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Abstract: Escherichia coli (E. coli) is one of the most common pathogenic bacteria worldwide. Avian
pathogenic E. coli (APEC) causes severe systemic disease in poultry (Colibacillosis), and accordingly,
has an extreme risk to the poultry industry and public health worldwide. Due to the increased
rate of multi-drug resistance among these bacteria, it is necessary to find an alternative therapy to
antibiotics to treat such infections. Bacteriophages are considered one of the best solutions. This
study aimed to isolate, characterize, and evaluate the potential use of isolated bacteriophages to
control E. coli infections in poultry. Three novel phages against E. coli O18 were isolated from sewage
water and characterized in vitro. The genome size of the three phages was estimated to be 44,776 bp,
and the electron microscopic analysis showed that they belonged to the Siphoviridae family, in the
order Caudovirales. Phages showed good tolerance to a broad range of pH and temperature. The
complete genomes of three phages were sequenced and deposited into the GenBank database. The
closely related published genomes of Escherichia phages were identified using BLASTn alignment
and phylogenetic trees. The prediction of the open reading frames (ORFs) identified protein-coding
genes that are responsible for functions that have been assigned such as cell lysis proteins, DNA
packaging proteins, structural proteins, and DNA replication/transcription/repair proteins.

Keywords: Escherichia coli; avian pathogenic E. coli (APEC); bacteriophages; Siphoviridae

1. Introduction

E. coli is the most thoroughly studied bacterial species because it can be easily prop-
agated and genetically manipulated. It has highly pathogenic strains and causes many
types of infections. In poultry as well as in humans, E. coli lives in the lower digestive tract
and colonizes in the first 24 h after hatching [1]. Even though many strains are harmless,
some have developed the ability to cause severe intestinal and extraintestinal diseases.
Extraintestinal pathogenic E. coli (ExPEC) strains are subclassified based on the host and the
site of infection into some variants; neonatal meningitis E. coli (NMEC), sepsis-associated
E. coli (SEPEC), and uropathogenic E. coli (UPEC) that cause urinary tract infections (UTI),
and avian pathogenic E. coli strains (APEC) that infect birds of all ages, thus affecting all
types of poultry production, causing septicemia, polyserositis, respiratory tract infections
(RTI), cellulitis, salpingitis, and others, commonly called colibacillosis [2,3].
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Avian colibacillosis harms the poultry industry, causing severe economic losses reach-
ing hundreds of millions of dollars worldwide, with high rates of morbidity and mortality
(up to 20%) in poultry [4] and up to 53.5% in young chickens [5].

The relationship between the drug-resistant human E. coli strains and those found in
poultry has been reported by James R. Johnson et al. (2007), with drug-susceptible human
and poultry isolates included in the study. They revealed that many drug-resistant human
E. coli isolates might have originated from poultry. In contrast, drug-resistant poultry E. coli
isolates have likely been derived from susceptible poultry E. coli strains by conversion to
resistance triggered under the selection pressure from overuse/misuse of antimicrobial
drugs by poultry farmers [6]. Another study by Jakobsen et al. showed that the ExPEC
related virulence gene content of E. coli from UTI patients and meat products matched their
virulence and antibiotic resistance [7].

The great diversity among APEC strains limits vaccination possibilities [4], and antibi-
otics were an option until the emergence of antibiotic-resistant strains. As reported in a
study by Halfaoui et al. (2017), fifty E. coli strains isolated from poultry revealed 94.12%
phenotypic resistance to tetracyclines, 91.5% to flumequine, 88.89% to sulfamethoxazole-
trimethoprim, 86.27% to enrofloxacin, 85.62% to nalidixic acid, 83.01% to ampicillin, and
75.81% to doxycycline [8]. Furthermore, the World Health Organization (WHO) has pre-
dicted, bearing in mind the rise in antibiotic resistance and scarcity of antibiotic production,
that by 2050, we will face the same scenario as in the pre-penicillin era [9].

Therefore, alternatives to antibiotics and vaccines are necessary, and bacteriophages
(phages) are among such options.

Before discovering antibiotics, many studies were conducted to test the efficacy of
lytic phages in treating bacterial infections. Phages have many advantages over antibiotics.
Phages are natural bacterial killers and are considered the most abundant microbial entities;
about 1031 phage virions are present on Earth [10]. In addition, there are some extra
advantages of phage therapy compared to antibiotics as phages are naturally available in
the environment, and are easy and cheap to produce [11]. Moreover, they are particular to
bacterial targets without adverse impacts on normal microbiota as antibiotics do [12,13].
The studies on bacteriophages stopped, though, except for the former Soviet Union and
Eastern Europe, due to the widespread availability of antibiotics at that time [14].

Many previous studies on the application of bacteriophages in veterinary medicine
reported the successful use of bacteriophages in treating farm animal pathogens such as
E. coli [15–17], Salmonella spp. [18–20], and Campylobacter spp. [21,22]. Therefore, isolation
and characterization of new phages is potentially useful for phage therapy applications in
both human and veterinary pathogens.

In this study, we characterized and evaluated the potential use of the newly isolated
bacteriophages (ZCEC10, ZCEC11, and ZCEC12) to control E. coli O18 infections in poultry
as a keystone for finding a possible alternative treatment of these pathogens.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

The bacterial host E. coil O18 and other E. coli serotypes used in this study were
provided by MEVAC Company, Egypt to the Zewail City of Science, Technology, and
Innovation’s Center for Microbiology and Phage therapy (CMP). Isolates were preserved
in tryptone soy broth (TSB; Oxoid, UK) containing 20% (w/v) glycerol at −80 ◦C for
further use.

2.2. Antimicrobial Susceptibility Testing

The antibiotic susceptibility of E. coli O18 strain was determined through the disc dif-
fusion method [23] using ten commercially available antibiotics (Oxoid, UK) to gentamicin
(10 µg), aztreonam (30 µg), amoxicillin/clavulanic acid (30 µg), ampicillin (10 µg), amikacin
(30 µg), cefoxitin (30 µg), ampicillin/sulbactam (20 µg), cefotaxime (30 µg), tetracycline
(30 µg), and ceftriaxone (30 µg) as indicated in Table 1. In brief, 100 µL of the bacterial
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culture was spread over the tryptone soy agar (TSA) plate, followed by the impregnation
of the antibiotic discs on it, and incubated at 37 ◦C for 24 h. The diameter of the inhibi-
tion zones was measured, and the results were interpreted based on the guidelines of the
Clinical and Laboratory Standards Institute [24].

Table 1. Phenotypic sensitivity of E. coli O18 strain to ten different antibiotics.

Class Antibiotic Name Abbreviation Diameter (mm) Susceptibility

Aminoglycoside Gentamicin CN 10 7 Resistant

Beta-lactam antibiotics
(monobactam) Aztreonam ATM 30 24 Sensitive

Penicillin-like
antibiotics Amoxicillin/Clavulanic acid AMC 30 16 Intermediate

Beta-lactam antibiotics
(First generation) Ampicillin AMP 10 11 Resistant

Aminoglycoside Amikacin AK 30 16 Intermediate

Cephalosporin
(second generation) Cefoxitin FOX 30 18 Sensitive

Pencillins/inhibitor
combination Ampicillin/sulbactam SAM 20 0 Resistant

Cephalosporin
(third generation) Cefotaxime CTX 30 28 Sensitive

Tetracycline Tetracycline TE 30 0 Resistant

Cephalosporin
(third generation) Ceftriaxone CRO 30 25 Sensitive

2.3. 16S Ribotyping

16S rRNA gene amplification and sequencing using 16S rRNA universal primers
27F (5′-AGAGTTTGATCCTGGCTCAG-3′) and 1492R (5′-GGTTACCTTGTTACGACTT-3′)
were used to identify E. coli O18. An automated fluorescent-DNA sequencer (Applied
Biosystem, model 373A/USA) was used to identify the 16S rRNA sequence. Finch TV
software (https://digitalworldbiology.com/FinchTV/; Access date: 3 October 2021) was
used to process the sequences acquired. To detect homology, researchers used BLASTN:
Basic Local Alignment Search Tool (http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi/;
Access date: 3 October 2021) against the 16S ribosomal RNA database. Under the entry
number OK355402, the sequence was deposited in the NCBI GenBank database.

2.4. Phage Selection, Isolation, Purification, and Amplification

Bacteriophages were isolated from sewage at a hospital. For phage isolation, E. coli
O18 was employed as a bacterial host. As previously documented, phages were isolated
from single plaque isolates [25]. To isolate pure phage stocks, phage plaques were purified
by picking up a single phage plaque with sterile micropipette tips and repeating the process
at least five times. To achieve higher phage stocks, the isolated phages were enriched
and propagated as follows: in TSB, an indicator host (100 mL, 107 CFU/mL) was infected
separately with each phage and incubated at 37 ◦C with 120 rpm shaking. Next, the
lysates were centrifuged at 6000× g for 15 min at 4 ◦C to eliminate any leftover bacterial
cells and debris. The phage-containing supernatant was then centrifuged for one hour
at 4 ◦C at 15,000× g. Finally, the phage pellets were resuspended in SM buffer (100 mM
MgSO4/7H2O; 10 mM NaCl; 50 mM Tris-HCl; pH 7.5) and filtered using 0.22 m syringe
filters. A double-layer agar method was used to determine the phage titers and confirm the
presence of lytic phages in the filtrate [26,27].

https://digitalworldbiology.com/FinchTV/
http://www.ncbi.nlm.nih.gov/BLAST/Blast.cgi/


Microorganisms 2022, 10, 589 4 of 13

2.5. Host Range Determination

The host range of the various phages was examined using the spot assay method
against a variety of E. coli and Salmonella spp. strains, as previously described [28]. Clear
plaques revealed high host specificity after incubation; turbid or no plaques revealed
non-infectivity. The bacterial strains used for the host range determination are listed in
Table 2.

Table 2. Shows the bacterial strain E. coli O18 and their susceptibility to phages.

Bacterial Strain ZCEC10 ZCEC11 ZCEC12

E. coli O157-H7 + + +

E. coli O2 + + +

E. coli O-127-H6 + + +

E. coli- ATCC 8739 + + +

Salmonella enterica Typhimurium- ATCC 14028 − − −
Salmonella Kent − − −

E. coli O25 − − −
E. coli O88 − − −
E. coli O78 − − −
E. coli O18 + + +

E. coli O1 − − −
E. coli O12 − − −
E. coli O6 − − −

E. coli O186 − − −
E. coli O-hemolytic − − −

E. coli O125 − − −
E. coli O55 − − −
E. coli O125 − − −
E. coli O115 − − −
E. coli O27 − − −
E. coli O168 − − −
E. coli O164 − − −
E. coli O114 − − −
E. coli O151 − − −
E. coli O169 − − −

(+) indicates clear lysis, and (−) indicates no lysis.

2.6. The Influence of Temperature and pH on Bacteriophages Stability

The temperature stability of phages ZCEC10, ZCEC11, and ZCEC12 (109 PFU/mL) was
assessed in a water bath at−20, 4, 37, 50, 60, 70, 75, and 80 ◦C after one-hour incubation [29].
To assess phage titer, successive dilutions of the phage were spotted three times on a lawn
of host strain E. coli O18 using a double-layer agar overlay method immediately after
incubation [30]. The phage titers of the previously stated phages were determined by
incubating them for one hour at varied pH values of 2, 3, 4, 5, 7, 9, 10, 11, and 12 [31]. The
pH values were adjusted in the SM phage buffer [32].
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2.7. Time Killing Curve of the Bacteriophages

The bacterial killing activity was determined individually for each phage (ZCEC10,
ZCEC11, and ZCEC12) at different MOIs (0.01, 0.1, 1, and 10) against E. coli O18, as
previously described in [33], with slight modifications. Briefly, 20 µL aliquot of every single
phage at 109, 108,107, and 106 PFU/mL was mixed separately with 180 µL of the bacterial
host at a concentration of 107 CFU/mL, giving MOIs of 10, 1, 0.1, and 0.01, respectively.
Then, the mixtures were incubated at 37 ◦C, and the bacterial growth was determined by
measuring OD600 using a microplate reader (FLUOstar Omega, BMG LABTECH, Ortenberg,
Germany). Data were collected at 10 min intervals for 2.5 h using the MARS Data Analysis
Software package (version 3.42). The bacterial culture without phage inoculation was used
as a control. The experiments were performed in triplicate.

2.8. Examination of Phage Morphology by Transmission Electron Microscopy (TEM)

The size and morphology were determined using TEM available as a core facility at
the Faculty of Science, Alexandria University (Alexandria, Egypt). The phage suspension
was prepared in SM buffer with 1010 PFU/mL and placed in TEM (JEOL JEM-1400 Plus).

2.9. Phage DNA Sequencing and Bioinformatic Analysis

Phage DNA was extracted using the phenol/chloroform method as previously de-
scribed [34]. The extracted DNA was diluted to 0.2 ng/µL and for whole-genome se-
quencing. Libraries were prepared using the Nextera XT Kit (Illumina, Cambridge, UK)
following the manufacturer’s instructions. Final library insert sizes were determined using
an Agilent Bioanalyzer 2000 and ranged between 200 and 1000 bp. Library concentrations
were determined using the Qubit 3.0 and Qubit DNA High Sensitivity Kit. Libraries were
finally pooled and sequenced on the illumina MiSeq platform and MiSeq Reagent Nano
Kit V2 (2 X 150 bp). The sequenced reads were evaluated for accuracy using FASTQC [35].
Reads with low-quality were trimmed using PRINSEQ. Sequences were assembled de
novo using SPAdes [36] with (K-mers: 21, 33, 55, 77, and 99). QUAST software was used
to check the quality of the genome assembly [37]. The closely related phages were iden-
tified using BLASTn against the NCBI nucleotide database. Then, they were imported
into MEGA-X [38] to draw a phylogenetic tree using the following default parameters:
CLUSTAL-W aligner [39] and the maximum likelihood fit model. Open-reading frames
were predicted using the ORF finder tool (https://www.ncbi.nlm.nih.gov/orffinder/;
Access date: 27 July 2021) using methionine and alternative initiation codons as start
codons. The putative coding sequences (CDSs) were predicted using BLASTp of the pre-
dicted ORFs against the NCBI non-redundant protein sequences (nr) database. To increase
the confidence in the predicted ORFs and CDSs, they were compared to those predicted
through PHASTER [40]. Genetic maps focusing on putative coding genes were generated
using SNAPGene (GSL Biotech; available at https://www.snapgene.com/; Access date:
27 July 2021).

2.10. Accession Numbers

The complete annotated genome of phages ZCEC10, ZCEC11, and ZCEC12 has been
deposited in the GenBank database under the accession numbers OK310512, OK310513,
and OK310514, respectively.

Statistical Analysis

Data were collected and analyzed using GraphPad Prism version 9 software.

3. Results
3.1. Antimicrobial Susceptibility Testing

The susceptibility of the E. coli O18 strain to the tested antibiotics varied from sensitive,
intermediate, and resistant, according to the diameter of the inhibition zone. The bacterial
strain showed resistance to four antibiotics including ampicillin/sulbactam, ampicillin,

https://www.ncbi.nlm.nih.gov/orffinder/
https://www.snapgene.com/
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gentamicin, and tetracycline. Moreover, it was intermediate resistant to two antibiotics:
amoxicillin/clavulanic acid and amikacin (Table 1).

3.2. Isolation of Bacteriophages

Three phages identified as ZCEC10, ZCEC11, and ZCEC12 against E. coli O18 as a
bacterial host were isolated from hospital sewage water samples in Egypt. Clear plaques
appeared after 18 h incubation at 37 ◦C.

3.3. Host Range Determination

Five pathogenic E. coli reference strains (E. coli O157-H7, E. coli O2, E. coli O-127-
H6, E. coli ATCC 8739, and E. coli O18 (indicator host)) showed susceptibility toward the
individual phages, while other strains did not exhibit any clear zone as shown in Table 2.

3.4. Sensitivity of Virions to pH and Temperature

The titer of the three phages ZCEC10, ZCEC11, and ZCEC12 were stable at approx-
imately 108 PFU/mL for 60 min at temperatures of −20, 4, 37, 50, and 60 ◦C. However,
when the phages were incubated at 70 ◦C, the titer was stable at 108 PFU/mL for ZCEC12
and decreased to 107 PFU/mL for both ZCEC10 and ZCEC11. At 75 ◦C incubation, the
titer of the phages decreased rapidly to approximately 105 PFU/mL. Upon incubation at
80 ◦C, all the titers drastically dropped below the detection limit. These results indicate that
the phages under study could tolerate the standard environmental temperature. ZCEC12
remained viable at a pH range of 4.0–11.0 at approximately 108 PFU/mL, while the titers of
ZCEC10 and ZCEC11 decreased to 107 PFU/mL. When incubated at pH 2, 3, and 12, the
phages were utterly inactive. Thus, the optimum pH range for phages ZCEC10, ZCEC11,
and ZCEC12 was found to be 4.0–11.0 (Figure 1).

3.5. Time Killing Curves

E. coli O18 was cultured in TSB broth and infected with three distinct phages (ZCEC10,
ZCEC11, and ZCEC12) using varied MOI values to test the phage’s killing activity on the
host strain (0.01, 0.1, 1, and 10). After that, optical densities at OD600 were used to track
bacterial development. In each case, phage infection resulted in bacterial growth inhibition,
which became more pronounced as the MOI increased. On the E. coli O18 strain, the lysis
kinetics of the three phages were measured. At all MOI values, the optical density of the
culture declined around 90 min after infection. Due to the phage infection, the bacterial
growth rate was lowered at a high phage titer (MOI of 10). Bacterial growth was better at a
lower phage titer (MOI of 0.01) than infected cells at MOIs of 0.1, 1, and 10, but remained
lower than the non-infected control (Figure 2). The non-infected culture represents the
standard microbial growth of E. coli O18 over the incubation time.

3.6. Bioinformatics Analysis and Characterization of Bacteriophages Genome

Through pulsed-field gel electrophoresis (PFGE), bacteriophages ZCEC10, ZCEC11,
and ZCEC12 had a double-stranded DNA genome of around 45 kbp, which is equivalent
to the values suggested by the International Committee on Taxonomy of Viruses (ICTV)
for bacteriophages in the Siphoviridae family. The complete genomes of phage ZCEC10,
ZCEC11, and ZCEC12 were sequenced and deposited in the NCBI GenBank database
(GenBank Acc. No. OK310512, OK310513, and OK310514, respectively). Assembly quality
for phages is summarized in Supplementary Table S1. BLASTn alignment and phylogenetic
trees showed that the three phages were different from one another, as indicated in Figure 3.
BLASTn analysis confirmed that the three phages were members of the Siphoviridae family,
in the order Caudovirales. The annotated genes were manually curated and listed in
Supplementary Tables S2–S4. The prediction of the open reading frames (ORFs) by applying
the standard genetic code identified eighty-one putative protein-coding genes, among
which thirty-six predicted proteins had assigned functions in ZCEC10. It had fifty-two
ORFs on the leading strand and twenty-eight ORFs on the complementary strand. In
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addition, eighty-two putative protein-coding genes and thirty-four functional proteins were
identified in ZCEC11, with fifty-four ORFs on the leading strand and twenty-eight ORFs on
the complementary strand. ZCEC12 had eighty-one protein-coding genes and thirty-five
functional proteins, with twenty-eight ORFs on the leading strand and fifty-four ORFs on
the complementary strand. The functional genes of the three phages are presented in genetic
maps (Figure 4). Functional proteins in the three phages had assigned functions such as
cell lysis proteins, DNA replication/transcription/repair proteins, structural proteins, and
DNA packaging proteins. None of the phages had any lysogenic genes (e.g., transposases,
integrases, and prophages).

3.7. Bacteriophage Morphology

The electron micrograph revealed that the three phages under study had typical
morphology of Siphoviridae family with an icosahedral head and long thin tail. Phage
ZCEC10 had a head diameter with approximately 58 nm and the tail length of approxi-
mately 125 nm (Figure 5a), whereas phage ZCEC11 had a head diameter of approximately
65 nm and the tail length of approximately 122 nm (Figure 5b). The phage ZCEC12 head
diameter was found to be approximately 70 nm with a long tail measuring approximately
130 nm in length (Figure 5c). Four phage particles were measured for ZCEC10 phage
(Figure S1), and five phage particles were measured for both ZCEC11 and ZCEC12 phages
(Figures S2 and S3).

Figure 1. Stability of ZCEC10, ZCEC11, and ZCEC12 at different pH and temperatures. The figure
represents the stability of phages at different temperatures: (A) ZCEC10, (B) ZCEC11, and (C) ZCEC12
and the stability of phages at different pH values: (D) ZCEC10, (E) ZCEC11, and (F) ZCEC12.
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Figure 2. Time killing assay of phages against E. coli at 37 ◦C. These panels show the bacterial count
of E. coli as the control and bacterial survival infected with three different phages: (A) ZCEC10;
(B) ZCEC11; (C) ZCEC12 at different MOIs (0.01, 0.1, 1, and 10). Optical density at 600 nm was
measured every 10 min up to 2.5 h. MOI: Multiplicity of infection, OD: Optical density.

Figure 3. Phylogenetic relationships between the ZCEC10, ZCEC11, and ZCEC12 phages and
BLASTN top-matched phages.
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Figure 4. (a–c) Genetic maps of the three phages. Only functional genes are highlighted.

Figure 5. TEM images showing the morphology of the individual phages: (a) ZCEC10 phage,
(b) ZCEC11 phage, and (c) ZCEC12 phage, scale bar represents 100 nm.



Microorganisms 2022, 10, 589 10 of 13

4. Discussion

Due to excessive and imprudent use of antibiotics in human and veterinary medicine,
the post antibiotic era is underway when all of our discovered antibiotics become outmaneu-
vered by multi-drug resistant bacteria (MDR) or superbugs [41]. Antimicrobial resistance
(AMR), currently the second leading cause of deaths worldwide, killing 700.000 people a
year, is expected to reach a mortality rate of 10 million deaths by the year 2050 and might
even exceed cancer [41]. This necessitates conglomerate efforts toward the development of
alternative therapies to antibiotics within a narrow time frame. Bacteriophage is the most
promising alternative to antibiotics for treating infections due to ‘superbugs’ [42–44]. In
this research study, three different bacteriophages were successfully isolated from hospital
sewage samples against E. coli O18 as a bacterial host. The isolated phages were classi-
fied as members of the Siphoviridae family with an icosahedral head and long thin tail.
In a study conducted by Nishikawa et al., T4 and T6 lytic phages had a limited hosting
range, but phage KEP10 showed lytic activity against a wide host range [45]. In our study,
phages ZCEC10, ZCEC11, and ZCEC12 showed lytic activity against the highly pathogenic
bacterial strains including E. coli O157-H7, E. coli O2, E. coli O-127-H6, E. coli ATCC 8739,
and E. coli O18. The stability of the phages at a broader pH range and temperature is
critical for preservation and in clinical use as phage therapy [46]. Several studies have
reported that bacteriophages may differ in both their thermal and pH stability [47]. In the
current study, phages ZCEC10, ZCEC11, and ZCEC12 maintained a high viability in the
pH range of 4.0–11.0 under physiological conditions, which is in agreement with previous
studies [29,48,49]. However, in another study, the titer of VB_EcoS-Golestan phage was
active and stable only at pH values of 7.0 and 8.0 [50]. Interestingly, the ZCEC10, ZCEC11,
and ZCEC12 phages also showed excellent thermal stability from −20 ◦C to 70 ◦C, were
slightly active at 75 ◦C, and inactive at 80 ◦C. These results showed that all phages were
thermally stable since the phage particles were observed after incubation [51]. Previous
studies revealed that an increase in temperature decreases the titer of phages [52]. However,
numerous phages that have been studied thus far can survive high temperatures [53].
When phages are used to challenge bacterial cells, the multiplicity of infection is an im-
portant parameter to consider. In this study, when bacteria were infected with phage at
lower MOIs (0.01 and 0.1), the bacterial density (OD600) rapidly increased, whereas when
bacteria were inactivated to bacteria cells earlier than at higher MOIs, the bacterial density
(OD600) rapidly decreased (1.0 and 10). Furthermore, a comparison of the killing curves
of the three isolated phages against the host at the tested MOIs showed that optimal MOI
was 10 because of the reduction in the viable bacterial count. The results showed that
the efficacy of phages to control the bacterial host E. coli O18 is concentration dependent.
This observation was identified in previous studies when both phages vB_KpnS_Kp13 and
ZCKP8 were subjected to K. pneumoniae in a concentration dependent manner in LB and
TSB broth over hours [29,54]. Moreover, whole-genome sequence analysis and functional
annotation showed that phages ZCEC10, ZCEC11, and ZCEC12 did not encode any genes
related to virulence and antibiotic resistance genes, supporting that the isolated phages
might be promising therapeutic agents to control E. coli O18 infections in poultry.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/microorganisms10030589/s1. Figure S1: TEM images showing the
morphology of the ZCEC10 phage particles, Figure S2: TEM images showing the morphology of the
ZCEC11 phage particles, Figure S3: TEM images showing the morphology of the ZCEC12 phage
particles. Table S1: Assembly quality report for the three phages, Table S2: Genome annotation of the
ZCEC10 genome, Table S3: Genome annotation of the ZCEC11 genome, Table S4: Genome annotation
of the ZCEC12 genome.
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Software, M.A.; Formal analysis, F.A., N.R., M.S.F. and M.A.; Resources, A.E.-S.; Writing—original
draft preparation, F.A. and A.E.-S.; Writing—review and editing, F.A., N.R., M.S.F., R.A., M.A., M.E.
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