Isolation and Mapping of a Family of Putative Zinc-finger Protein cDNAs from Rice

Jianyu Song, ${ }^{1}$ Kimiko Yamamoto, ${ }^{1}$ Ayahiko Shomura, ${ }^{1}$ Hiraku Itadan,${ }^{1}$ Hui Sun Zhong, ${ }^{1}$ Masahiro Yano, ${ }^{2}$ and Takuji SASAKı ${ }^{2, *}$
Rice Genome Research Program, Institute of the Society for Techno-Innovation of Agriculture, Forestry and Fisheries, 446-1 Ippaizuka, Kamiyokoba, Tsukuba, Ibaraki 305, Japan ${ }^{1}$ and National Institute of Agrobiological Resources, 1-2 Kannondai 2-chome, Tsukuba, Ibaraki 305, Japan²

(Received 19 January 1998; revised 31 March 1998)

Abstract

To understand the functions of rice homologues of the Arabidopsis flowering-time gene CONSTANS ($C O$) and salt-tolerance gene $S T O$, we performed a similarity search of the single-run sequence data of cDNA clones accumulated by the Rice Genome Research Program, and isolated seven rice cDNA clones (S3574, C60910, S12569, R2931, R1479, R1577, and E10707) coding for proteins containing one or two zinc-finger-like motifs. Comparison of the deduced amino acid sequences between these cDNAs and the $C O$ gene revealed significant similarities (46% - 61%) in the region of zinc-finger motifs. A domain having a high content of basic amino acids at the C-terminus of the CO protein was found in the corresponding region of proteins predicted from cDNAs S3574, C60910, and S12569. Two amino acid sequences, "CCADEAAL" and "FCV(L)EDRA," which were present inside each zinc-finger in the Arabidopsis regulatory protein STO, were also found in each of the two zinc-finger regions of proteins predicted from cDNAs R2931, R1479, R1577, and E10707. Using restriction fragment length polymorphism (RFLP) linkage analysis, we determined the chromosomal location of the seven cDNA clones. The position of R2931 on the RFLP linkage map was closely linked to $H d-3$, one of the putative quantitative trait loci (QTL) controlling heading date in rice.

Key words: zinc-finger protein; transcription; RFLP mapping; rice; Oryza sativa L.

1. Introduction

Zinc-finger proteins contain finger structures organized around zinc (II) metal ions, which are required to maintain the folded structure of zinc-finger peptides. Many zinc-finger proteins are known to be involved in transcriptional regulation and developmental control. The GATA1 protein family is one of the families of $\mathrm{Cys}_{2} / \mathrm{Cys}_{2}{ }^{-}$ type zinc-finger transcription factors; a "Cys- x_{2}-Cys- x_{17} -Cys- x_{2}-Cys" sequence has been defined as the DNAbinding domain of the GATA-1 family. ${ }^{1,2}$ A member of the GATA-1 family, NTL1 from tobacco, is the first reported case in plants. ${ }^{3}$ The predicted protein sequence of NTL1 shows similarity to NIT2, a fungal transcription factor that has been characterized as one of the regulatory elements of the nitrate assimilation pathway. ${ }^{4}$

The CONSTANS (CO) gene in Arabidopsis was isolated by using a map-based cloning strategy. Its protein product has been identified as a putative transcriptional factor promoting flowering. ${ }^{5}$ The CO protein contains

[^0]two zinc-finger motifs that show sequence similarities to those of members of the GATA-1 family. The COL2 gene of Arabidopsis has been identified as a homologue of $C O .^{6}$ The STO gene of Arabidopsis has been implicated in salt tolerance in a yeast calcineurin mutant. ${ }^{7}$ The similarity of the putative zinc-finger motifs in the STO protein to the zinc-finger motifs in the CO protein indicates that STO may be a GATA-1-like protein. ${ }^{8}$

Rice has been become a good model plant for genome research of cereals and for isolation of agronomically important genes, owing to its relatively small genome size (430 Mb). In the Rice Genome Research Program (RGP), we have conducted large-scale sequencing of cDNAs randomly selected from various kinds of libraries with the aim of cataloguing all expressed rice genes. In this paper, we describe the isolation of seven kinds of cD NAs that show similarities to the Arabidopsis floweringtime gene $C O$ and salt-tolerance gene $S T O$. We also compare the results of linkage analyses of the seven genes with those of QTL analyses for heading date ${ }^{9}$ and salt tolerance. ${ }^{10}$

2. Materials and Methods

2.1. Identification and sequencing of $c D N A s$ coding for putative zinc-finger proteins

cDNA clones of the $C O$ and $S T O$ homologues were obtained by similarity search of partial-sequence data accumulated through large-scale cDNA analysis against the CO and STO protein sequences using the Basic Local Alignment Search Tool (BLAST) algorithm. ${ }^{11}$ Based on the sequences of 3^{\prime}-untranslated regions, the cDNAs were classified into seven independent groups, and the full nucleotide sequences of the longest cDNAs in each group were determined by the shotgun method. DNA fragments of these cDNAs were produced by sonication and subcloned into pBluescript II SK (+). The complete nucleotide sequences were determined for both strands with a thermal cycle sequencing kit (Perkin Elmer, CA, USA) by the use of a combination of a chemical robot, a CATALYST (Perkin Elmer), and an automated sequencer, Model 373A (Perkin Elmer).

2.2. Restriction fragment length polymorphism mapping

Genomic DNA was prepared from leaves of 186 rice F_{2} plants and their parent lines, japonica variety Nipponbare and indica variety Kasalath, by the cetyltrimethylammonium bromide (CTAB) method. ${ }^{12}$ DNA from the parent plants was digested with one of eight restriction enzymes: BamHI, Bgl II, EcoRV, HindIII, Apa I, Dra I, EcoRI, or Kpn I. Each digested DNA ($2 \mu \mathrm{~g}$ per lane) was electrophoresed on a 0.6% agarose gel and transferred onto a positively charged nylon membrane (Boehringer, Mannheim, Germany) as described in detail by Kurata et al. ${ }^{13}$ Southern hybridization and detection were performed according to the protocol of the Enhanced Chemiluminescence (ECL) detection system kit (Amersham, Buckinghamshire, UK). All probes were amplified by polymerase chain reaction (PCR) by using the gene-specific 3^{\prime} untranslated region of the cDNA sequences as templates. F_{2} DNAs were digested with the restriction enzyme corresponding to the restriction fragment length polymorphism (RFLP) detected between the two parent lines, and were analyzed by Southern hybridization. The linkage analyses were performed with the MAPMAKER/EXP 3.0 computer package, ${ }^{14}$ based on a high-density linkage map, which included 1300 DNA markers, constructed by Kurata et al. ${ }^{13}$

3. Results and Discussion

We analyzed the similarity of the partial sequence data, which has been accumulated through large-scale cDNA analysis, against Arabidopsis CO and STO, and obtained 18 cDNA clones encoding for putative zincfinger proteins. Gene-specific 3^{\prime} untranslated sequences of these clones were further analyzed, and the clones were classified into seven independent groups. The following seven clones, which were the longest cDNA sequences in each group, were selected for more detailed study: S3574, derived from etiolated seedlings; S12569, derived from green seedlings; R2931, R1479 and R1577, derived from the 9-day-old root cDNA library; C60910, derived from the cDNA library of heat-shocked callus; and E10707, derived from the cDNA library of panicles at the ripening stage.

The complete nucleotide sequences of the seven cDNAs were determined, and the predicted protein sequences were deduced from the sequences (Fig. 1). The nucleotide sequence data have been submitted to the EMBL, GenBank and DDBJ nucleotide sequence databases under accession numbers AB001882 (C60910), AB001883 (E10707), AB001884 (R1479), AB001885 (R1577), AB001886 (R2931), AB001887 (S12569), and AB001888 (S3574).

Translation was postulated to start at the first methionine in each cDNA sequence. In-frame stop codons preceding the translations were found in C60910, R2931, R1577, and E10707. Thus, it is likely that these clones are full-length cDNAs. The typical polyadenylation signal "AATAAA" was found only in the 3^{\prime}-untranslated regions of S3574 and R2931. Analysis of these predicted protein sequences revealed that two cysteine cores in each finger were interrupted by 15 or 16 amino acid residues with a consensus sequence of "Cys- x_{2}-Cys- $\mathrm{x}_{16(15)}$ - $\mathrm{Cys}-\mathrm{x}_{2}$ Cys." It has been reported that the zinc-finger domain of GATA-1 transcription factors is in a "Cys- $\mathrm{x}_{2}-\mathrm{Cys}^{-} \mathrm{x}_{17}$ -Cys- x_{2}-Cys" arrangement. ${ }^{2}$ This implies that the seven cDNAs in this study comprise a GATA-1-like gene family in rice.

The predicted protein sequence of C60910 contained a glutamic acid-rich domain "EVEVVEEEEE" in the N-terminus and an alanine-rich domain "AAAATAAA" following the zinc-finger motifs (Fig. 1b). In S12569, the zinc-finger domain was followed by an acidic domain "DYDDDDADAAGEEDEE" (Fig. 1c).

[^1](a). S 3574

 GGACATGGGCACCATCCTCAOCTGCTGGGCATAAAACGCAGACCATAACTGTTACTGGGGTGCCCATCOTCGCCAGAGCTCTCGAOAATCTGOTCCTPTAGTATGGATATCCCACT

 GCATATCACTACGATCCGCTGAGCCAAMCAAGAACCTAC TAAGCCCTTTCACTCCATTGGTTTCOTCCAGTGTTCAAGTACCAATTTTCACCAGCTGATTTGATGTTGGTTGCACGECAA 156

 TTTGTAAAAARAARAAAAAAA

(b). C 60910

(c). $\$ 12569$

(d). R2931

(e). R1479

 TAATTAATTATCGTATTTTGTALUAAAAAAALAAAAA
(f). R1577${ }_{122}^{2}$
 ${ }^{242}$AGAAGATCCTCCTCCTGTGTTCTTGGGTTTMCCATGTCCTTGTGTTTTCTGCTTGTATCCTAGCTTTTGTGTTTAACGTTAGTCCTCCTCAACTGTGACATATTTGAGCCACTGTGCTTССGTCCCAMGCCATCAGTGATCAATCTGATATAAGTTTTTCTGAAATGAGCTCCAGCCTCTGCTCTTATGTTTAATCTTCCGGGATTACCAGTACAGAMGAGATTACCAGTACAAAAA
(g). E10707

 tenactargaictactatcacatcacgananananananaana

Figure 2. A comparison of 10 amino acid sequences of $\mathrm{Cys}_{2} / \mathrm{Cys}_{2}$-type zinc-finger proteins with pairwise alignment using the PILEUP program of the GCG package. ${ }^{18}$ The protein sequences of S3574, C60910, S12569, R2931, R1479, R1577, and E10707 (this paper) were predicted from the cDNA sequences starting at the first methionine. Those of STO, CONSTANS, and COL2 were obtained from GenBank (accession numbers X94937, L81119, and X95572, respectively). Boxed amino acid sequences indicate small regions of homology. Dots are used to optimize alignment. The zinc-finger motifs are indicated by open bars. Positively charged amino acids in the C-terminus are marked with a " + ."

The predicted protein sequence of R1479 contained glycine and alanine patches in the middle, and had a proline-rich domain, which is suggested to be a transcriptional activation domain for transcription factors, ${ }^{15}$ in the C-terminus (Fig. 1e). The predicted protein sequence of R1577 contained an opa-like domain "HHHHHQQ" in the C -terminal side of the fingers (Fig. 1f). The opa-like domain has been reported to be present in a number of plant transcription factors. ${ }^{16}$

The amino acid sequences of seven putative zinc-finger proteins in rice and three known zinc-finger proteins in Arabidopsis (CO, STO, and COL2) were compared (Fig. 2). The amino acid sequences of the zinc-finger regions of the seven rice proteins are similar to those of the proteins CO ($46 \%-61 \%$ identical) and STO ($38 \%-86 \%$ identical). A basic region was found in the C-terminus of CO and STO, but there is no amino acid sequence similarity between the two proteins in this region. A basic region was also observed near the C-terminus of all seven
predicted rice proteins. A high sequence similarity (58\%88% identical) in the basic region was found among the S3574, C60910, S12569, and CO proteins. The amino acid sequences of R1577, E10707, and STO also had significant similarity within their C-terminal basic regions. We suspect that the basic region could be a functional region related to flowering-time and salt tolerance.

A comparison of the seven predicted protein sequences with members of the GATA-1 and GATA-1-like families (Fig. 3) revealed that significant sequence similarity exists in the zinc-finger domains. There were 19 to 37 amino acid residues between the two fingers, except in S12569 and NTL1, which have only one zinc-finger motif. The zinc-finger domain of the GATA-1 transcription factors is followed by a region having a high content of basic residues; this region is required for the interaction of the protein with DNA. ${ }^{2}$ The basic region following the zinc-finger domain was also found in the seven predicted proteins reported here. In addition, among the amino

STO
R1577
E10707
R2931
R1479
CONSTANS
COL2
S3574
C60910
hGATA1
mGATA1
CGATA1

PRCDICQEK	AAFIFCVEDRA LLCRDCD E
PRCDVCQEK	AAFIFCVEDRA LFCRDCD E
PRCDVCQEK	AAFIFCVEDRA LFCRDCD E
PKCDICQEA	SGYFFCLEDRA
PLCRRDCD	
CESCREK	RGLVFCVEDRAILCADCD E
CQSCESAP AAFL CEADDASLCTACD	
CDRCVGQP AAVR CKADAASLCTACDAE	
CAACAAAG AVFR RGAGGFLCSNCDFSRHR	
TQCTNCQTTTTTLWRRNAS-GDPVCNACGLYY	
TQCTNCQTTTTTLWRRNAS-GDPVCNACGLYF	
TQCSNCQTSTTTLWRRSPM-GDPVCNACGLYF	

[^2]Figure 3. Alignment of 14 amino acid sequences containing zinc-finger motifs and their flanking regions. The seven deduced amino acid sequences of the zinc-finger region are compared with the corresponding domains of CONSTANS, ${ }^{5} \mathrm{COL} 2,{ }^{6}$ and STO ${ }^{7}$ of Arabidopsis, NTL1 of tobacco, ${ }^{3}$ hGATA-1 of human, ${ }^{19}$ mGATA-1 of mouse, ${ }^{20}$ and cGATA-1 of chicken. ${ }^{21}$ Numbers in parentheses on the right are the position of the finger motif counted from the amino terminus of each protein. Amino acids identical to STO are indicated by light shading. The cysteines that form the finger structures are indicated by heavy shading. A " + " means that an amino acid is positively charged. Two well-conserved sequences in each finger of 5 sequences are boxed. Numbers in parentheses on the left indicate the number of amino acids between the 2 fingers in each protein.
acid sequences of R1577, E10707, R1479 and R2931, conservation was most apparent in each of the zincfingers, with consensus sequences "CCADEAAL" and "FCV(L)EDRA." These two consensus sequences were also found in zinc-fingers in the STO protein. ${ }^{7}$ Therefore, we speculate that these four predicted rice proteins might comprise a subfamily of GATA-1-like proteins.
We performed a linkage analysis based on our highdensity rice RFLP linkage map. ${ }^{13}$ The results showed that the seven cDNA clones encoding putative zinc-finger proteins were located on five different rice chromosomes (Fig. 4). Clone S3574 was linked to RFLP markers L629 and C92 on chromosome 2; R1577 was linked to C436 and C953A on chromosome 2; C60910 was linked to C198 and C1135 on chromosome 3; E10707 was linked to C335 and R896 on chromosome 4; R2931 was linked to R1952 and R2749 on chromosome 6; R1479 was linked to R1028 and R1888 on chromosome 6; and S12569 was linked to C152 and L776 on chromosome 9.
The position of R2931 on the map is noteworthy. R2931 was found to be closely linked to $H d-3$, one of the putative QTLs controlling heading date in rice. ${ }^{9}$ It
could therefore be useful for fine-scale genetic mapping of $H d-3$ as a step toward map-based cloning. Two putative QTLs conferring salt tolerance have been located on chromosomes 3 and 8 in rice, ${ }^{10}$ and the putative proteins encoded by R1577 and E10707 showed relative high similarities (49% and 53%, respectively) to the STO protein, which is implicated in salt tolerance in Arabidopsis. However, R1577 and E10707 are not potential QTLs, as they were mapped to chromosomes 2 and 4.

Comparative mapping in Arabidopsis and Brassica, using the cloned $C O$ candidate gene, revealed that a homologous region may also be regulating flowering time in B. nigra. ${ }^{17}$ In this study, we report seven cDNAs as rice homologues of $C O$ and $S T O$ genes. We consider that these clones may be a powerful tool for the identification of candidate genes conferring heading date and salt tolerance in rice.

Acknowledgments: We are grateful to all the members of the Rice Genome Research Program (RGP) for their contributions. RGP is supported by funds from the Japan Racing Association (JRA) and from the Ministry of Agriculture, Forestry and Fisheries of Japan (MAFF).

Figure 4. Chromosomal locations of the seven CDNAs encoding putative zinc-finger proteins. Designations of markers are as follows: C, cDNA clones derived from the callus library; R, cDNA clones derived from the young root library; S, cDNA clones derived from the shoot library; E, cDNA clones derived from the panicle library; L, Not I linking clone. Further details are given by Kurata et al. ${ }^{13}$

References

1. Perny, L., Simon, M. C., Robertson, E. et al. 1991, Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1, Nature, 349, 257-260.
2. Omichinski, J. G. 1993, NMR structure of a specific DNA complex of Zn -containing DNA binding domain of GATA-1, Science, 261, 438-446.
3. Daniel-Vedele, F. and Caboche, M. 1993, A tobacco cDNA clone encoding a GATA-1 zinc-finger protein homologous to regulators of nitrogen metabolism in fungi, Mol. Gen. Genet., 240, 365-373.
4. Feng, B., Xiao, X., and Marzluf, G. A. 1993, Recognition of specific nucleotide bases and cooperative DNA binding by the trans-acting nitrogen regulatory protein NIT2 of Neurospora crassa, Nucleic Acids Res., 21, 3989-3996.
5. Putterill, J., Robson, F., Lee, K. et al. 1995, The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors, Cell, 80, 847-857.
6. Ledger, S. E., Dare, A. P., and Putterill, J. 1996, COL2 is a homologue of the Arabidopsis flowering-time gene CONSTANS, Plant Physiol., 112, 862.
7. Lippuner, V., Cyert, M. S., and Gasser, C. S. 1996, Two classes of plant cDNA clones differentially complement yeast calcineurin mutants and increase salt tolerance of wild-type yeast, J. Biol. Chem., 271, 12859-12866.
8. Takatsuji, H. 1998, Zinc-finger transcription factors in plants, Cell. and Mol. Life Sci. (in press).
9. Yano, M., Harushima, Y., Nagamura, Y. et al. 1997, Identification of quantitative trait loci controlling heading date of rice using a high-density linkage map, Theor. Appl. Genet., 95, 1025-1032.
10. Teng, S. 1994, Gene tagging for salt tolerance in rice (Oryza sativa L.) via RFLP, Ph.D. Dissertation, Univ. Philippines at Los Baños.
11. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990, Bacic Local Alignment Search Tool, J. Mol. Biol., 215, 403-410.
12. Murray, M. G. and Thompson, W. F. 1980, Rapid isolation of high molecular weight plant DNA, Nucleic Acids Res., 8, 4321-4325.
13. Kurata, N., Nagamura, Y., Yamamoto, K. et al. 1994, A 300 kilobase interval genetic map of rice including 883 expressed sequences, Nature Genetics, 8, 365-372.
14. Lander, E. S., Green, P., Abrahamson, J. et al. 1987, MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations, Genomics, 1, 174-181.
15. Gerber, H. P., Speipel, K., Georgive, O. et al. 1994, Transcriptional activation modulated by homopolymeric glutamine and proline stretches, Science, 263, 808-811.
16. Tague, B. W. and Goodman, H. M. 1995, Characterization of a family of Arabidopsis zinc-finger protein cDNAs, Plant Mol. Biol., 28, 267-279.
17. Lagercrantz, U., Putterill, J., Coupland, C. et al. 1996, Comparative mapping in Arabidopsis and Brassica, fine scale genome collinearity and congruence of genes controlling flowering-time, Plant J., 9, 13-20.
18. Devereux, J., Haeberli, P., and Smithies, O. 1984, A comprehensive set of sequence analysis programs for the VAX, Nucleic Acids Res., 12, 387-395.
19. Trainor, C. D., Evans, T., Felsenfeld, G., and Boguski, M. S. 1990, Structure and evolution of a human erythroid transcription factor, Nature, 343, 92-96.
20. Tsai, S. F., Martin, D. I. K., Zorn, L. I. et al. 1989, Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells, Nature, 339, 446-451.
21. Evans, T. and Felsenfeld, G. 1989, The erythroid-specific transcription factor Eryf 1: a new zinc finger protein, Cell, 58, 877-885.

[^0]: Communicated by Mituru Takanami

 * To whom correspondence should be addressed. Tel. +81-298-38-7441, Fax. +81-298-38-7468, E-mail: tsasaki@abr.affrc.go.jp

[^1]: Figure 1. Nucleotide sequences and deduced amino acid sequences of rice cDNA clones encoding putative zinc-finger proteins. The nucleotides are numbered on the right. The polyadenylation signal "AATAAA" is underlined and in italic type. The deduced amino acid sequences are shown below the nucleotide sequences in one letter codes. Potential initiating methionines are in bold type. The in-frame stop codons preceding the translations are indicated by asterisks (*). The one or two $\mathrm{Cys}_{2} / \mathrm{Cys}_{2}$-type zincfinger motifs in each protein are boxed. The acidic and basic regions are indicated by double underlines and bars, respectively. Underlined regions are explained in the text. Lines over the nucleotide sequences indicate the PCR primer sequence used to generate gene-specific sequences for Southern hybridization. The 5^{\prime} primer is the sequence indicated by a line above the nucleotides; the 3^{\prime} primer is the complement of that sequence.

[^2]: SIHVANSRSANHQRFLATGIKV
 PIHVPGTLSGNHQRYLATGIRV
 PIHVPGTLSGNHQRYLTTGIRV SIHTVNSFVSVHQRFLLTGVQV PIHSANDLTAKHTRFLLVGAKL SEVHSANPLARRHQRVPILPISG IHSANPLARRHQRVPILPLSA
 (55-104)
 (55-104)
 (56-105)
 (64-113)
 (64-113)
 (63-100)
 (59-96)
 WNGHGAASSAAGHKRQTINCYSG (48-85)
 RHGGERDPAAPLHDRSTVHPYTG ($81-121$)
 KLHQVNRPLTMRKDGIQTRNRK (257-309)
 KLHQVNRPLTMRKDGIQTRNRK (257-309)
 KLHQVNRPLTMRKDGIQTRNRK (163-215)

