since 
this latter has lower activity with the increase of substrate concentration and its inhibition increases 
the concentration of ACh at the synaptic cleft (Lane et al., 2005). Furthermore, BuChE is widely 
distributed throughout the tissues of the organism (Cunha et al., 2007). Lastly, it has been shown that 
BuChE’s activity increases with the progress of dementia, such as Alzheimer's disease (AD), contrary 
to AChE’s activity (Pagning et al., 2016). These characteristics have made those cholinesterases the 
main targets in the development of anticholinergic agents (Johnson and Moore, 2012b). 
 
Studies have found that ACh plays a major role in the settlement of macro-fouling organisms. In 
2003, Faimali and co-workers (Faimali et al., 2003) reported that the total inhibition of AChE resulted 
in no settlement of Balanus amphitrite cyprids barnacles. In 2011, Young and co-workers reported the 
induction and attachment of the blue-lipped mussel Perna canaliculus. These and other studies 
(Dobretsov and Qian, 2003; Almeida et al., 2015) have established ChEs as valid targets in the 
development of anti-fouling agents.  
 

1.6. Marine natural products: the example of diketopiperazines 

Diketopiperazines (DKPs) are an emerging class of small molecules garnering most attention due to 
their potent range of bioactivity and the structure readily-prone to modifications. Among other 
sources, they are isolated from marine organisms (Bowling et al., 2007; Lebar et al., 2007; Folmer et 
al., 2007). The class of DPKs is composed of three regioisomers: 2,3-diketopiperazines (2,3-DKPs), 
2,5-diketopiperazines (2,5-DKPs) and 2,6-diketopiperazines (2,6-DKPs). These three isomers share a 
common piperazine core but differ in the distribution of the carbonyl group in the piperazine ring. 
They are chirally enriched organic molecules generally biosynthesized from amino acids, and 
synthetically obtained as product of condensation of two α-amino acids, or result of “degradation of 
polypeptides in food and beverages” (2,5-DKPs), derivative of iminodiacetic acids (2,6-DKPs) or 
ethylenediamine (2,3-DKPs) (Dinsmore and Beshore, 2002). Of the three types of molecules, 2,5-
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DKP has received the most attention. 2,5-DPKs have double lactam core, are conformationally rigid, 
and their subunit can be free or associated with other products (Huang et al., 2014; Mollica et al., 
2014). The structural composition of these molecules renders them easy to synthesize and modify 
though combinatorial chemistry (Mollica et al., 2014), making them valuable drug candidates.  
 
 

1.6.1. Biosynthetic pathways 

Although many diketopiperazines have been characterized so far, the molecules are derived from only 
three biosynthetic pathways: a nonribosomal pathway, a nonribosomal pathway-derived pathway, and 
a nonribosomal-independent pathway. In the nonribosomal pathway, the enzymatic complex NRP 
synthase (NRPS) catalyses the formation of the diketopiperazine; the nonribosomal pathway-derived 
pathway corresponds to DKP derivatives generated as side-products of the former pathway; (Bowling 
et al., 2007; Lebar et al., 2007; Folmer et al., 2007) and, finally, the nonribosomal-independent 
pathway which produces the antifungal antibiotic nystatin in Streptomyces noursei (Brautaset et al., 
2000). 
 
 

1.6.2. Biological activities 

Some DPKs have been found to possess remarkable anti-cancer activity, with a prominent example 
being the plinabulin, derived from phenylahistin, and chemically optimized, rendering it semi-
synthetic. This drug candidate, currently in phase II of clinical trial, exerts its action against 
microtubules having a “colchicines-like tubulin depolymerisation activity” (Mollica et al., 2014). A 
very prominent feature that has come to light concerning the anti-cancer activity of DPKs lies with 
their lipophylicity: higher lipophylicity correlates with higher anti-cancer activity. For example, it has 
been observed that prenylation of DPKs enhances greatly their growth inhibitory activity against 
cancer cells, in vitro (Mollica et al., 2014). Aside from anti-cancer activity, DPKs have also exhibited 
anti-bacterial (Deepa et al., 2015), antifungal, antifouling (Liao et al., 2015), antiviral, cytotoxic and 
plant-growth regulatory activities (Martins and Carvalho, 2007; Huang et al., 2010). The fungus 
Leptosphaeria sp. isolates leptosin G, G1, G2 and H have shown to be potent cytotoxic agents against 
P388 lymphocytic leukemia (Huang et al., 2010). The metabolite (-)-phenylahistin exhibits activity 
against P388 cells, effecting by causing their arrest; powerful cytotoxic activity has also been 
observed (Bladt et al., 2013; Kanoh et al., 1999). The Salinispora arenicola has been found to 
produce cyclomarins (A-C) with potent anti-inflammatory activity. The structurally related peptides 
cyclomarazines A and B were also isolated from S. arenicola, and displayed moderate antimicrobial 
activity against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin resistant 
Enterococcus faecium VRE strains, with values of 18 and 13µg/ml, respectively (Schultz et al., 2008). 
The sponge Geodia baretti has proven to be a trove of antifouling compounds, furnishing the 
promising antifouling agent barettin, already tested as a paint incorporate, and bromobenzisoxazolone 
barettin acting at molecular level inhibiting the settlement of barnacle larvae (Huang et al., 2010). The 
compounds cyclo(l-Phe-(4R)-hydroxy-l-Pro), from Pseudoalteromonas luteoviolacea, and cyclo(l-(4-
hydroxy-Pro)-d-Leu), from bacterium A108, act as plant-growth activity stimulators. Golmaenone, 
from Aspergillus sp., has shown to be a promising sunscreen protector agent, presenting a value of 90 
mm for ultraviolet-A (UVA; 320-390). The structure of the compounds mentioned above, is presented 
in Figure 1.5. 
 
 
 
 
 
 
 
 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.5. Chemical structures of selected diketopiperazines from marine origin.
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1.7. Actinomycetes  

1.7.1. Bioactivity and ecology 

Actinomycetes are an ongoing source of clinically relevant metabolites, with an established share of 
roughly 75% of all natural products used as anti-infective agents, of which more than 50% are 
produced by the genus Streptomyces (Gomez-Escribano and Bibb, 2013; Gomez-Escribano et al., 
2016; Subramani and Aalbersberg, 2012). These gram-positive, rich in G+C content, inhabitants of 
both the terrestrial and marine environment, commonly associated with sponges in the latter (Simister 
et al., 2012; Abdelmohsen et al., 2014; Russo et al., 2015; Fenical and Jensen, 2006), produce more 
than 40% of all microbe-derived natural products (Bérdy, 2012). However, analysis of sequences of 
bacteria from this group has revealed that the genetic potential for production of natural products far 
surpasses the observed from laboratory fermentations (Challis, 2014). 
 
Terrestrial actinomycetes have been thoroughly studied and are regarded as remarkable producers of a 
wide range of bioactive and economically relevant metabolites; however, their marine counterparts 
remain relatively untapped. Although many terrestrial spore-forming actinomycetes are washed into 
the sea, studies of marine isolates suggest their produced metabolites often differ structurally from 
those produced by the terrestrial ones, due to evolutionary divergence (Jensen et al., 2005; Han, 
2012). Furthermore, bacteria harvested from ocean sediments and studied by culture-independent 
approaches, including members of the genera Streptomyces and the obligate marine bacteria 
Salinispora and Marinispora, have hinted at a marine origin for the marine actinomycetes (Bredholdt 
et al., 2007; Subramani and Aalbersberg, 2012; Ward and Bora 2006). These bacteria have been 
shown to produce unique compounds with unparalleled bioactivity (Table 1.3), belonging to a wide 
range of compound classes such as peptides, tetracyclines, macrolides, polyenes and β-lactams. Rare 
actinomycetes have received special attention as their metabolites tend to be structurally complex, 
highly potent and low in toxicity (Subramani and Aalbersberg, 2012) (Figure 1.6).  
 
Table 1.3. Examples of secondary metabolites isolated from marine actinomycetes. Adapted from 
Subramani and Aalbersberg, 2012. 

Compound 
Name Bacterium Biological activity 

Salinosporamide A Salinispora tropica Anti-cancer; antimalarial 

2-Allyloxyphenol Streptomyces sp. Antimicrobial; food preservative; 
oral disinfectant 

 
Marinomycins A-D 

 
Marinispora Antimicrobial; anti-cancer 

Butenolides Streptoverticillium 
luteoverticillatum Antitumor 

Lodopyridone Saccharomonospora sp. Antitumor 
 

Arenimycin 
 

Salinispora arenicola Antimicrobial 

 
 
 
 
 
 
 
 
 



 

 
 
 

 
Figure 1.6. Selected novel and 

 

 
1.7.2. Ecologic role of actinomycetes

The capabilities of marine actinomycetes extend beyond antibiotic production. The ecological 
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and Mathivanan 2009), degradation and turnover of materials, such
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of alginate, laminarin, oil and other hydrocarbonates, and wood submerged in seawater (Sivakumar 
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Aalbersberg, 2012). 
 
 

1.7.3. The Salinispora genus

The Salinispora genus is composed of the obligate marine species 
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. Selected novel and unique metabolites from rare marine actinomycetes.
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The Salinispora genus is the first obligate marine bacteria reported in the order Actinomycetales, as it 
requires sodium salt or seawater based media, for growth, and fail to grow in medium where seawater 
is replaced for deionised (DI) water (Maldonado et al. 2005a; Russo et al., 2015; Mincer et al., 2005; 
Tsueng et al., 2008).   It belongs to the group of rare actinomycetes, i.e. non-streptomycete, 
contributing, alongside others from its category, with only 25% against the Streptomyces’ 75% of all 
actinomycetales compounds (Subramani and Aalbersberg, 2012). However, these orange-pigmented 
bacteria (Jensen et al., 2015) have attained high reputation after the anti-cancer drug candidate 
salinosporamide A was isolated from S. tropica by Fenical and co-workers. The genus was also first 
reported by Fenical two decades ago (Jensen et al., 2015). 
 

 
 

Figure 1.7. A Salinispora strain streaked on agar. Modified from Murphy et al., 2010. 

 
Due to their seawater or salt-based media requirement for growth, along with their morphological and 
chemotaxonomic characteristics, the Salinispora species were proposed to represent a species within 
the genus Micromonospora. However, subsequent studies showed that they belonged to a new genus, 
for which the name Salinispora was proposed (Jensen et al., 2015). 
 
It has been shown that these bacteria require the Na+ ion for the maintenance of osmotic environment 
and protection of cell integrity (Das et al., 2006), and the salt plays a crucial role in modelling the 
pattern of bacterial growth and natural compounds production (Bose et al., 2015; Tsueng et al., 2008). 
For example, it has been shown that replacing the undefined commercial synthetic salt Instant Ocean, 
which is composed of sodium and chloride, for a similar but defined sodium-chloride-based 
formulation yields a higher production of salinosporamide A, while a sodium-sulphate-based salt 
formulation has a salinosporamide A profile production similar to that obtained when Instant Ocean is 
used (Tsueng et al., 2008). Potassium and lithium-sulphate-based salt formulation have also been 
shown to support growth of a Salinispora tropica and Salinispora pacifica strain and its production of 
salinosporamide A (Tsueng et al., 2008; Tsueng and Lam, 2010), while a Salinispora arenicola strain 
presents slow growth in lithium-based formulation (Tsueng and Lam, 2008). These examples 
illustrate the importance of salinity in secondary metabolites production, especially in the case of the 
Salinispora genus, whose isolation passes necessarily by employing seawater or salt-based selective 
methods (Qiu et al., 2008; Khanna et al., 2011; Maldonado et al., 2005a). 
 
Salinispora strains have been reported in association with macroorganisms such as ascidians, 
seaweeds, and, more often, sponges (Vidgen et al., 2012; Jensen et al., 2007; Kim et al., 2005; Jensen 
et al., 2015). They have been harvested and cultured from depths up to 1100 m, and detected in a 
culture independent manner from depths as great as 5669 m (Mincer et al., 2005; Prieto-Davó, 2013). 
Globally, the genus is abundant and presents a widespread distribution in the tropical and sub-tropical 
oceanic region, with S. arenicola reported from all sites the genus has been harvested from, while the 
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Figure 1.8. Geographic distribution of reported 
thesis was collected off the coast of the Madeira Archipelago (16). 

 
1.7.3.1. Bioactive compounds produced by 

The Salinispora genus is a prolific source of novel and unique secondary metabolites and enzymes, 
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. Geographic distribution of reported Salinispora genus. The strain of S. arenicola
thesis was collected off the coast of the Madeira Archipelago (16). Image from Jensen et al., 2015
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In fact, a hefty 10% of the genome of the species is devoted to secondary metabolism
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Table 1.4. Secondary metabolites from the 

Compound Species
salinosporamide A S. tropica

sporolide A S. tropica
salinilactam S. tropica
sioxanthin S. tropica

antiprotealide S. tropica
pacificanone A S. pacifica
salinipyrone A S. pacifica

cyanosporoside A S. pacifica
lomaiviticin A S. pacifica

enterocin S. pacifica
saliniketal Ab S. arenicola
arenicolide A S. arenicola
saliniquinone S. arenicola
cyclomarin A S. arenicola

cyclomarazinec S. arenicola
arenimycin S. arenicola

arenamide A S. arenicola
staurosporines S. arenicola

isopimara-8,15-dien-19-ol S. arenicola
rifamycin B S. arenicola
mevinolin S. arenicola

desferioxamine B St, Sa, and
Lymphostin St, Sa, and

a Original report of compound detection from 
C Cyclomarin synthetase intermediate. d

 

 
 

Lomaiviticin A 
(S. pacifica) 

. Secondary metabolites from the Salinispora genus. Adapted from Jensen et al., 2015.

Speciesa Biosynthetic origin Novelty Activity (target)
S. tropica PKS-NRPS new proteasome
S. tropica ePKS new reverse transcriptase
S. tropica type I PKS new ND
S. tropica terpene new ND
S. tropica PKS-NRPS new proteasome

pacifica type I PKS new ND
S. pacifica type I PKS new ND
S. pacifica PKSe new ND
S. pacifica type II PKS new cytotoxic (DNA)
S. pacifica type II PKS known antibiotic

S. arenicola type I PKS new ornithine decarboxylase
S. arenicola type I PKS new ND
S. arenicola type II PKS new cytotoxic

arenicola NRPS known anti-inflammatory
S. arenicola NRPS new ND
S. arenicola NRPS new antibiotic
S. arenicola type II PKS new anti-inflammatory (NFκB)
S. arenicola alkaloid known protein kinase
S. arenicola terpene new ND
S. arenicola type I PKS known RNA polymerase
S. arenicola PKS known HMG-CoA reductase

and Sp NRPS known iron chelator
and Sp NRPS-PKS known Immunosuppressant

Original report of compound detection from Salinispora spp. b Rifamycin synthase intermediate. 
d Predicted, e = enediyne, ND = not determined. 
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1.8. Aim of the thesis 

The work presented in this thesis is part of an ongoing project “Tesouros Oceânicos- Sedimentos 
oceânicos do arquipélago da Madeira: nova fonte de compostos inovativos e bioactivos” ref.-
PTDC/QUI-QUI/119116/2010 in Dr. Susana Gaudêncio’s lab at Faculty of Science and Technology 
of the New University of Lisbon (FCT-UNL). The ongoing project is exploring the poorly untapped 
Portuguese marine environment (Prieto-Davó et al., 2016). The main goal of this work was to search 
for novel marine bioactive compounds produced by the actinomycete strain Salinispora arenicola 
PTM-099, and the evaluation of their biological activities. We have applied a bioassay-guided 
approach to look for potential bioactive agents and rely on spectroscopic methods for determining the 
structure of the isolated compounds. The working steps are as follows:   

 Isolating secondary metabolites from laboratory-grown cultures of S. arenicola strain PTM-
99  by chromatographic methods 

 Screening evaluation of bioactive secondary metabolites produced by the previously selected 
bioactive S. arenicola strain PTM-99 : 

o antimicrobial assay 
o antifouling assay (target-based and phenotype-based) 

 Structurally elucidating the bioactive metabolites  through spectroscopic and non-
spectroscopic methods 

 Obtaining lead-like agents with bioactive and innovative proprieties for industrial 
applications. 
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2. MATERIALS AND METHODS 

2.1. Bacterial cell culture: materials and growth conditions 

The Salinispora arenicola strain used in this work was previously collected from marine sediments 
off the coast of the Madeira Archipelago as part of the project “Tesouros Oceânicos- Sedimentos 
oceânicos do arquipélago da Madeira: nova fonte de compostos inovativos e bioactivos” ref.-
PTDC/QUI-QUI/119116/2010, in July 2012. The S. arenicola species was identified through the 
dereplication using the 16s rRNA gene sequencing method (GenBank accession number: KT446218) 
(Prieto-Davó et al., 2016) and afterwards cryopreserved in A1 medium (Table 2.1) and 10% glycerol, 
at -80°C. 

Table 2.1. Composition of A1 medium. 

Component Quantity (1L) 
Peptone (Bacto) 2 g 

Yeast extract (Bacto) 4 g 
Starch (Difco) 10 g 

Water 250 ml 
Filtered seawater 750 ml 

 

A frozen stock of bacterial cells was thawed from its cryogenic preservation and transferred to a 50 ml 
A1 medium for growth, in a 100 ml Erlenmeyer flask covered with cotton and aluminum foil. The 
culture was dark-incubated at 25°C, with shaking at 200 rpm for 7-14 days. The culture was 
subsequently transferred to fifteen 2 L Erlenmeyer flasks for a total of 15 L of culture and incubated 
under the conditions described above. The A1 medium was prepared using natural seawater filtered 
and autoclaved.  

 

2.2. Extraction and fractionation of the crude 

2.2.1. Ethyl acetate extraction 

The crude extract was obtained by liquid-liquid partitioning using equal volumes of EtOAc 
(LABCHEM) and culture. The extract was subsequently dried-up using a rotary evaporator and 
finally traces of solvent were removed under vacuum. The resulting crude was weighted for yield 
record and definition of fractionation conditions. 

 

2.2.2. Fractionation by flash-chromatography 

The crude was fractionated using an adaptation of Still et al. (1978) preparative chromatography 
method. A 5 cm3 volume of silica gel (Merk) was used as the stationary phase in a 30 mm diameter 
column, and the eluent combinations isooctane (Prolabo, 99.5%)/EtOAc and MeOH (Prolabo, 
100%)/EtOAc, resulting in nine fractions. The eluent mixes are shown in the Table 2.2. 
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Table 2.2. Composition of the mobile phase for each fraction. 

Fraction Eluent mix 400 ml (%) 
F1 100:0 isooctane/EtOAc 
F2 80:20 isooctane/EtOAc 
F3 60:40 isooctane/EtOAc 
F4 40:60 isooctane/EtOAc 
F5 20:80 isooctane/EtOAc 
F6 0:100 isooctane/EtOAc 
F7 10:90 MeOH/EtOAc 
F8 50:50 MeOH/EtOAc 
F9 100:0 MeOH/EtOAc 

 

The crude extract was dissolved, loaded onto the column, and then eluted with the eluent mixes 
described above. The polarity of the eluent increases with the numeric designation of the fraction. The 
fractions were dried in a rotary evaporator, subsequently resuspended and transferred to tared vials, 
and finally the remainder of the solvent was evaporated in a vacuum line. The fractions were stored in 
the dark at room temperature until further experiments. 

 

2.3. Isolation of secondary metabolites by HPLC 

The fractions presenting relevant bioactivity were selected for isolation. The isolation process was 
initiated by performing the optimization of the High-Performance Liquid Chromatography (HPLC) 
program. A phase of trial and error was performed to test the eluents for their capacity to separate the 
components of the fractions and the optimum gradient concentration. In this work, water and 
acetonitrile formed the gradient in the separation process.  

The compounds of the fractions were purified by reversed phase HPLC equipped with UV-Vis 
photodiode array detection (LC/UV-Vis-DAD) (DIONEX Ultimate 3000), scanning 190 to 300 nm. 
The separation was performed on a 250 mm x10 mm, 5 μm, 100 Å, C18 column (Phenomenex), using 
as eluent water and acetonitrile on a binary gradient system, running at a flow rate of 1.5 ml/min. The 
gradient profile was defined for each fraction. The samples were dissolved in MeOH or THF 
(1mg/1μl) (Carlo Erba Reagents, 99.9%), centrifuged for 5 min and injected in the loop. The 
optimized conditions are presented in the Tables 2.3, 2.4 and 2.5. 
 

Table 2.3. HPLC elution conditions for fraction F2. 

Time (min) % ACN ʎ (nm) UV 
0 45  
25 45 210 
26 75 235 
70 75 245 
71 100 275 

150 100  
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Table 2.4. HPLC elution conditions for fraction F4-F7. 

Time (min) % ACN ʎ (nm) UV 
0 10  
20 45 210 
140 45 234 
141 100 250 
170 100 275 

 

Table 2.5. HPLC elution conditions for fraction F8-F9. 

Time (min) % ACN ʎ (nm) UV 
0 10  
20 70 210 

110 70 234 
111 100 250 
120 100 275 

 

 

2.4. Bioassay 

2.4.1. Antimicrobial activity 

The purified compounds were tested for antibacterial activity through the determination of the 
minimum inhibitory concentration (MIC) using a modified version of the serial dilution assay method 
according to the Clinical and Laboratory Standards Institute (Dias, 2013). The experiment was 
performed using as targets the clinically relevant human pathogenic bacteria vancomycin-resistant 
Enterococcus faecium VRE EF82 (Mato et al., 2009) and methicilin-resistant Staphylococcus aureus 
MRSA COL (Gill et al., 2005). The purified compounds were solubilized in dimethyl sulfoxide 
(DMSO) to a concentration of 10 mg/ml. The samples were stored at room temperature and protected 
from light until use. 

The pathogenic gram-positive bacterial strains were thawed from their cryopreservation (-80ºC), 
transferred aseptically to solid Brain Heart Infusion (BHI) medium (Table 2.6) and incubated 
overnight at 37ºC. Isolated colonies of the overnight cultures were used to inoculate a 5 ml liquid BHI 
medium and incubated overnight at 37ºC with shaking at 180 rpm. The culture was measured in the 
morning for optical density at 600 nm (OD600), in an Ultraspect 3100 Pro Amersham Bioscienses, to 
assess its absorbance, being the intended value from 0.04 to 0.06. The concentration for the intended 
absorbance was adjusted by dilution when necessary. 
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Table 2.6. Composition of the BHI growth medium. 

Component Quantity (1L) 
BHI (DIFCO) 37 g 

Agar 15 g 
Water 1000 ml 

 
 
Aliquots of 195 μl of culture were added to the row A of a 96-wells microtiter plate. To the first 10 
wells of row A was added 5 μl of purified compound, and to the remaining two wells of the row were 
added 5 μl of DMSO and 5 μl of vancomycin (1mg/ml), respectively, as controls. An aliquot of 100 μl 
of culture and 100 μl of BHI were added to the last wells of row G, respectively, for use also as 
control. The serial dilution was performed by aliquoting 100 μl of the mixture of row A, up until well 
10, to the row B, mixed, and from this another 100 μl of the mixture was aliquoted to the next row, 
and so forth until row F. On row G, 100 μl of culture was added to well 11 and 100 μl of BHI was 
added to well 12; these two aliquots were used as controls. The display of the samples in the assay is 
illustrated in Figure 2.1. 

 

Figure 2.1. Template of 96-well microtiter plate illustrating the disposition of samples and controls for the 
antibacterial test. 
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In this way, a serial dilution was achieved and the obtained concentration was the following: 250, 125, 
62.5, 31.25, 15.63, 7.81, 3.91, 1.95, 0.98 e 0.49 μg/ml, from A to F row, respectively. 
The microtiter plates were incubated overnight at 37ºC without shaking. Following a period of 
incubation of 18 to 24 hours, the bioactivity was evaluated by assessing the turbidity of the cultures in 
each well, comparing to the blanks in wells 11 and 12 of row G. 
 
 
 

2.4.2. Anti-fouling activity 

The anti-fouling activity was performed both as target-based and phenotype-based. As target-based, 
the enzyme butyrylcholinesterase was used as target; as a phenotype-based, mussel larva of the 
species mytilus galloprovincialis was evaluated. This assay was performed by Dr Isabel Cunha at 
CIIMAR (Centro Interdisciplinar de Investigação Marinha e Ambiental), in Porto. The experimental 
procedure for this experiment is described in Almeida et al., 2015.  

 

2.5. Structure elucidation 

The structure of the purified compounds was elucidated by the combination of a multitude of 
spectroscopic methods, including Nuclear Magnetic Resonance Spectroscopy (NMR), Infra-red 
Spectroscopy (IR) and non-spectroscopic methods such as Optical rotation (OR). 

 

2.5.1. NMR 

The spectra were acquired on a Bruker Advance 400 MHz, with the samples dissolved in deuterated 
chloroform (CDCl3; Cambridge Isotope Labs, 99.8%). The spectra were recorded for one-dimensional 
(1D) experiments with the nuclei 1H (at 400.13 MHz) and 13C (at 100.61 MHz), with Distortionless 
Enhancement by Polarization Transfer 90 (DEPT 90) and Distortionless Enhancement by Polarization 
Transfer 135 (DEPT 135), and for two-dimensional (2D) experiments Correlated Spectroscopy 
(COSY), Heteronuclear Single Quantum Correlation (HSQC), edited HSQC, Heteronuclear Magnetic 
Resonance (HMBC), and Total Correlated Spectroscopy (TOCSY). 

 

2.5.2. Infra-red  

The spectra were acquired on a Perkin Elmer Spectrum Two, with the samples dissolved in 
chloroform (CHCl3; Carlo Erba Reagents, 99%). The spectra were recorded in sodium chloride 
(NaCl) cells. 

 

2.5.3. Optical rotation 

The optical activity of the purified compounds was assed using Bellingham+Stanley, model ADP410 
Polarimeter, equipped with a sodium lamp. The samples were measured on a cell with 2 ml volume of 
capacity and 5 dm of optical path length. The experiment was carried out at room temperature. 
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2.5.4. Structure elucidation data 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
PTM-99-(F4-F7)-F30: orange-colored powder with a mass of 6.16 mg; UVmax: 194.2 nm; RT: 60.4 
min; [α]26D = -123.37 (0.308g/100 ml; CHCl3); 1H NMR (400 MHz, CDCl3) δ ppm = 0.96 (3H, d, J = 
6.60 Hz, H13), 1.01 (3H, d, J = 6.60 Hz, H12), 1.53 (1H, ddd, J = 14.43, 9.48, 4.95 Hz, H10), 1.76 
(1H, m, H11), 1.91 (1H, m, H8), 2.04 (2H, m, H8, H10), 2.13 (1H, m, H9a), 2.36 (1H, dtd, J = 12.90, 
6.69, 2.93, H9b), 3.57 (2H, m, H7), 4.02 (1H, dd, J = 9.17, 2.45, H5), 4.13 (1H, t, J = 8.01, H2), 6.01 
(1H, br. S, H3); 13C NMR (101 MHz, CDCl3) δ ppm = 21.17 (C13), 22.72 (C8), 23.27 (C12), 24.68 
(C11), 28.09 (C9), 38.57 (C10), 45.49 (C7), 53.38 (C5), 58.96 (C2), 166.13 (C4), 170.23 (C1); FT-IR: 
3259.25, 2956.43, 2872.57, 1675.26, 1637.99, 1470.28, 1433.01, 1302.56 cm-1. 
 

PTM-99-(F4-F7)-F34: orange-colored oil with a mass of 4.38 mg; UVmax: 210, 242.2, 298 nm; RT: 
70.1 min; [α]26D = -45.66 (0.219g/100 ml; MeOH); 1H NMR (400 MHz, CDCl3) δ ppm = 1.93 (1H, dd, 
J = 16.87, 7.34 Hz, H4), 2.02 (2H, m, H4, H5), 2.34 (1H, m, H5), 2.80 (1H, dd, J=14.31, 10.64 Hz, 
H10), 3.57 (1H, m, H3, H10), 3.66 (1H, m, H3), 4.09 (1H, t, J=7.27 Hz, H6), 4.28 (1H, dd, J=10.96, 
9.28 Hz, H9), 7.24 (2H, J=6.97 Hz, H3’, H5’), 7.30 (1H, d, J=7.09 Hz, H4’), 7.35 (2H, d, J=7.46 Hz, 
H2’, H6’); 13C NMR (101 MHz, CDCl3) δ ppm = 22.52 (C4), 28.33 (C3), 36.77 (C10), 45.45 (C5), 
56.18 (C9), 59.12 (C6), 127.55 (C4’), 129.10 (C3’, C5’), 129.26 (C2’, C6’), 135.87 (C1’), 165.05 
(C1), 169.44 (C7); FT-IR: 3235.96, 3030.97, 2970.41, 2886.55, 1665.94, 1502.89, 1437.66, 1344.49, 
1228.02, 1116.21, 1004.40, 752.82, 701.57, 664.30, 482.61 cm-1. 
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3. RESULTS AND DISCUSSION  

3.1. Fractionation of the crude extract 

Two Salinispora arenicola PTM-99 cultures were prepared: a 7 days (7D) culture and a 14 days 
(14D) culture. The 2nd culture was prepared to obtain higher amount of compounds for structure 
elucidation. However, due to the slow growth of the bacteria, it took 14 days for the bacteria to grow 
to a proper density for extraction. Here will be reported data from both cultures since they were used 
for different experiments. 

The extraction of metabolites from the 7D culture yielded a dry mass of crude of 397.01 mg and the 
14D culture yielded 894.65 mg of crude. The extraction was followed by fractionation of the crude. 

The step of fractionation is of considerable importance as it helps eliminating salts, lipids and other 
contaminants that may interfere in the bioassay, by both masking the activity or providing false 
positive. In Dr. Gaudêncio’s lab the fractionation method of choice is flash chromatography and 
results in 9 fractions (Figure 3.1). The procedure is an adaptation of Still et al. (1978)’s method. For 
the mass of crude of 14D, which falls in the range of 900 mg mass, a 30 mm column is used and the 
crude is eluted with 400 ml of eluent. The fractions are eluted in an increasing polarity of the eluent, 
resulting in the fraction 9 (F9) being the most polar in contrast to the fraction 1 (F1) which is least 
polar (Table 3.1). In fact, after dried, the fractions with lower polarity presented an oily consistency. 

 

Figure 3.1. Fractions of the strain S. arenicola PTM-99 obtained by flash chromatography of the crude. 
Fraction F1 to F9, from the left to the right. The samples may be light-sensitive.  

 

Table 3.1. Mass of fractions derived from crude fractionation of the 14D culture. 

Fraction Mass (mg) 
F1 20.70 
F2 53.44 
F3 29.62 
F4 23.68 
F5 24.73 
F6 23.59 
F7 87.88 
F8 208.78 
F9 186.32 

 

 



 

32 

3.2. Isolation of compounds by HPLC and bioassays 

The fractions were selected for purification according to the results of antimicrobial and antifouling 
assays, determined previously to this work. The fractions which displayed antimicrobial activity were 
the fractions F2 (31.25 µg/ml against MRSA; 62.50 µg/ml against VRE), F4 (250 µg/ml against both 
MRSA and VRE), F7 and F8 (both 125 µg/ml against VRE). In a first phase of optimization (7D), due 
to low mass yield, similarity between UV profiles of some fractions and interesting activity against 
butyrylcholinesterase, it was decided that the fractions from F4 to F7 should be mixed together, as 
well as fractions F8 and F9 with one another. The fraction F2 was dissolved in tetrahydrofuran (THF), 
and the fractions F4-F7 and F8-F9 were dissolved in MeOH. This setup was maintained in the next 
isolation (14D) (see Tables 2.3, 2.4 and 2.5). 

 

3.2.1. Fraction F2 

From the 7D culture, 15 compounds were isolated; and from the 14D culture, 26 compounds were 
isolated.  

The comparative analysis of the chromatogram revealed an overall increase in the production, in the 
14D culture, of the compounds tested for antimicrobial activity; however there was also an increase in 
the production of compounds, which were not observed in the culture 7A (Figure 3.2). 

 

F2 F21F4
F6

F10F7 F13F8
F11F12
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Figure 3.2. Chromatogram with 3D field (190 – 300 nm) of the crude fraction F2. A - fraction F2 from a 7D 
culture; B - fraction F2 from a 14D culture. 

 

The analysis of the UV profile of the isolated compounds led to the finding that the compounds F13, 
F15, F17, F18 and F21 of the 7D culture may belong to the same family due to the similar UV 
absorption. The same analysis to the compounds F4, F14, F16, F19, F25, F27, F28, F29, F30, F31, 
F33, F36 and F38 of the 14D culture, also puts these compounds in the same family (Figure 3.3). In 
fact, this family constitutes the major class of compounds isolated during this project. The 
characteristic UV spectra resemble those of peptides, with the two peaks at approximately 220 and 
280 nm being characteristic of peptide bond and aromatic group, respectively. Furthermore, the 
spectra also resemble those of the lactam core (cyclic amide) present in the amino acid synthesis-
derived class diketopiperazines and the esterification-derived lactone core (cyclic ester) of macrolides. 
Finally, the peak at approximately 190 nm is characteristic of diketopiperazines (UNODC, 2013; 
Rahimi et al., 2016), although this statement is very controversial since this region is known to be one 
where several other molecules can absorb. However, the results of structural elucidation indicate the 
occurrence of both diketopiperazine and macrolide classes. 
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Figure 3.3. UV profile of compounds isolated from fraction F2. 
190 and 280 nm, characteristic of peptides
culture; C and D correspond to the compounds F4 and 

 

The tested compounds did not present any relevant antimicrobial activity. 
pointing out the MIC of 62.5 µg/ml
only one presenting any activity against MRSA 
decision about the structural elucidation step was based primarily on
availability for the NMR experiments. The compounds F27 of the 14D culture, which is the 
equivalent of F15 of the 7D culture, and the compound F31 of the 14D cul
structural elucidation phase. Furthermore, since the results for 7
that the 14D culture should not be tested and that the bioassay focus should be shifted towards the 
antifouling assay against butyrylcholinisterase. 

Table 3.2. Mass yield and antimicrobial activity (MIC) of compounds isolated from fraction F2,
days culture. 

Compound RT (min)

F2 12.9 
F3 17.2 
F4 22.8 
F6 33 
F7 40.8 
F8 44.6 
F10 49.2 
F11 51.3 
F12 54.3 
F13 59.7 
F15 77.2 
F18 97.6 
F19 102.9 
F21 133.1 

          n.a. – not active; “-” – not tested 

. UV profile of compounds isolated from fraction F2. The compounds presented three peaks from
of peptides. A and B correspond to the compounds F13 and F15 of the 7D 

culture; C and D correspond to the compounds F4 and F19 of the 14D culture. 

The tested compounds did not present any relevant antimicrobial activity. Nevertheless, 
ml against VRE EF82 of compounds F2 and F15; F15 was also the 

only one presenting any activity against MRSA COL (MIC 250 µg/ml) (Table 3.2). 
decision about the structural elucidation step was based primarily on the UV spectra and the
availability for the NMR experiments. The compounds F27 of the 14D culture, which is the 
equivalent of F15 of the 7D culture, and the compound F31 of the 14D culture, proceeded to the 

Furthermore, since the results for 7D culture were low, it was decided 
that the 14D culture should not be tested and that the bioassay focus should be shifted towards the 
antifouling assay against butyrylcholinisterase.  

d antimicrobial activity (MIC) of compounds isolated from fraction F2,

(min) Mass (mg) MRSA COL 
(µg/ml) 

VRE 
(µg/

 0.66 n.a. 62.5
 0.57 n.a. 125
 0.59 n.a. n.a.

0.69 n.a. 125
 0.36 n.a. 250
 0.4 n.a. n.a.
 0.27 n.a. n.a.
 0.53 n.a. n.a.
 0.51 n.a. 250
 0.46 n.a. n.a.
 3.02 250 62.5
 3.77 n.a. 250
 10.84 n.a. 250
 14.46 n.a. n.a.
 

A 
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 Therefore, the 
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3.2.2. Fraction F4-F7 

From the 7D culture, 19 compounds were isolated; and from the 14D culture, 30 compounds were 
isolated (Figure 3.4).  

 

 

Figure 3.4. Chromatogram with 3D  field (190 – 300 nm) of the crude fraction F4-F7. A - fraction F4-F7 
from a 7D culture; B -  fraction F4-F7 from a 14D culture. 

 

For this fraction, the majority of the isolated compounds also presented a UV profile similar to that of 
the compounds of the above mentioned F2 fraction, indicating that they belong to the same family. 
Aside from those, other three compounds (F36, F41 and F44) presented very distinguishable UV 
spectra (Figure 3.5). The peak at 205.9 nm represents a region where many molecules can absorb. 
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Figure 3.5. UV profile of compounds isolated from fraction F4-F7. The compounds A, B, and C correspond 
to the compounds F36, F41 and F44 of the 7D culture. 

 
This fraction fared no better than the fraction F2 in the antimicrobial assay. No compound was found 
to present activity against both MRSA and VRE simultaneously. The compounds found to present 
some activity were F5 (MIC of 250 µg/ml against VRE), F17 (MIC of 250 µg/ml against MRSA), 
F38, F41 and F44 (all with MIC of 125 µg/ml against VRE) (Table 3.3). 

Table 3.3. Yield and antimicrobial activity (MIC) of compounds isolated from fraction F4-F7, from a 7 
days culture. 

Compound RT (min) Mass (mg) MRSA COL 
(µg/ml) 

VRE EF82 
(µg/ml) 

F3 8.6 6.55 n.a. n.a. 
F5 11.1 6.98 n.a. 250 
F9 16.5 2.03 n.a. n.a. 
F11 17.7 0.62 n.a. n.a. 
F17 36.5 1.15 250 n.a. 
F19 40.5 1.34 n.a. n.a. 
F21 44.3 2.24 n.a. n.a. 
F26 52 0.89 - - 
F27 53.4 1 - - 
F28 54.7 4.22 n.a. n.a. 
F29 58.4 1.55 - - 
F31 60.8 5.08 n.a. n.a. 
F33 66.1 1.27 n.a. n.a. 
F35 70.7 3.18 n.a. n.a. 
F36 74.6 1.81 n.a. n.a. 
F38 78.9 0.68 n.a. 125 
F41 84.5 1.33 n.a. 125 
F44 94.3 1.36 n.a. 125 
F47 99.2 0.94 - - 

          n.a. – not active; “-” – not tested 

A B 
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In a first approach to structural elucidation, the compounds presenting activity and/or enough mass 
were submitted to NMR experiments. Unfortunately, due to the overall negative results for the anti-
fouling activity it was hypothesized that the samples were degraded. This degradation could be due to 
the fact that in some point the isolated compounds could have been exposed to light, which could 
have led to its degradation since the metabolites may be light sensitive, or the harsh treatment endured 
by the compounds during the phase of optimization of the HPLC program (evaporation, 
lyophilization) could be also responsible. 

Nevertheless, samples were selected for structural elucidation since the fact of the studied strain a first 
time isolate from Portuguese waters, brings the prospect of discovering novel compounds. The 
compounds that proceeded to the structural elucidation were F20, F27, F30, F34 (=F35, 7D) and F41 
from the 14D culture. 
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3.2.3. Fraction F8-F9 

From the 7D culture, 18 compounds were isolated; and from the 14D culture, 26 compounds were 
isolated (Figure 3.6).  

 

 

Figure 3.6. Chromatogram with 3D  field (190 – 300 nm) of the crude fraction F8-F9. A - fraction F8-F9 
from a 7D culture; B -  fraction F8-F9 from a 14D culture. 

 

The mass yield of this fraction for the 14D culture was so low for individual observable compounds in 
the 3D field that it was discarded after three HPLC runs. The peaks were discerned by analyzing the 
3D field of the chromatogram. However, it was enough to obtain the overall picture of the UV profile 
of the compounds present in the sample. Once more, the family mentioned above persisted as the 
major component. For this fraction, to the similarity of fraction F4-F7, there were some interesting 
exceptions (Figure 3.7).  
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Figure 3.7. UV profile of compounds isolated from fraction F8-F9. The compounds A, B, and C correspond 
to the compounds F34, F36 and F40 of the 7D culture. 

 

The similarity between the UV profile of compounds F34 of fraction F8-F9 and F44 of fraction F4-F7 
suggest they belong to the same family. The compounds F36 and F40 also present absorbance in the 
region of peptides, but they clearly belong to different families than the ones referred so far. 

Following the pattern of the activities of the compounds of the previous fractions, the fraction F8-F9 
yielded bioactive compounds, but no remarkable activity was observed. Only one compound 
presented activity against both target pathogenic microbe – F39, with MIC of 125 µg/ml against 
MRSA and 250 µg/ml against VRE. The compounds F20, F21, F24 and F29 displayed activity against 
MRSA, with a MIC of 250 µg/ml, and the compound F3 inhibited VRE growth with a MIC of 250 
µg/ml (Table 3.4). Once again, these results were not surprising, since the fraction F8 itself displayed 
no remarkable activity against the targeted strains. 

Table 3.4. Yield and antimicrobial activity (MIC) of compounds isolated from fraction F8-F9, from a 7 
days culture. 

Fraction RT (min) Mass (mg) MRSA COL 
(µg/ml) 

VRE EF82 
(µg/ml) 

F3 8.5 31.85 n.a. 250 
F4 10.4 1.98 n.a. n.a. 
F5 11 10.83 n.a. n.a. 
F6 14.6 2.76 n.a. n.a. 
F11 34.6 4.04 n.a. n.a. 
F13 40.9 3.59 n.a. n.a. 
F15 43.4 2.56 250 n.a. 
F16 45.6 1.6 - - 
F18 47.4 5.22 n.a. n.a. 
F20 50.7 2.28 250 n.a. 
F21 52.2 1.67 250 n.a. 
F24 54.9 4.73 250 n.a. 
F25 57.3 1.26 - - 
F29 59 1.05 250 n.a. 

A B 
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F31 60.1 1.24 - - 
F34 63.8 5.41 - - 
F36 75 1.51 - - 
F39 80.3 1.32 125 250 
F40 93 2.01 - - 

          n.a. – not active; “-” – not tested 

 

3.2.3. Antifouling assay 

Preliminary antifouling assays against the enzyme butyrylcholinisterase yielded an inhibition of 
57.33% for the crude, and over 90% for fractions F4 to F7.  

Unfortunately, the assays using pure compound samples from the fraction F4-F7 of the 7D culture 
yielded no inhibitory activity. This negative result may result from degraded samples or ill procedure 
during the assay. A new set of sample was prepared and sent for testing. As of the time of writing of 
this thesis, the results have not yet been received. 
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3.3. Structure elucidation  

The structure of the isolated compounds was determined by combining a multitude of information 
from different spectroscopic and non-spectroscopic methods. At present time, NMR constitutes the 
go-to method for unraveling the structure of natural products. The method relies on the interaction 
between electromagnetic radiation in the radio frequency and a magnetic nucleus, and the chemical 
shift produced by it. In this present work we analyze the nucleus 1H (at 400 MHz) and 13C (at 101 
MHz), in 1D and 2D experiments. 

 

3.3.1. PTM-99-(F2)-F27 and PTM-99-(F2)-F31 

Due to the structural similarities between the compounds PTM-99-(F2)-F27 and PTM-99-(F2)-F31, 
the analysis of the spectroscopic data and subsequent structural elucidation will be performed in a 
parallel fashion. The narrative of the analysis will be relative to compound PTM-99-(F2)-F27, since it 
was the first to be worked with. The two compounds were identified primarily as macrolides due to 
the resemblance of the UV (Figure 3.8) and 1H NMR data with a macrolide previously identified by 
the lab (Paulino, 2016). The comparison of the 1H NMR and HMBC spectra indicated that the two 
compounds possessed a high degree of matching identity (Figure 3.9). However, the structural 
elucidation of compound PTM-99-(F2)-F31 proved particularly challenging due to the complexity of 
the data obtained by NMR.  

 

 

Figure 3.8. UV profile of compound PTM-99-(F2)-F27. 

 

The analysis of the HSQC-DEPT (edited-HSQC) data of compound PTM-99-(F2)-F27, assigned the 
multiplet (distorted triplet) at 0.88 ppm to a carbon peak at 14.12 ppm; this analysis also revealed that 
this signal belongs to a methyl group. Adjacently, an intense multiplet signal in the region of 1.28 
ppm, whose integral corresponding to 26 protons, was matched to several secondary methyl signals in 
the region of 22-31 ppm. These signals hinted at the existence of a long saturated chain, which is 
typical of macrolide molecules. However, the multiplet at 5.35 ppm (H26, H27) was linked to the 
carbon signals at 127-130 ppm, which were found to be CH carbon atoms. The correlation of these 
carbons to the protons attached to the carbons at 25.63 (C25), 27.2 ppm (C28) and the rest of the 
chain downfield in HMBC, led to the deduction of the existence of a double bond between the 
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carbons at 127-130 ppm Furthermore, the triplet at 2.77 (H25) does not couple or correlated with any 
other signal than those of H26, H27 and C26, C27 (Figure 3.10). 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9. 1H NMR and HMBC spectra of compounds PTM-99-(F2)-F27 (A) and PTM-99-(F2)-F31 (B). 
The similarity are as follows in 1H NMR spectrum (order: A (B)): 0.88 (0.89), 1.28 (1.32), 1.61 (1.61), 2.03 
(2.04), 2.30 (2.32), 4.14 (4.15), 4.29 (4.30), 5.26 (5.27), 5.35 (5.36) ppm. The signal present at 3.99 ppm in the 
spectrum of compound PTM-99-(F2)-F31 is absent in that of the compound PTM-99-(F2)-27. Moreover, the 
signal present at 6.98 ppm in the spectrum of compound PTM-99-(F2)-27 is absent in that of the compound 
PTM-99-(F2)-F31. 
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The proximity of the multiple carbon signals in the region of 
hypothesize the existence of conjugated alkene groups, a common feature in macrolides, 
with the value of proton integration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10. NMR data and proposed 
spectrum. TOCSY (upper right) and HMBC (upper left
and 2.77 ppm. Structures: A: PTM-99-(F2)
black arrows indicate HMBC correlation.

 

 

 

Content removed due to confidentiality

The proximity of the multiple carbon signals in the region of 127-130 ppm makes it tempting to 
conjugated alkene groups, a common feature in macrolides, 

the value of proton integration indicating the existence of three of those.  

 

. NMR data and proposed alkene astructure for the corresponding section. 13C NM
pper right) and HMBC (upper left). Inclosed 1H NMR chemical shifts at 0.88, 1.28, 2.03 

(F2)-F27, B: PTM-99-(F2)-F31. Full black bars indicate COSY coupling, 
black arrows indicate HMBC correlation. 
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The proton corresponding to the multiplet 
at 1.28 (H4-H6, H11-H13) and 2.3
spatially related carbons at the regions of 
and to the quaternary carbon signals at 172.86 (C24) and 173.27 (C1, C16
sets of neighboring protons, the one at the chemical shift of 2.30 were the only ones presenting a 
(strong) correlation with the quaternary carbons. 
second alkene chain being this one symmetrical with the double bond occupying the center of the 
chain (Figure 3.11).  

Figure 3.11. Symmetrical alkene chain
HMBC correlation. 

 

The 13C NMR spectrum displayed signals of 
ester’s carbonyl group (172.86 and 173.27 ppm
intensity of the signal at 172.86 ppm, leading to 
groups. The absence of labile proton indicates that the amide is most likely tertiary, in case the 
structure is found to be of such composition.
the methine carbon at 125.52 ppm (C22, C23) was set as 
both sides of the alkene chain. Despite 
HMBC to the quaternary carbons, it was still considered as the best fit since it displayed HMB 
correlation to the C2, C15 carbons and to its own carbon, placing it both in the vicinity and indicating 
the existence of overlapping signals of 

corresponding to the multiplet at 1.61 ppm (H3, H14) is coupled with neighboring protons 
2.30 (H2, H15) in COSY, and correlates in HMBC with the 

the regions of 29.13 to 29.77 (C4-C6, C11-C13), 34.04 to 34
to the quaternary carbon signals at 172.86 (C24) and 173.27 (C1, C16,qC1, qC2). Among the two 

sets of neighboring protons, the one at the chemical shift of 2.30 were the only ones presenting a 
(strong) correlation with the quaternary carbons. These observations allowed for the deduction of a 

being this one symmetrical with the double bond occupying the center of the 

 

Symmetrical alkene chain. Full black bars indicate COSY coupling, black arrows indicate 

displayed signals of quaternary carbons with characteristics of amide’s
172.86 and 173.27 ppm). The signal at 173.27 ppm displayed double the 

intensity of the signal at 172.86 ppm, leading to the deduction of the presence of two equivalent 
The absence of labile proton indicates that the amide is most likely tertiary, in case the 

structure is found to be of such composition. To validate this observation in the proposed structure, 
carbon at 125.52 ppm (C22, C23) was set as a bridge linking to the amide’s carbonyl on 

of the alkene chain. Despite the protons H22, H23 (6.98 ppm) showing no correlation
HMBC to the quaternary carbons, it was still considered as the best fit since it displayed HMB 
correlation to the C2, C15 carbons and to its own carbon, placing it both in the vicinity and indicating 
the existence of overlapping signals of equal chemical shift (Figure 3.12). 
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correlation to the C2, C15 carbons and to its own carbon, placing it both in the vicinity and indicating 



 

Figure 3.12. The carbon at 125.52 ppm closes the alkene chain forming a macrocyclic ring.
indicate COSY coupling, black arrows indicate HMBC correlation.

 

 Finally, the analysis of the HSQC-DE
(C19, 68.88 ppm), that is coupled only 
correlates to the quaternary carbon at 172.86 ppm.
with H19 and with each other, and correlated to the quaternary carbons
results resulted in the deduction of a second, smaller, ring coupled t
3.13). 

Figure 3.13. CH group at 68.88 ppm forms the
bars indicate COSY coupling, black arrows indicate HMBC correlation.

 

 

 

 

 

 

 

 

 

 

. The carbon at 125.52 ppm closes the alkene chain forming a macrocyclic ring.
indicate COSY coupling, black arrows indicate HMBC correlation. 

DEPT and HMBC, attributed the duplet at 5.26 ppm to a CH group 
only with the two sets of double doublets H18, H20

correlates to the quaternary carbon at 172.86 ppm. On the other hand, the CH2 protons only coupled 
, and correlated to the quaternary carbons. The interpretation of these 

results resulted in the deduction of a second, smaller, ring coupled to the macrocyclic ring (Figure 

 

. CH group at 68.88 ppm forms the bridge connecting two ends of a cyclic structure.
bars indicate COSY coupling, black arrows indicate HMBC correlation. 
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Figure 3.14. Macrocyclic ring composed of quaternary carbons of ester and amide groups proposed for 
compound PTM-99-(F2)-F27. Full black bars indicate COSY coupling, black arrows indicate HMBC 
correlation. 

 

The similarities between the two compounds diminish as the analysis of the two compounds moves 
downfield in the spectra; however, there is still a punctual difference at the beginning of the spectra. 
The HSQC-DEPT spectra of compound PTM-99-(F2)-F31 links the proton signal at 0.89 ppm to three 
carbon signals (one isolated carbon at 10.98 ppm and three overlapped carbons in the region of 14.04 
to 14.12 ppm), suggesting the existence of four methyl groups. The COSY spectra indicated the 
coupling of the methyl protons with the secondary methyl protons at 1.32 ppm; and the TOCSY 
revealed that the coupling was extended to three other secondary methyl protons at 1.61, 2.04 and 
3.99 ppm. Probing of the full set of two-dimensional NMR experiments data indicated the existence 
of separations in the proton signals, which were designated left (l) and right (r). Figure 3.15 shows 
some examples. 
 
 
 
 
 
 
 
 
 
Figure 3.15. Two-dimentional NMR data for proton signal 1.32 illustrating the partitioning of the signal 
into left (l) and right (r) side. The sides couple and correlate with similar signals in different parts of the 
compound. 
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The methyl protons correlated in HMBC to the right (r) with the carbon signals at 22.58 to 22.97(C37, 
C38) and at 30.41 to 31.92 ppm (C34-C36). The proton signal at 2.04 ppm couples, in COSY, with 
both the secondary methyl proton H34 and the olefinic proton at 5. 36 ppm, and in HMBC correlates 
to the left (l) with the olefinic carbons at 127.9 and 128.07 (C8, C9, C31, C32), and to the right (r) 
with those at 129.69 to 130.24 ppm (C8, C9, C31, C32). Similarly to the compound PTM-99-(F2)-
F27, the lack of correlation between the proton signal at 1.61ppm and the olefinic carbons (C31, C32), 
and the lack of any other correlation between the signal at 2.78 (H30) aside from those with the 
olefinic carbons, allowed for the deduction of the alkene chain presented in Figure 3.10, B.  
 
An alkene chain similar to that presented in Figure 3.11 was also deduced for compound PTM-99-
(F2)-F31, with the length of the chain possibly differing due to the difference in the number of 
carbons to be assigned (the integration of the peak at 1.32 ppm suggests 33 protons).   
 
The proton singlet at 1.61 ppm was found to interact with neighboring protons at 2.32 ppm and 3.99 
(H21, H25) ppm in COSY, and correlating in HMBC with the carbons at 34.2 (C28, C30) and 66.81 
ppm (C26). The protons at 3.99 and 1.6 ppm correlate with the carbon signal at 23.79 ppm (C23, 
C23’, C27 and C27’), providing a link for a new chain, which culminates in a methyl group probably 
the chemical shift of 10.98 ppm (C24, C24’, C28, C28’). This observation allowed the deduction of a 
2-ethyl-1-butyl group (Figure 3.16).  The HMBC spectrum suggests this group was linked to a 
quaternary carbon by the carbon  qC3. 
 

  
Figure 3.16. 2-Ethyl-1-butyl substitute. Full black bars indicate COSY coupling, black arrows indicate HMBC 
correlation. 

 
 
Finally, at the similarity of compound F27, the 13C NMR spectrum displayed signals of quaternary 
carbons that showed characteristics of amide’s and ester’s carbonyl (172.84, 173.25, 173.54 ppm). 
The absence of labile proton indicates that the amide is most likely tertiary, in case the structure is 
found to be of such composition. The analysis of the HSQC-DEPT and HMBC, attributed the 
multiplet at 5.27 ppm to a CH group (C19, 68.88 ppm) and correlated it to the three, neighboring, 
quaternary carbons, revealing it to be the center piece giving form to the ring structure (Figure 3.17). 

 

Figure 3.17. CH group at 68.88 ppm forms the bridge connecting two ends of a cyclic structure. Full 
black bars indicate COSY coupling, black arrows indicate HMBC correlation. 
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The carbons at 34.02 to 34.2 (C2, C15), 62.11 (C18, C20) and 68.88 ppm (C19), and respective 
protons, were correlated in HMBC and TOCSY with the quaternary carbons to form the ring (Figure 
3.18). Weather the macrocyclic motif is a lactam or a lactone, or possesses elements of both, remains 
to be unraveled.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18. Macrocyclic ring composed of quaternary carbons of ester and amide groups proposed for 
compound PTM-99-(F2)-F31. 

 
At the present moment, we believe the two major structural pieces proposed for both structures (the 
alkene chain in Figure 3-10 and the macrocyclic ring in Figure 3.14/ Figure 3.18) should connect. The 
evidence for this comes from the observable TOCSY correlation between the proton signals at 2.77 
and 2.30 ppm. However, we were not able to draw forth this link at the light of data currently in our 
possession. Therefore, structures have not yet been fully elucidated. Another compound isolated in the 
lab, presented a similar NMR spectra and analysis by mass spectrometry revealed the presence of Cl 
or Br atoms. The full NMR data for both compounds is shown on Tables 3.5 and 3.6. 
 
The nule values obtained from the measurement of optical rotation for both compounds suggest that 
the molecules either possess a plane of symmetry or are present as a racemic mixture. Given that the 
latter case is of extremely low occurrence among natural products, it is supposed that the latter case is 
more probable. If the case is so – and it does make sense due to the overall high density of CH2 
groups in the NMR spectral data, then it is within reason to deduce the existence of CH2 chains linked 
in such fashion that the molecule is rendered symmetrical. The nule result for optical rotation was 
obtained for all measured compounds of fraction F2 (data not shown), and also obtained for the other 
macrolide isolated in the lab, mentioned above. 
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The proposed structures are also supported by IR data. The data for the compound F27 shows an 
intense signal at 2928.48 cm-1 characteristic of sp3 and sp2 C-H stretching.   The stretching of the C-O 
in the ester showed at 1158.14, and the carbonyl of the amide group at 1745.14 cm-1. The signal at 
724.87 cm-1 is characteristic of the Cl atom, which could be part of the structure (Figure 3.19). 

 

 

Figure 3.19. IR spectrum of compound PTM-99-(F2)-F27. 
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Table 3.5. NMR data for compound PTM-99-(F2)-F27. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOTE: given that the macrocyclic structure is symmetrical, only the carbon or proton designation from one 
side of the molecule was considered in order to provide a table which is easy to be read. This applies to both 
compounds (F27 and F31). 
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Table 3.6. NMR data for compound PTM-99-(F2)-F31. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A final remark concerning the structural elucidation of these compounds. The low overlapping of the 
signals in the NMR spectra produced a certain degree of ambiguity as the signals of members in 
different spatial and chemical environment could be correlated, yields the prospect of mobility of 
certain substitute group either by total displacement or a sort of bending. Such case applies to the 2-
Ethyl-1-butyl whose HMBC and TOCSY correlations hinted at a circular structure involving the 
alkene chain.  The proposed structure was found to fit best with the data, after several drafts.  
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3.3.2. PTM-99-(F4-F7)-F30 

Although UV profiling is usually a reliable method for purposes of dereplication, unfortunately in this 
study it did little to help differentiating diketopiperazines and macrolides.  

 

 

Figure 3.20. UV profile of compound PTM-99-(F4-F7)-F30. 

 

The 1H NMR spectrum indicated the presence of two distinct methyl groups at the shifts 0.96 and 1.01 
ppm, two CH groups at 4.02 and 4.13 ppm, and a broad singlet at 6.01 ppm, consistent with a labile 
proton. The analysis of the HSQC-DEPT gave the carbon signals corresponding to the protons 
indicated above: 21.17, 23.27, 53.38 and 58.96 ppm, respectively, where the two first signals belong 
to an isobutyl group. Furthermore, 13C spectra showed signals characteristic of the carbonyl of the 
amide groups at the shifts 166.13 and 170.23 ppm. The analysis of the HMBC correlations of 4.02 and 
6.01 to 166.13, 4.13 ppm to 170.23, and 1.53-2.04 to 166.13 ppm confirmed the diketopiperazine 
unity. The characteristic methylene multiplets in the shift range of 1.76 to 3.57 ppm (H7, H8, H9, H10 
and H11) in the 1H NMR spectrum, along with HMBC correlations indicated the presence of a proline 
alike moiety (Figures 3.21 and 3.22). 
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Figure 3.21. NMR data highlighting the lactam core of the diketopiperazine. 13C, 1H, HMBC (upper left) 
and TOCSY (upper right). 

 

 

 

Figure 3.22. Proposed structure for the compound PTM-99-(F4-F7)-F30. 

 
 
 
 
 
 
 
 
 

21_13C.001.1r.esp

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0
Chemical Shift (ppm)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
N

or
m

al
iz

ed
 In

te
ns

ity

21
.1

7
22

.7
2

23
.2

7
24

.6
8

28
.0

9

38
.5

7

45
.4

9

53
.3

8

58
.9

6

76
.6

8
77

.3
1

16
6.

13
17

0.
23

4.0 3.5
Chemical Shift (ppm)

1.0
6.0

4.15 4.10 4.05 4.00
F2 Chemical Shift (ppm)

20

40

60

80

100

120

140

160

F1
 C

he
m

ic
al

 S
hi

ft 
(p

pm
)

4.15 4.10 4.05 4.00
F2 Chemical Shift (ppm)

1

2

3

4

5 F1
 C

he
m

ic
al

 S
hi

ft 
(p

pm
)



 

54 
 

Table 3.7. NMR data for compound PTM-99-(F4-F7)-F30. 

Position δC, Type δH, multiplicity, (J in Hz) COSY HMBC TOCSY 
1 170.23, q - - - - 

2 58.96, CH 4.13, t, 8.01 H9 C9, C13 

H3, H7, 
H8, H9, 

H10, H12, 
H13 

3 - 6.01, s - C1 H2, H5 
4 166.13, q - - - - 

5 53.38, CH 4.02, dd, 9.17, 2.45 H10 C11, C10, 
C4 

H2, H3, 
H8, H10, 

H11, H12, 
H13 

6 - - -  - 

7 45.49, CH2 3.57, m H8 C8, C9, C2 H2, H5, 
H8, H9 

8 22.72, CH2 1.91, m; 2.04, m H7, H11 C2, C7, C9 H2, H7, 
H9 

9 28.09, CH2 2.13, m; 2.36, dtd, 12.90, 6.69, 2.93 H2, H8 C2, C8 H2, H7, 
H8, 

10 38.57, CH2 1.53, ddd, 14.43, 9.48, 4.95; 2.04 H5, H7, H11 C4, C5, 
C12, C13 

H2, H5, 
H11, 

H12, H13 

11 24.68, CH 1.76, m H12, H13, 
H10 C12, C13 H5, H10, 

H12 

12 23.27, CH3 1.01, d, 6.60 H11 C5, C10 
C11, C13 

, H5, H10, 
H11, H13 

13 21.17, CH3 0.96, d, 6.60 H11 C10, C12 H5, H10, 
H11, H12 

 

During the analysis, three structures were proposed, being all of them diketopiperazines (Figures 3.22 
and 3.23). The structure A, a 2,6-DKP, was the first excluded as it did not meet a couple of 
information in the data obtained in the NMR experiments, to know: the 13C NMR data in D2O shows a 
shift on the carbonyl group at 166.13 ppm (shifts to 166.18 ppm), while the carbon of the carbonyl 
group at 170.23 ppm shows no shift whosoever. This is the major point on our final choice as it 
indicates the vicinity, or distance, of these groups to the labile proton at 6.01 ppm with which they 
interact; another reason for discarding this structure concerns the double doublet at 4.02 ppm and the 
triplet at 4.13 ppm. The TOCSY data shows that both these protons interact with the labile proton, but 
at different extent, with the 4.13 ppm proton having a greater intensity. This suggests that the 4.13 
ppm proton is closer to the labile proton compared to the 4.02 proton. This observation was further 
confirmed by 1H NMR using D2O; the 4.13 shifted to 4.11 ppm and 4.02 shifted to 4.01 ppm. These 
two sets of NMR also exclude the structure B. 
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Figure 3.23. Initially proposed structures for the compound PTM-99-(F4-F7)-F30. 

 
This structure was not immediately excluded, as structure A, since the protons and carbonyl groups 
above mentioned presented an interaction fitting the data obtained initially. To meet the new data 
obtained, the structure would have to have its carbonyl groups exchanging place, with the same being 
necessary for the two CH groups. Finally, the only structure left, and the best guess, is the structure on 
the Figure 3.22. Firstly, it fits with the data, and, secondly, the placement of the carbonyl at 166.13 
ppm, right next to the labile proton, suggests a possible formation of hydrogen bond between the 
oxygen and the proton, whose disruption could account for the shift observed in the NMR under the 
D2O.  

The IR spectrum yielded a peak characteristic of the amide NH bending at 1637, stretching at 1675.26 
and alkyl CH stretch at 2956.43 cm-1.  

 

Figure 3.24. IR spectrum of compound PTM-99-(F4-F7)-F30. 

A B 
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3.3.3.  PTM-99-(F4-F7)-F34 

The structural elucidation of this compound spawns from that of the compound PTM-99-(F4-F7)-F30, 
therefore its description will skip the diketopiperazine core. 

The aromatic protons were readily identified due to their characteristic signals, with shifts at 7.24, 
7.30 and 7.35 ppm. The corresponding carbons were attributed using the HSQC-DEPT data: 129.1, 
127.55 and 129.26 ppm, respectively. Lastly, the formation of the aromatic ring was given by the 
HMBC correlations of 7.35 to 129.1 and 135.87, 7.24 to 127.55, and 7.30 to 129.1 ppm. Likewise, the 
identification of the diketopiperazine was upright with the characteristic carbonyl of the amide groups 
spotted at the shifts 165.05 and 169.44 ppm in the 13C NMR spectrum, and confirmed by HSQC-
DEPT and HMBC correlations. The proline unity was obtained by analyzing the HMBC correlations 
H3 to C5, H4 to C3, C5, C6 and H6 to C7 (Figure 3.25; Table 3.8).  

 

Figure 3.25. Proposed structure for the compound PTM-99-(F4-F7)-F34. 

 
 
 
Table 3.8. NMR data for compound PTM-99-(F4-F7)-F34. 

Position δC, Type δH, multiplicity, (J in Hz) COSY HMBC TOCSY 
1 165.05, qC - - - - 
2 - - - - - 
3 28.33, CH2 2.02, m; 2.34, m H4, H6 C5, C7 H5, H6 
4 22.52, CH2 1.93, dd, 16.87, 7.34; 2.02, m H3, H5, H6 C7 H3, H5, H6 

5 45.45, CH2 3.57, m; 3.66, m H4, H9, H10 
C3, C4, C9, 

C1’, C3’, 
C5’ 

H3, H4, H6, 
H9, H10 

6 59.12, CH 4.09, t, 7.27 H3, H4 C3, C7 H3, H4, H5, 
H8, H9, H10 

7 169.44, qC - - - - 
8 - 5.72, s - C1 H6, H9 
9 56.18, CH 4.28, dd, 10.96, 9.28 H5, H10 C1, C10 H5, H6, H10 

10 36.77, CH2 2.80, dd, 14.31, 10.64; 3.57, m H4, H9 
C1, C3, C4, 

C9,  C1’, 
C3’, C5’ 

H9 

1’ 135.87, qC - - - - 

2’ 129.26, CH2 7.35, d, 7.46 H3’, H4’ C1’, C3’, 
C5’ - 

3’ 129.10, CH2 7.24, d, 6.97 H2’, H4’ C10, C4’ H5, H10 
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The proposed structure for PTM-99-(F4-F7)-F34 is the known metabolite Cyclo-(L-Ph-L-Pro) and the 
structure proposed for PTM-99-(F4-F7)-F30 is most likely Cyclo-(L-Leu-L-Pro) (Martínez-Luis et al., 
2011). However, to the best of our knowledge, this is the first time these compounds are being 
reported as isolated from the Salinispora genus. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4’ 127.55, CH 7.30, d, 7.09 H2’, H3’ C3’ - 
5’ 129.10, CH2 7.24, d, 6.97 H2’, H4’ C10, C4’ H5, H10 

6’ 129.26, CH2 7.35, d, 7.46 H3’, H4’ C1’, C3’, 
C5’ - 
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and future work 4 
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4. CONCLUSIONS AND FUTURE WORK 

The difference in the number of compounds produced by the S. arenicola strain PTM-99 for a 7 days 
culture and a 14 days culture, suggest the existence of time dependence in the production of secondary 
metabolites, which is consistent with what is known about their production pattern. However, the 
considerable increase in the number of metabolites produced is a point still in need of clarification.  
Furthermore, there seems to be a massive production of what appears to be compounds of a family 
containing a lactam core, piperazine core and/or aromatic backbone. However, these compounds have 
not displayed any remarkable activity against the pathogenic bacteria vancomycin-resistant 
Enterococcus faecium VRE EF82 and methicillin-resistant Staphylococcus aureus MRSA COL, as 
per results of tests of the 7D culture. From the total of 52 compounds isolated from the 7 days culture, 
20 displayed activity. From the 14 days culture, 71 compounds were isolated, but were not tested for 
antimicrobial activity. The most potent compounds were found to be PTM-99-(F2)-F2 and PTM-99-
(F2)-F15 with the lowest MIC of 62.5 µg/ml. The structure proposed for the F15 equivalent F27 
appears to belong to the macrolide class of natural compounds. The compound PTM-99-(F2)-F31 also 
appears to belong to the same class.  

As of the moment the two structures proposed (F27 and F31) are amid elucidation. More data are 
needed to have a final structure. Future work should pass by the employment of techniques such as 
high-resolution mass spectrometry and x-ray crystallography to discern the structure of the 
compounds mentioned above. Furthermore, these compounds should be tested against the targets used 
in this thesis, and also some that were not used such cancer cell lines and antibiofil, since similar 
compounds tested at the lab have shown promising bioactivity.  

The overall of compounds should be isolated again to retrieve enough mass for structure elucidation. 
This procedure should be performed for both 7 days and 14 days culture, since there is a remarkable 
discrepancy in the production of metabolites. Finally, the 14 days culture should be tested against a 
broad range of bioassay targets, including cancer cell lines, since they have not yet been tested. 
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6. ANNEX 

 

Figure 6.1. Chromatogram profile of F2 from 14D culture, with 3D field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2. 1H NMR of the compound PTM-99-(F2)-F27. 
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Figure 6.3. 13C NMR of the compound PTM-99-(F2)-F27. 

 

 

 

 

 

 

 

 

 

Figure 6.4. COSY of the compound PTM-99-(F2)-F27. 
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Figure 6.5 HSQC-DEPT of the compound PTM-99-(F2)-F27. 

 

 

 

 

 

 

 

 

 

Figure 6.6 HMBC of the compound PTM-99-(F2)-F27. 

 

 

 

 

 

 

 

 

 

Figure 6.7. TOCSY of the compound PTM-99-(F2)-F27. 
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Figure 6.8. 1H NMR of the compound PTM-99-(F2)-F31. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. 13C NMR of the compound PTM-99-(F2)-F31. 
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Figure 6.10. COSY of the compound PTM-99-(F2)-F31. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.11. HSQC-DEPT of the compound PTM-99-(F2)-F31. 
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Figure 6.12. HMBC of the compound PTM-99-(F2)-F31. 

 

 

 

 

 

 

 

 

 

Figure 6.13. TOCSY of the compound PTM-99-(F2)-F31. 
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Figure 6.14. 1H NMR of the compound PTM-99-(F4-F7)-F30. 
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Figure 6.15. 13C NMR of the compound PTM-99-(F4-F7)-F30. 
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Figure 6.16. COSY of the compound PTM-99-(F4-F7)-F30. 
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Figure 6.17.  HSQC-DEPT of the compound PTM-99-(F4-F7)-F30. 
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Figure 6.18. HMBC of the compound PTM-99-(F4-F7)-F30. 
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Figure 6.19. TOCSY of the compound PTM-99-(F4-F7)-F30. 
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Figure 6.20. 1H NMR of the compound PTM-99-(F4-F7)-F34. 
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Figure 6.21. 13C NMR of the compound PTM-99-(F4-F7)-F34. 
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Figure 6.22. COSY of the compound PTM-99-(F4-F7)-F34. 
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Figure 6.23. HSQC-DEPT of the compound PTM-99-(F4-F7)-F34. 

 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
F2 Chemical Shift (ppm)

50

100

150

F1
 C

he
m

ic
al

 S
hi

ft 
(p

pm
)

 

Figure 6.24. HMBC of the compound PTM-99-(F4-F7)-F34. 
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Figure 6.25. TOCSY of the compound PTM-99-(F4-F7)-F34. 


