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Introduction and exploitation of plant growth promoting rhizobacteria (PGPR) in
agro-ecosystems enhance plant–microbes interactions that may affect ecosystems
sustainability, agricultural productivity, and environmental quality. The present study was
conducted to isolate and identify PGPRs associated with maize (Zea mays L.) from
twenty sites of Himalayan region of Hajira-Rawalakot, Azad Jammu and Kashmir (AJK),
Pakistan. A total of 100 isolates were isolated from these sites, out of which eight (HJR1,
HJR2, HJR3, HJR4, HJR5, MR6, HJR7, HJR8) were selected in vitro for their plant growth
promoting ability (PGPA) including phosphorus solubilization, indole-3-acetic acid (IAA)
production and N2 fixation. The 16S rRNA gene sequencing technique was used for
molecular identity and authentication. Isolates were then further tested for their effects
on growth and nutrient contents of maize (Z. mays L.) under pouch and pot conditions.
The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates
belong to Pseudomonas and Bacillus genera. The isolates promoted plant growth by
solubilizing soil P which ranged between 19.2 and 35.6 µg mL−1. The isolates HJR1,
HJR2, HJR3, and HJR5 showed positive activity in acetylene reduction assay showing
their N2-fixation potential. All eight isolates showed the potential to produce IAA in the
range of 0.9–5.39 µg mL−1 and promote plant growth. Results from a subsequent pot
experiment indicated PGPRs distinctly increased maize shoot and root length, shoot and
root dry weight, root surface area, leaf surface area, shoot and root N and P contents.
Among the eight isolates, HR3 showed a marked P-solubilizing activity, plant growth-
promoting attributes, and the potential to be developed as a biofertilizers for integrated
nutrient management strategies.
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Introduction

Intensive farming practices that achieve high yield require
continuous application of chemical fertilizers in our agro-
ecosystems. However, the prices and availability of these chemical
fertilizers become the limiting factor for crop production espe-
cially in developing countries around the world. Continuous
application of N fertilizers may result in negative impacts on
agro-ecosystem such as leaching, pollution of water resources,
gaseous emissions to atmosphere thus causing irreparable dam-
age to the overall ecosystem and environment. Similarly, phos-
phorus (P) is one of the major essential macronutrients for
biological growth and application of P fertilizers is indispensable
component for crop production. However, the availability of P
to plants is a serious issue because of its fixation and precipita-
tion behavior in soil which lowers the efficiency of added P. It has
been reported that more than 80% of applied P as fertilizers pre-
cipitates in the presence of metal ion complexes in soil (Ca2+ in
calcareous soils and Fe3+ and Al3+ in acidic soils; Qureshi et al.,
2012). In addition to these constraints, the prices of P fertilizers
jumped up several folds during recent years making P fertilizers
not-affordable to a common resource poor farmer.

Introduction of plant growth promoting rhizobacteria (PGPR)
including phosphate solubilizing bacteria (PSB) as biofertilizers is
suggested as a sustainable option for the improvement of nutrient
availability, plant growth, and yields (Vessey, 2003). Use of micro-
bial consortia in the form of biofertilizers for reducing the use of
chemical fertilizers without compromising yield is presently an
important feature of research in the field of agriculture, micro-
biology, and biotechnology (Minorsky, 2008). The search for
diverse PGPRs is gaining serious attention and efforts aremade to
exploit them as biofertilizers for various economically important
crops.

During the last two decades use of microbial techniques
and introduction of rhizobacteria in agriculture has increased
tremendously due to their potential for N2-fixation and P
solubilization thus increasing N and P uptake by the plants
and therefore yields (Vessey, 2003). Successful results of using
PGPR species including Azospirillum, Bacillus, Pseudomonas and
Enterobacteria on maize, canola, wheat, and other horticultural
crops have been achieved both in the laboratory and in the
field under variable ecological conditions (Abbasi et al., 2011;
Almaghrabi et al., 2013; Hussain et al., 2013; El-Sayed et al., 2014;
Lavakush et al., 2014; Mehta et al., 2014). However, soil–plant–
microbe interactions are complex phenomena and detailed expla-
nation had been reported in literature that shows how this inter-
action influences the plant health and productivity (Mehta et al.,
2014). Studies have shown that PGPR strains vary widely and
their growth promoting ability may be highly specific to cer-
tain plant species, cultivar, soil, and genotype (Lucy et al., 2004).
Under such conditions, knowledge of native bacterial popula-
tion and their identification is important for understanding their
distribution and diversity.

It is important to explore and identify region specific microbial
strains which can be used as potential plant growth promoters
to achieve higher yields under specific ecological and environ-
mental conditions (Fischer et al., 2007). Easy and rapid molecular

techniques can be developed to perform microbial characteriza-
tion. DNA sequences in 16S–23S are known to exhibit a great deal
of sequences and length variation which are used to differentiate
genera, species up to strain level. Sequence analysis of 16S rRNA
gene is more exclusively studied and well-established method for
phylogenetic and taxonomic studies (Tan et al., 2001).

Knowledge of the native bacterial population, their character-
ization and identification is required for understanding the dis-
tribution and diversity of indigenous bacteria (Chahboune et al.,
2011). With the increasing awareness about the economic and
environmental consequences of the use of chemical fertilizers, it
is important to explore region specific microbial strains which
can be used as a potential plant growth promoter to achieve
desired results. The use of indigenous PGPR can be an added
advantage since it can easily acclimatize to the natural conditions
and enhance the plant–microbe interactions (Verma et al., 2013).
Presently, there is very little documentation on the occurrence or
utilization of PGPRs in the study region. Therefore, the objectives
of this study were (i) to isolate native bacterial strains from the
maize (Zea mays L.) rhizosphere under in vitro conditions and
to characterize these isolates on the basis of morphological and
physiological attributes as well as by 16S rRNA sequence analysis
(ii) to assess the PGPAs of these isolates in vivo and their effect on
the nutrient contents (N and P) of maize plants at early growth
stages.

Materials and Methods

Sample Collection, Bacterial Isolation, and
Physiological Characterization
The soil used in this study was collected from twenty differ-
ent maize growing sites of Hajira-Rawalakot, AJK, Pakistan.
The soil in the study site was Humic Lithic Eutrudepts
(Inceptisols). Soil samples were collected from 0 to 20 cm
depth at random from five different locations at each site
and mixed well. The field-moist soil was passed through a
4 mm sieve to eliminate coarse rock and plant material,
thoroughly mixed to ensure uniformity and stored at 4◦C
prior to use. A sub-sample of about 0.5 kg was air- dried
and passed through 2-mm sieve and used for the deter-
mination of physical and chemical characteristics (Table 1).
Soil pH was determined in distilled water with a glass elec-
trode (soil:H2O ratio 1:2.5 w/v). Soil total N was determined
by the Kjeldahl method (Bremner and Mulvaney, 1982). Soil
organic matter was determined using a modified Mebius method
(Nelson and Sommers, 1982). Available P from soil samples was
determined according to Soil and Plant Analysis Laboratory
Manual (Ryan et al., 2001) using AB-DTPA method modified
by Soltanpour and Workman (1979). Exchangeable K was deter-
mined using a flame photometer following soil extraction with
1 N ammonium acetate (COOCH3NH4; Simard, 1993). The
bacterial population was estimated by most probable numbers
(PMN) count according to method described by Mirza et al.
(2001).

The soil samples were processed at National Institute of
Biotechnology and Genetic Engineering (NIBGE) Faisalabad,
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TABLE 1 | Physico-chemical properties of soil samples collected for
isolation studies from different sites of maize growing areas in Hajira,
Rawalakot, Azad Jammu and Kashmir, Pakistan.

Location/sites MPN (cfu
g−1)

Organic
matter
(%)

Total
N (%)

Available
P (mg
kg−1)

pH

Upper Kharange 5.2 × 10−6 1.77 0.2 7.20 7.4

Thanda Gameer 6.4 × 10−6 1.73 0.04 8.15 7.9

Barigalli 7.0 × 10−6 0.38 0.23 7.81 7.8

Numble hut 1.4 × 10−6 1.41 0.27 8.02 7.3

Kalaran 1.8 × 10−8 0.40 0.15 7.68 7.2

Nazar Khawaja 7.1 × 10−8 1.34 0.26 13.48 7.3

Kot Koyan 4.8 × 10−6 0.88 0.04 9.49 7.6

Potha 1.4 × 10−7 1.11 0.06 9.07 7.7

Polus 2 × 10−6 1.24 0.07 8.45 7.4

Chatra 2.2 × 10−8 1.84 0.04 8.86 7.0

Manoria 1.6 × 10−6 1.12 0.08 10.11 8.0

Dawarandi 7.7 × 10−8 1.10 0.03 7.24 7.1

Shar Madarpur 6.0 × 10−8 0.72 0.02 7.81 7.9

Tetrinote 4.3 × 10−6 0.98 0.01 9.04 7.2

Kakuta 8.3 × 10−6 1.76 0.06 8.38 7.6

Buttle 4.1 × 105 0.35 0.04 8.48 7.9

Sehra 3.48 × 18 1.38 0.03 6.45 7.9

Tahi 6.6 × 10−6 0.34 0.04 7.07 8.1

Mandole 6.2 × 10−8 1.26 0.07 9.45 7.6

Hajira 8.2 × 10−8 1.48 0.06 8.56 8.3

MPN, most probable number.

Pakistan for bacterial isolation. For this purpose, plastic pots of
about 1 kg capacity were filled with 1 kg soil. Five to six surface
sterilized seed of maize (Z. mays L.) were sown in each pot. After
40 days of germination, plants were harvested. Rhizosphere-
associated bacteria were isolated by taking 1 g of roots with
tightly adhering soil using serial dilution plating technique on
LB agar plates (Hameed et al., 2004). The suspension was spread
on LB agar plates and incubated at 28 + 2◦C till the appear-
ance of bacterial colonies. Individual colonies were picked and
streaked on LB plates for further purification. Differences in
cell morphology, i.e., cell shape, motility, acid/alkali production,
and gram staining were performed by using phase contrast light
microscope as described by Vincent (1970). The ability of the
isolates to grow in diverse temperature range was carried out
by growing isolates in nutrient broth and incubated at differ-
ent temperatures ranged from 20 to 40◦C. Growth was recorded
every 24 h up-to 96 h. The ability of the isolates to grow in alka-
line or acidic media was tested in nutrient agar plates in which
the pH was adjusted from 5.0 to 8.0 and incubated at 30◦C for
3 days.

The cell number was calculated from a calibration curve that
relates OD values of a series of culture of known cell density.
The OD values of cultures containing about ≤0.4 × 109 cell/mL
and designated as slow growth (+) ranged from 0.1 to 0.5. The
OD values categorized as optimum growth and denoted by (++)
ranged from 0.6 to 0.9 while the OD values containing about
≤0.8–2 × cell/mL and designated as maximum growth and is
denoted by (+++) ranged ≥1.0 as shown in Table 2.

Characterization of Bacteria for Plant
Growth Promoting Potential
A total of 100 bacterial isolates were screened for their abil-
ity to produce indole-3-acetic acid (IAA), phosphate solubiliza-
tion, and N2 fixation. For IAA production, individual bacterial
cultures were grown in LB broth supplemented with trypto-
phan (100 mg/L) as a precursor of IAA at 28 ± 2◦C with
constant shaking (Okon et al., 1977). After 1 week of growth,
IAAwas extracted from acidified cell-free supernatant using ethyl
acetate and analyzed on high-performance liquid chromato-
graph equipped with Turbochrom software (Perkin Elmer, USA)
and C-18 column at a flow rate of 0.5 ml min−1 (Malik et al.,
1994). Isolates were categorized into two groups based on their
ability to produce IAA in vitro as low IAA producers (1–
4 µg mL−1) and medium IAA producers (5–10 µg mL−1)
as reported earlier (Khalid et al., 2004). Pure bacterial colonies
were inoculated into NFM (Nitrogen Free Malate medium)
semisolid medium in vials and incubated at 28 + 2◦C for
48 h. Acetylene (10% v/v) was injected to the vials, incubated
at room temperature for 16 h and 100 µL of gas sample from
each vial was analyzed on a Gas Chromatograph (Thermoquest,
Trace G.C, Model K, Rodono, Milan, Italy) equipped with
a Porapak Q column and a H2 -flame ionization detector
(FID).

To determine phosphate solubilization ability, each bacte-
rial culture was spot inoculated on Pikovskaya (1948) agar
plates containing tricalcium phosphate as insoluble phosphate
source. The plates were incubated at 28 + 2◦C for 7–10 days.
Appearance of a clear zone around bacterial colonies indicated
the P-solubilization ability of the isolate. Total solubilized phos-
phate wasmeasured by estimating the available phosphorus in the
cell-free supernatant by phospho-molybdate blue color method
using spectrophotometer (Halder et al., 1990).

Identification of Potent PGPR based on 16S
rRNA Sequencing
Total genomic DNA was extracted by alkaline lysis method
(Maniatis et al., 1982). Eubacterial primers fD1 (5′-AGA-
GTTTGATCCTGGCTCAG-3′) and rD1 (5′-AAGGAGGTGAT-
CCAGCC-3′) which correspond to Escherichia coli 16S rRNA
gene were used for PCR amplification as described by
Weisburg et al. (1991). Amplified PCR products were resolved
on 1% agarose gel. Purification of amplified products was done
by using PurelinkTM Quick Gel Extraction Kit (Invitrogen)
according to manufacturer protocol. The PCR were sequenced
commercially by Macrogen (Korea). The gene sequences were
compared with others in the GenBank database using the
NCBI BLASTn. Multiple sequence alignments were performed
by ClustalX and phylogeny was determined by neighbor-
joining method (Saitou and Nie, 1987).Tree topology based
on re-samplings of 1000 times of the neighbor joining
data set was evaluated by boot strap analysis (Felsenstein,
1985).

Plant Inoculation Experiment
Influence of various PGPR isolates on growth and N and P con-
centration on maize (Z. mays L.) plant was examined in pots
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TABLE 2 | Colony and cell morphology of selected bacterial isolates and their temperature and pH tolerance ability.

Isolate code Shape Margins Color Cell shape Gram s’
reaction

Temperature tolerance (◦C) pH tolerance

25 30 35 40 5 6 7 8

HJR1 Round Smooth Off white Medium rod +ve + + + + + + + + + + + + + +
HJR2 Round Smooth Off white Medium rod +ve + + + + + + + + + + + + +
HJR3 Round Smooth Off white Medium rod +ve + + + + + + + + + + + + + + +
HJR4 Round Smooth Glossy white Small rod +ve + + + + + + + + + + + + + + +
HJR5 Round Smooth Off white Small rod +ve + + + + + + + + + + + + +
MR6 Round Smooth white Medium rod -ve + + + + + + + + + + + + +
HJR7 Irregular wavey Off white Medium rod +ve + + + + + + + + + + + +
HJR8 Round Smooth whitish Long rod +ve + + + + + + + + + + + + +
Slow growth (+), optimum growth (++), maximum growth (+ + +).

under greenhouse conditions. Eight PGPR strains isolated from
the 100 screened isolates (HJR1, HJR2, HJR3, HJR4, HJR5, MR6,
HJR7, and HJR8) along with un-inoculated control and two levels
of N and P fertilizer (1/2NP and full NP fertilizer) were selected.
The surface sterilized seeds were inoculated by immersion in the
PGPR suspension for 1 h. Cleaned earthen pots of 20 cm height
and 15 cm depth were used. A combination of about 4 kg soil
and 1 kg sand was used for filling in each pot. Four to five air
dried surface sterilized seeds were sown in each pot. The exper-
iment was laid down in a completely randomized design with
11 treatments, three replications and total of 33 pots were used
in the experiment. Treatments included: (1) HJR1+1/2NP (2)
HJR2+1/2NP (3) HJR3+1/2NP (4) HJR4+1/2NP (5) HJR5+1/2NP
(6) MR6+1/2NP (7) HJR7+1/2NP (8) HJR8+1/2NP (9) control
(without NP and inoculation; 10) 1/2NP (11) Full NP. Nitrogen
and P were applied at the rate of 60 and 45 mg kg−1 (full
dose) in the form of urea and single super phosphate, respec-
tively. Pots were kept under greenhouse conditions and equally
irrigated when needed. The plants were harvested at 30, and
60 days after germination and following measurements were
taken. Morphological characteristics and nutrient contents were
determined such as shoot and root length, shoot and root dry
weight, root surface area (Scanned image analysis program soft-
ware), leaf surface area (electronic planimeter), N and P contents
in shoot and root. The N and P analysis in shoot and root were
carried out using the methods described by Winkleman et al.
(1990).

Statistical Analysis
The data were subjected to analysis of variance using statistical
program (MSTATC, 1990). The differences among various treat-
ment means were compared using the least significant differences
test (LSD) at 5% (P ≤ 0.05) probability level (Steel and Torri,
1980).

Results and Discussion

Isolation and Characterization of PGPR
Among the 100 bacterial isolates from the twenty maize grow-
ing sites, eight named as HJR1, HJR2, HJR3, HJR4, HJR5,
MR6, HJR7, and HJR8 were selected based on their ability to

produce phytohormone IAA, solubilize insoluble phosphate, or
fix N2. These bacterial isolates were characterized based on their
morphological features such as shape, margins, color, and pig-
mentation. All eight isolates were fast growing, having round to
irregular colony shape with raised elevation and smooth surface.
No pigmentation was produced by any of the tested isolate on
LB medium (Table 2). Isolates HJR4 and HJR5 were small rod;
HJR1, HJR2, HJR3, MR6, and HJR7 were medium rods; and HJR8
showed long rods. Except MR6, all isolates were Gram positive.
The isolates were grown in ranges of temperature and pH to
examine their tolerance to pH and temperature extremes. The
results indicated that almost all isolates were able to grow in tem-
peratures ranging between 25 and 40◦C, and pH ranging between
5 and 8, with an optimum temperature of 35◦C and pH of 7.0
(Table 2). Our results are similar to those reported for PGPR
isolated from apple rhizosphere in Himachal Pradesh, India
(Mehta et al., 2014). The apple rhizosphere isolates reported by
Mehta et al. (2014) had an optimum growth temperature of 30◦C
and pH of 7.0 with similar phenotypic characteristics as observed
in our study.

Characterization of Bacterial Isolates
The sequence analysis of 1.5 kb fragment of 16S rRNA gene
of all eight bacterial isolates was analyzed by nucleotide Blast
analysis. The sequence of isolates HJR1 and HJR3 showed 99%
similarity with Bacillus subtilis and were submitted to GenBank
under accession number HQ700330 and HQ700332, respec-
tively. Isolates HJR2, HJR4, and HJR8 had 99% sequence match
with that of Bacillus megaterium. These isolates were submit-
ted to GenBank under accession number HQ700331, HQ700333,
and HQ700334, respectively. Isolate MR6 showed similarity with
genus Pseudomonas and was identified as Pseudomonas stutzeri.
These sequences were aligned with sequence of some PGPR of
different genera and species within genera from the GenBank
database. The phylogenetic tree of these strains constructed
by using their 16S rRNA sequences (Figure 1) showed that
the selected isolates were members of genus Pseudomonas and
Bacillus.

Bacillus and Pseudomonas are the most commonly reported
genera and represent the dominant isolates in many plant stud-
ies (Hallmann and Berg, 2006). The number of isolates belonging
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FIGURE 1 | Phylogenetic tree of 16S rRNA gene sequences showing the relationships among the isolates isolated from the soils of Himalayan region
of Hajira Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan and the related genera. The data of type strains of related species were from GenBank
database (the accession numbers are given in parentheses).

to the genus Bacillus was higher in this study similar to those
reported earlier explaining that Bacillus spp. are dominant in root
adhering soil (Laguerre et al., 1994). Studies on the diversity of
root-associated bacteria in maize carried out in different geo-
graphical regions, revealed extensive colonization by Bacillus
sp. during the active growth stage of the plants (Lambert et al.,
1987; Lalande et al., 1989). Both these studies also reported
a substantial or rather predominant fraction of Pseudomonas

present in the isolation pool (reported in Grönemeyer et al.,
2012).

Characterization for Plant Growth
Promoting Traits
The isolates associated with the roots of maize crop were tested
for features known to contribute to plant growth promotion or
biocontrol (Table 3).
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TABLE 3 | Plant growth promoting potential of different bacterial isolates under in vitro condition.

Isolate code Identification based on 16S
rRNA sequencing

Phosphate solubilization
(mg mL−1)

Decrease in pH of
medium

IAA production
(µg mL−1)

Acetylene reduction
assay

HJR1 Bacillus subtilis 25.7 4.2 0.9 +
HJR2 B. megaterium 27.4 4.8 4.8 +
HJR3 B. subtilis 35.6 3.5 2.6 +
HJR4 B. megaterium 22.05 4.5 1.4 –

HJR5 B. megaterium 23.15 4.7 1.9 +
MR6 Pseudomonas stutzeri 19.2 4.9 2.9 –

HJR7 Bacillus sp. 28.9 4.2 5 –

HJR8 B. megaterium 25.7 4.4 5.3 –

Production of Indole-3-Acetic Acid
All Bacillus and Pseudomonas spp. produced IAA in vitro in
tryptophan supplemented LB medium. Isolates HJR2, HJR7,
and HJR8 were medium producers of IAA (4.8–5.3 µg ml−1)
while HJR1, HJR4, HJR5, HJR6 designated as weak producers
(0.9–2.9 µg ml−1; Table 3). The amount of IAA produced by
these isolates was substantially lower than that reported ear-
lier from other regions (Fischer et al., 2007; Tahir et al., 2013)
but similar to that reported under similar environmental con-
ditions from this region (Abbasi et al., 2011; Zhang et al., 2012).
However, it has been reported that the amount of indole com-
pounds produced in vitro depends on the particular bacterial
species, strain, or the conditions of the culture such as oxy-
genation and pH (Radwan et al., 2002). The variation among
PGPRs to produce IAA found in the present study had also
been reported earlier (Zahir et al., 2000; Abbasi et al., 2011). This
variation is attributed to the various biosynthetic pathways, loca-
tion of the genes involved, regulatory sequences, and the pres-
ence of enzymes to convert active free IAA into conjugated
forms (Patten and Galick, 1996). A high level of IAA production
was recorded in different strains of bacteria with the mem-
bers of the genera Pseudomonas spp., Bacillus spp., Rhizobium,
and Mesorhizobium spp. by other workers (Ahmad et al., 2008;
Verma et al., 2012, 2013).

Solubilization of Inorganic Phosphates
The results showed that all isolates had P solubilization poten-
tial ranging between 19.2 and 35.6 µg mL−1 (Table 3). The
highest P solubilization was measured for bacterial isolate HJR3
(35.6 µg mL−1) fallowed by HJR7 (28.9 µg mL−1) and HJR2
(27.4 µg mL−1). The solubilization of TCP by different iso-
lates was accompanied by a significant drop in pH (4.9–3.5)
from an initial pH of 7.0. The maximum drop in culture pH
of 3.5 was associated with isolate HJR3. P-solubilization activity
was associated with the release of organic acids and a drop in
pH. Pikovskaya’s medium indicated the efficacy of tested isolates
to solubilize the unavailable P (Mehta et al., 2014). It has been
reported that P solubilization is mainly due to the production
of microbial metabolites including organic acids which decrease
the pH of the culture media (Puente et al., 2004; Sahin et al.,
2004).

The ability of PGPR strains to solubilize insoluble P and con-
vert it to plant available form is an important characteristic under

conditions where P is a limiting factor for crop production. In
general, out of the 100 isolates tested, only eight were able to
show P solubilization. Such low percentage of isolates that show
P solubilization ability is not unique to our study as other stud-
ies also show limited numbers. Two separate studies in pearl
millet and rice paddy field indicated that only 5% of the 207 total
tested strains in of the studies and 23.5% in the other possessed P
solubilizing ability (Hameeda et al., 2006; Rashedui et al., 2010).
The presence of P-solubilizing microbial population in soils may
be considered a positive indicator of utilizing the microbes as
biofertilizers for crop production and beneficial for sustainable
agriculture.

Based on the acetylene reduction assay, isolates HJR1, HJR2,
HJR3, and HJR5 showed the ability to fix N2. The remaining
isolates did not show any potential for N2 fixation (Table 3).
The presence of N2 fixing bacteria in soil and its isolation
and conversion into PGPR biofertilizer is an important strat-
egy reducing the use of expensive chemical fertilizers espe-
cially in nutrient poor and degraded soils. Biological N2 fix-
ation provides a major source of N for plants as part of
environmental friendly agricultural practices (Cakmakci et al.,
2006).

Plant Growth Promotion
Co-inoculation of these isolates along-with 50% reduced fertil-
izer dose (1/2NP) was tested against un-inoculated/unfertilized
control and with two levels of NP fertilizer (1/2NP and full NP
fertilizer) to evaluate their potential as PGPR in maize (Table 4).
Results indicated that all isolates significantly (P ≤ 0.05)
increased the growth of maize compared to the control and
in some cases to that recorded under 1/2NP treatment. The
shoot length, root length, shoot fresh weight, and root fresh
weight were highest in HR3+1/2NP and full NP treatments.
Root dry weight and leaf area were significantly (P ≤ 0.05)
higher in HR3+1/2NP compared to the remaining treatments
including full NP. Root area was maximum in HR8+1/2NP.
Most of the isolates when combined with 1/2NP showed signifi-
cantly higher growth characteristics compared to the treatments
supplemented with 1/2NP. The difference in growth between
isolates+1/2NP and 1/2NP treatments was due to the addi-
tion of PGPR isolates. The results indicated that the growth
traits recorded under HJR3+1/2NP treatment were significantly
(P ≤ 0.05) higher than those recorded under other isolates,
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TABLE 4 | Effect of inoculation with plant growth promoting rhizobacteria on the growth of maize (Zea mays L.) grown in pots under greenhouse
conditions.

Treatments Shoot length
(cm)

Root length
(cm)

Shoot fresh
wt. (g plant−1)

Root fresh wt.
(g plant−1)

Shoot dry wt.
(g plant−1)

Root dry wt.
(g plant−1)

Root area
(cm2 )

Leaf area
(cm2 )

HJR1+1/2NP 56.7h 35.6d 20.4gh 19.2e 10.27c 3.6b 228.1e 7.85ab

HJR2+1/2NP 53.4i 19.1h 27.7d 19.3e 7.92de 2.7c 216.4f 4.83d

HJR3+1/2NP 95.2a 44.0a 38.0a 36.1a 18.20a 5.6a 350.5b 8.75a

HJR4+1/2NP 74.1e 23.6g 21.7fg 17.1f 8.39d 2.7c 270.0c 5.33d

HJR5+1/2NP 78.3d 27.5f 23.0ef 19.0e 6.43f 2.0cd 235.4d 4.60de

MR6+1/2NP 61.8g 33.6e 28.7c 17.0f 6.67ef 1.6de 206.4g 3.84e

HJR7+1/2NP 88.0c 41.3bc 34.6b 31.5b 13.40b 2.1cd 221.7f 6.31c

HJR8+1/2NP 86.6c 40.0c 30.0c 24.6d 8.79d 6.0a 406.8a 4.73de

Zero Control 47.9j 16.5i 14.6 j 11.8i 4.13g 1.1e 109.3j 2.20f
1/2NP control 65.8df 28.0cf 22.5d 19.0e 5.50f 1.8de 182.0h 2.04e

Full NP control 93.8a 42.7a 36.8a 34.9a 14.44b 6.3a 136.4j 7.63b

LSD (P ≤ 0.05) 2.60 1.97 1.75 1.81 1.31 0.87 5.88 0.94

Samplings for the above characteristics were taken twice, i.e., 30 and 60 days after germination and the values presented are the average of the two samplings.

1/2NP and control treatments but at par with those recoded
under full NP fertilizer treatment showing the dominating and
promising effect of isolate HJR3 over the remaining isolates
(Table 4).

Plant growth promotion in response to PGPRs applied alone
or with N or P fertilizers has been reported recently for dif-
ferent crops under different ecological and environmental con-
ditions (Lee et al., 2012; Krey et al., 2013; Verma et al., 2013;
Lavakush et al., 2014; Mehta et al., 2014). The PGPRs may pro-
mote the plant growth either by using their own metabolism
(solubilizing phosphates, producing hormones, or fixing nitro-
gen) or directly affecting the plant metabolism (increasing the
uptake of water and minerals), enhancing root development,
increasing the enzymatic activity of the plant or “helping” other
beneficial microorganisms to enhance their action on the plants,
or by suppressing plant pathogens (Pérez-Montaño et al., 2014).
The PGPRs tested in this study possessed multiple plant growth
promoting traits including P-solubilization, IAA production, and
N2 fixation.

N and P Concentration in Maize Plants
The N and P contents of both shoot and root of plants in
response to PGPR isolates, NP fertilizer and control treat-
ments is presented in Figure 2. The N and P contents in
both shoot and root showed similar trend in response to dif-
ferent treatments; hence, the N and P contents is presented
here as a total of the shoot and root. The total N in plants
received the control treatment was 7.4 g kg−1 compared with
14.8–47.7 g kg−1 for plants those received the PGPRs and
NP fertilizers, showing a 2–6 fold increase. Among the differ-
ent amendments, co-inoculation with isolate HJR3+1/2NP dis-
played superiority over the remaining treatments including full
NP treatment. The highest total N content (in shoot+root) of
47.7 g kg−1 was recorded in plants grown under HJR3+1/2NP
followed by 34.6, 33.8, and 33.1 g kg−1 N under HJR1+1/2NP,
full NP and HJR2+1/2NP treatments, respectively. The relative
increase in total N contents underHJR3+1/2NP overHJR1+1/2NP,
full NP and HJR2+1/2NP was 38, 41, and 44%, respectively.

FIGURE 2 | Effect of inoculation with Bacillus and Pseudomonas on
the shoot and root N and P contents of maize plant grown under
greenhouse condition after 60 days. Treatments included T1,
HJR1+1/2NP; T2, HJR2+1/2NP; T3, HR3+1/2NP; T4, HJR4+1/2NP, T5,
HJR5+1/2NP; T6, MR6+1/2NP; T7, HJR7+1/2NP; T8, HJR8+1/2NP; T9,
Control; T10, 1/2NP; T11, Full NP. The vertical lines on each bar represent the
standard error of mean (SEM, n = 3).

The N contents observed in HJR3+1/2NP was almost dou-
ble to those recorded under 1/2NP treatment showing that
the additional N in plant was eventually because of isolate
HJR3.

Total P contents both in shoot and root also showed sim-
ilar trend as that of total N (Figure 2). The minimum total P
content of 3.5 and 3.7 g kg−1 was found under the control and
1/2NP fertilizer treatments. Application of different PGPRs with
1/2NP significantly increased plant P contents to between 7.7
and 20.6 g kg−1 showing a 2–6 fold increase due to inoculation
with PGPRs. The highest P content of 20.6 g kg−1 was recorded
under HJR3+1/2NP treatment followed by 17.7 g kg−1 P under
HJR2+1/2NP. The full NP fertilizer treatment had 13.7 g kg−1

total P content. The relative increase in P contents in plants
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grown under HJR3+1/2NP and HJR2+1/2NP over full NP was 50
and 29%, respectively.

These results show the efficient transfer of N and P to plants
by the PGPR strains as reported earlier rice (Islam et al., 2009),
wheat (Abbasi et al., 2011), common bean (Phaseolus vulgaris L.;
Tajini et al., 2012), and chickpea (Cicer arietinum L.; Verma et al.,
2013). This increase in NP concentration in plant tissues is
associated with N2 fixation and P solubilization potential of
applied PGPRs. The highest N concentration was recorded in
plants supplemented with isolates HJR1, HJR2, HJR3, and HJR5.
All of these four isolates showed nitrogenase activity (N2 fix-
ation; Table 3) signifying a close association between plant N
concentration and N2 fixation. In our previous study, the N con-
tent in wheat shoot under control was 1.2% that significantly
increased to 1.7–2.43% by the application of different PGPR
strains (Abbasi et al., 2011).

The increase in plant P concentration in response to PGPRs
is attributed to the fact that PGPRs have the ability to sol-
ubilize insoluble phosphates, making it available for plant
uptake through different mechanisms such as acidification, chela-
tion, and ion-exchange reactions (Coutinho et al., 2012). The
results presented in Table 3 indicate a substantial potential
of applied strains to solubilize P and increase P concentra-
tion in plants. The increased concentration of N and P in
plants supplemented with PGPRs suggest that a positive inter-
action exists between root colonization, N and P concentra-
tion and growth promotion. Further, this study suggests that
plant N derived from N2-fixation and P concentration as a
result of P-solubilization by phosphate solubilizing microorgan-
ism is substantially enhanced above those of uninoculated control
plants.

The significant increase in growth and NP level both in shoot
and root upon isolates application is a clear indication that bac-
terial isolates are able to provide better nutrient flux to the plant
and result in increased plant biomass. The increase in root length
and mass due to the applied isolates may also be a factor that con-
tributes to the increase in N and P concentration in plant shoot
and root.

Conclusion

This study indicates the presence of some efficient and effec-
tive species of bacteria in the soils of mountainous region of
Rawalakot, AJK, Pakistan. Our results demonstrate that efficient
N2 fixing and P solubilizing isolates are present among natural
population of rhizobacteria. These characteristics are important
growth promoting traits for plants growing in the region under
continuous threat of soil erosion and soil degradation. The com-
bination of Bacillus spp. with 1/2NP fertilizer resulted in plant
growth equivalent to full NP fertilizer treatment while the N and
P concentration in plant biomass in this combined treatment was
even higher than that recorded under full NP treatment. The
effectiveness of PGPR isolates with NP fertilizers clearly indi-
cates that the chemical fertilizers rate or dose could be reduced
through combination of PGPR isolates with fertilizers that may
be an eco-friendly and cost effective management strategy. These
native isolates may be used as efficient bio-inoculants for inte-
grated nutrient management in the uplands soils facing severe
threat of erosion and degradation. Therefore, these isolates might
have potential in future field applications as plant growth pro-
moters. The future studies should be focused on the functional
characterization of PGPR for practical applications in the field.
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