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Abstract
The neonatal mouse retinal vascularization model has been 
widely used in the vascular biology field to investigate mech-
anisms of angiogenesis and arterial-venous fate specifica-
tion during blood vessel formation and maturation. Recent 
advances in next-generation sequencing can further eluci-
date mechanisms of blood vessel formation and remodeling 
in this, as well as other, vascular development models. How-
ever, an optimized method for isolating retinal endothelial 
cells that limits tissue digestion-induced cell damage is re-
quired for next-generation sequencing applications. In this 
study, we established a method for isolating neonatal retinal 
endothelial cells that optimizes cell viability and purity. The 
CD31+/CD45− endothelial cell population was fluorescence-
activated cell sorting (FACS)-isolated from digested postna-
tal retinas, found to be highly enriched for endothelial cell 
gene expression, and exhibited no change in viability for 60 
min post-FACS. Thus, this method for retinal endothelial cell 
isolation is compatible with next-generation sequencing ap-

plications. Combining this isolation method with next-gen-
eration sequencing will enable further delineation of mech-
anisms underlying vascular development and maturation.

© 2020 S. Karger AG, Basel

Introduction

Methods for investigating endothelial cell develop-
ment in vivo have revealed novel insights into mecha-
nisms underlying blood vessel formation and matura-
tion. One of the most widely used models for studying 
these processes is the neonatal mouse retina. Vasculariza-
tion of the murine retina occurs postnatally, and different 
stages of endothelial cell growth and maturation can be 
studied on different postnatal (P) days (Fig. 1). At P3, the 
vascular plexus primarily consists of tip and stalk endo-
thelial cells that migrate and proliferate to extend the 
plexus away from the optic nerve (center); at P6, the cen-
tral plexus is remodeling, arteries and veins are becoming 
specified, and endothelial tubes are subject to systemic 
blood flow forces; by P9, the superficial vascular bed is 
established. Since blood vessels in the retina initially form 
in a 2-dimensional plexus, dissected tissues can be flat-



Chavkin/Walsh/HirschiJ Vasc Res 2021;58:49–5750
DOI: 10.1159/000510533

mounted for immunohistochemistry and imaging or di-
gested for cell isolation [1, 2]. Retinal vascularization can 
also be studied in various transgenic mouse models, and 
mice subjected to drug treatments and environmental 
stressors to investigate mechanisms and disruptions of 
vascular development, including arteriovenous malfor-
mations and oxygen-induced neovascularization [3–7].

Recent advances in molecular biology techniques have 
revolutionized how mechanisms of vascular develop-
ment are investigated. Next-generation sequencing tech-
niques allow for the generation of large RNA and DNA 
sequencing datasets that can be analyzed to better under-
stand cell phenotypes and regulatory mechanisms [8, 9]. 
Bulk RNA sequencing generates entire transcriptome da-
tasets [10], and chromatin sequencing applications, in-
cluding Assay for Transposase Accessible Chromatin 
(ATAC) sequencing [11] and chromatin immunoprecip-
itation (ChIP) sequencing [12, 13], allow for broad un-
derstanding of epigenetic landscapes and transcriptional 
regulation. Additionally, these techniques can be applied 
at single cell resolution with advances in single cell RNA 
[14–17], ATAC [18, 19], and ChIP [20] sequencing. Such 
techniques have enabled recent discoveries in vascular 
development and disease (reviewed in [21]); however, to 
take advantage of these next-generation sequencing ap-
proaches, cell populations that are pure and viable are 
needed for analyses [22, 23]. Therefore, applying these 
techniques to the mouse retinal vascularization model re-
quires an optimized protocol for the isolation of pure and 
viable retinal endothelial cells.

Two critical steps in the isolation of viable and pure 
single cells from tissues are tissue digestion and cell puri-

fication. Enzymatic digestion of tissues can introduce ex-
perimental artifacts when not properly optimized [24]. 
Too little tissue digestion will limit the cell number iso-
lated, and too much tissue digestion will induce a cellular 
damage response that will introduce transcriptional arti-
facts and decrease data quality [25]. Thus, the digestion 
time of the tissue is key to obtaining a high number of 
viable cells without inducing cell damage. Digestion 
methods for isolating endothelial cells have been de-
scribed for several tissues [26], but digestion of retinal 
tissue for next-generation sequencing has not been previ-
ously described.

Additionally, next-generation sequencing requires a 
pure population of endothelial cells to be separated from 
the digested cell suspension. Current published methods 
use magnetic beads coated with antibodies against CD31 
to pull-down endothelial cells [27]. Although this method 
is relatively fast and inexpensive, it does not omit undi-
gested cell doublets or nonviable endothelial cells that will 
reduce the quality of next-generation sequencing data. In 
contrast, fluorescence-activated cell sorting (FACS) can 
exclude doublets (based on size) and nonviable endothe-
lial cells (based on vital dye staining) from the purified 
endothelial cell population [28, 29]. Therefore, endothe-
lial cell purification by FACS is more compatible with 
next-generation sequencing.

In this study, we established a method for the isolation 
of endothelial cells from P6 mouse retinal tissue using an 
optimized collagenase type II digestion step and FACS 
isolation of the CD31+CD45− endothelial cell popula-
tion. The overall procedure takes about 3 h from tissue 
isolation to obtaining a FACS-purified endothelial cell 
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Fig. 1. Postnatal vascularization of murine retina. A vascular plexus forms first and remodels into an arterial-
venous network over postnatal (P)3 (a), P6 (b), and P9 (c) time points (scale bars = 500 μm).
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population, and these sorted cells remain viable for up to 
60 min post-FACS (Fig. 2a). Using this method, pure and 
robust endothelial cells freshly isolated from retinal tissue 
can be used in next-generation sequencing approaches.

Materials and Methods

Isolation of Mouse Retinal Tissue
All animal experiments were approved by the Institutional An-

imal Care and Use Committees of Yale University and the Univer-
sity of Virginia. Neonatal mice that were 6 days postnatal (age P6) 
were euthanized according to the approved guidelines. Eyes were 
removed from euthanized mice and temporarily placed in 1 well 
of a 48-well plate in 500 μL 1× ice-cold PBS. Retinas were care-
fully separated from the eyes in the following manner (visual de-
scription in Fig. 2b). Under a dissection microscope (Leica M80) 
and using fine dissection forceps (Fine Science Cat# 11250-00), 
eyes were moved to a dissection pad containing enough 1× ice-cold 
PBS to cover the eyes. The optic nerve was held with one of the 
forceps to stabilize the eye, and a hole was made by piercing 
through the anterior chamber at the connection between the cor-
nea and the sclera with the other forceps. Using the forceps, the 
pierced hole was torn around the cornea-sclera connection in a 
circle ∼75% of the way around the cornea. The sclera was then 
slowly and carefully torn away from the retinal tissue. After the 
retinal tissue was removed from the sclera, the vitreous body was 
removed from the retinal tissue. Vessels of the hyaloid plexus that 
were not attached to the vitreous body were removed with forceps. 
The retinal tissue was then moved into a 2-mL Eppendorf tube 
containing 500 μL 1× ice-cold PBS. The retinal tissue was some-
times fragile and torn and had to be moved in multiple pieces. 
Retinal tissue from 2 eyes of the same mouse were combined into 
1 well. Total time of retinal tissue dissection for 4–8 mice (1 L) took 

15–60 min from euthanasia to final retinal tissue isolation. All of 
the retinas in the experiment were isolated from the eyes and 
placed into ice-cold PBS before moving to the digestion step.

Digestion of Retinal Tissue into Single Cell Suspension
Digestion solution (DMEM with 10% FBS and 1 mg/mL col-

lagenase type II, Sigma-Aldrich Cat# 234115), freshly made and 
warmed to 37°C, was used to digest the retinal tissues and separate 
cells into a single cell suspension (visual description in Fig. 2c). 
Collagenase type II was chosen as the tissue digestion enzyme be-
cause it has been successfully implemented in the isolation and 
culture of endothelial cells from human tissues [30–32]. Excess 
PBS was removed from the 2-mL Eppendorf tubes by carefully pi-
petting, leaving enough PBS to cover the retinal tissue (∼100 μL), 
and 500 μL of digestion solution was added to each tube. Retinal 
tissue in the digestion solution was pipetted up and down 5 times 
with a P1000 pipettor and pipette tip. The digestion mixture was 
then incubated in a 37°C water bath for varying times (10, 20, 30, 
and 40 min), pipetting the digestion mixture up and down every 5 
min. For most experiments, the optimized digestion time of 20 min 
was used. After digestion, the retinal tissue was dissolved and the 
digestion mixture was cloudy with single cells suspended. At this 
stage, the digestion mixture was pelleted by centrifugation in a 
tabletop centrifuge at 2,000 rpm (375 g) for 5 min at 4°C. The su-
pernatant digestion solution was carefully removed by pipetting in 
order to not disturb the cell pellet. The pellet was then re-suspend-
ed in 500 μL ice-cold 1× PBS and counted by hemocytometer. Cell 
counts were approximately 1 million cells per 2 retinas. Cells for 
control antibody/reagent staining for FACS were aliquoted into 5 
new 2-mL Eppendorf tubes at 100,000 cells per tube (unstained, 
IgG control, propidium iodide [PI] control, CD31+ control, and 
CD45+ control). For control tissues that were not digested, blood 
was acquired from euthanized animals, and bone marrow was iso-
lated from femurs of euthanized animals by surgical isolation of 
femur bone, removal of excess muscle, opening the femur at both 
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Fig. 2. Isolation of endothelial cells from mouse retinal tissue.  
a The progression and timeline of the method, including the fol-
lowing steps: isolation of retinal tissue, digestion, antibody stain-
ing, FACS, and the post-FACS cell viability window. b The techni-
cal removal of the retinal tissue from the mouse eye: (1) puncture 
the cornea, (2) tear the cornea, (3) tear the sclera, (4) peel away the 

sclera to reveal the retina, (5) further peel away the sclera to remove 
the retina, and (6) remove the vitreous body and hyaloid plexus 
vessels. c Images of the digestion steps: retinas in the pre-digest 
tube (arrows), cloudy digestion solution in the post-digest tube, 
and the centrifuged cell pellet (arrow). FACS, fluorescence-acti-
vated cell sorting.
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Fig. 3. FACS gating strategy for PI−/CD31+/CD45− endothelial 
cells. a Cells from the digested, antibody-stained cell suspension 
were gated by SSC-A/FSC-A, doublet discrimination selected by 
FSC-H/FSC-A, viable cells selected as PI-negative, and endothelial 
cells selected as CD31-positive and CD45-negative. b Control 

samples were stained using PI control sample, IgG control, CD31+ 
control, and CD45+ control to establish gates. c Control blood and 
bone marrow tissues were immunostained for CD31 and CD45 to 
confirm distinct cell populations. PI, propidium iodide; FACS, flu-
orescence-activated cell sorting.
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ends with dissection scissors, and isolation of bone marrow by in-
jection of PBS through the femur with a 22-G needle and collection 
into a 1.5-mL Eppendorf tube.

Cell Suspension Prepared for FACS
The single cell suspension was immunostained with fluores-

cently conjugated antibodies against CD31 (APC-CD31 BD Bio-
sciences Cat# 551262) and CD45 (V450-CD45 BD Biosciences 
Cat# 560501), and PI (Sigma-Aldrich Cat# P4864) was used as a 
viability marker. Antibody staining was performed in staining buf-
fer (HBSS with 10% FBS, 10 mM HEPES, 1 mg/mL D-Glucose) with 
a 1:100 dilution of each of the antibodies (1 μL per 100 μL staining 
buffer, final 2 μg/mL antibody concentration) to make antibody 
staining solution. Controls were also prepared at this time: un-
stained control solution (no antibodies added), PI control (no an-
tibodies added), IgG control (added APC-IgG, BD Biosciences 
Cat# 553932, and V450-IgG, BD Biosciences Cat# 560457), CD31+ 
control (added CD31-APC antibodies), and CD45+ control (add-
ed CD45-V450 antibodies). Additionally, early apoptotic events 
were quantified by Annexin V immunostaining and FACS with a 
control sample (added 5 μL per sample Annexin V-488 staining 
antibody [ThermoFisher Cat# A13201]).

Antibody staining was performed by carefully pipetting the 
PBS from the washed cell pellet, then re-suspending the cell pellet 
in 100 μL of antibody staining solution per 0.5 million cells. To 
each of the control tubes, 10 μL of the control staining solutions 
were added. The antibody staining solution and single cell suspen-
sions were incubated for 30 min on ice, and the cells were gently 
mixed by tapping the tubes every 10 min. During this time, the PI 
control tube was heat-shocked by incubating the cells in a 90°C 
heat block for 10 min, then incubated on ice for the remaining time 
to induce cell death. After 30 min of total incubation time for an-
tibody staining, the cells were pelleted by centrifugation in a table-
top centrifuge at 2,000 rpm (375 g) for 5 min at 4°C. Cells were 
washed once with PBS and re-pelleted by centrifugation. Cells 
were re-suspended in 300 μL of FACS buffer (PBS with 1% FBS). 
PI was added to the sample tubes and the PI control tube (final 
concentration = 0.5 μg/mL). Cell suspensions of digestion samples 
were then combined and transferred into 5-mL Falcon Test Tubes 
with Cell Strainer Snap Cap (Corning Cat# 352235), filtering the 
solution through the 35-μm filter in each cap. Control stained cells 
were transferred into separate FACS tubes. The FACS tubes were 
kept on ice and transferred to the cell sorter.

Isolation of Viable Endothelial Cells via FACS
The stained single cell suspension was sorted by FACS to isolate 

the viable endothelial cell population. An 85-micron nozzle on a 
FACSAria (BD Biosciences) was used to sort the endothelial cells 
to minimize collection volume and maximize density of isolated 
cells in the collection volume. Endothelial cells were identified 
through a series of gating strategies to identify the PI−CD31+CD45− 
cell population (Fig. 3a). First, cells were gated based on forward-
scatter and side-scatter (FSC-A and SSC-A, respectively) param-
eters, which identify cells based on characteristics including size, 
density, granularity, surface properties, and refractive index. Cell 
doublets were next identified as droplets containing a greater area-
to-height ratio of forward scattering, which denotes 2 or more cells 
in a single droplet by FSC-A/FSC-H gating. Viable cells were then 
identified as PI-negative. Finally, CD31-positive/CD45-negative 
endothelial cells were identified by APC/V450. Control tubes were 

used to determine where to set the gates on the FACS plots: viable 
cell gating was based on gating of the unstained and PI controls, 
and CD31-positive/CD45-positive cell gating was determined by 
the IgG control and CD31+ and CD45+ controls (Fig. 3b). Control 
tissues (blood and bone marrow) were used to confirm that the 
CD31-APC and CD45-V450 antibodies identified distinct popula-
tions (Fig. 3c). The cells were collected in 1.5-mL Eppendorf tubes 
containing 250 μL of 1× PBS for further analysis.

Viability and Gene Expression Assays
After FACS, cell populations were kept on ice while samples 

were assessed for viability and gene expression. To assess cell via-
bility, 10 μL of cells were mixed with 10 μL of 0.4% Trypan Blue 
Solution (ThermoFisher Cat# 15250061), then the stained cell 
mixture was pipetted onto a hemocytometer slide and the cells 
were counted under the microscope. Cells that took up the Trypan 
Blue dye were blue in color and counted as non-viable, while clear 
cells were counted as viable. Percentage of viability was then cal-
culated by viable cell count divided by total cell count. For gene 
expression analysis, RNA was isolated from 10,000 to 20,000 cells 
in each population using the RNeasy Plus Mini Kit (Qiagen Cat# 
74134), converted to cDNA with iScript cDNA Synthesis Kit (Bio-
Rad Cat# 1708890), and quantified by SYBR-Green qRT-PCR us-
ing iTaq Universal SYBR Green Supermix (Bio-Rad Cat# 172-
5120) and a Quantitative PCR Machine (CFX96 Real Time System; 
Bio-Rad). The following primers were used to measure gene ex-
pression: CD31 (forward: 5′-gagcccaatcacgtttcagttt-3′, reverse: 
5′-tccttcctgcttcttgctagct-3′), VE-cadherin (forward: 5′-tcctctg-
catcctcactatcaca-3′, reverse: 5′-gtaagtgaccaactgctcgtgaat-3′), CD45 
(forward: 5′-gggttgttctgtgccttgtt-3′, reverse: 5′-ctggacggacacagt-
tagca-3′), and β-actin (forward: 5′-agagggaaatcgtgcgtgac-3′, re-
verse: 5′-caatagtgatgacctggccgt-3′).

Results

Optimization of Digestion Time
Isolation of viable endothelial cells from retinal tissue 

requires an optimized digestion time to release cells from 
the extracellular matrix of the tissue. The digestion time 
needs to be long enough to properly digest the tissue, but 
short enough to minimize the collagenase-induced cell 
damage, leading to nonviable cells. To determine the op-
timal digestion time, retinas were incubated for 10, 20, 30, 
or 40 min in the digestion solution, and the total number 
of viable and nonviable cells was measured per mouse. At 
10-min digestion time, ∼1,000 endothelial cells were iso-
lated from the retinas of each mouse, which increased to 
∼2,000 endothelial cells at 20-min digestion time and 
∼3,000 endothelial cells at 30-min digestion time (Fig. 4a). 
However, the percentage of nonviable endothelial cells 
started to increase between 20- and 30-min digestion 
times, with a significant increase at 40-min digestion time 
(Fig. 4b). For sequencing applications, a digestion time of 
20 min was chosen; it optimized the number of isolated 
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endothelial cells per mouse without causing increased 
nonviable endothelial cells. Additionally, although the to-
tal number of isolated cells increased with longer diges-
tion times (Fig.  4c), the percentage of endothelial cells 
within that total digestion concomitantly decreased with 
longer digestion times (Fig. 4d). These results suggest that 
endothelial cells may be more susceptible to degradation 
during retinal tissue digestion in collagenase type II-con-
taining digestion solution than some other cell types 
within the retinal tissue. Flow cytometry analysis of An-
nexin V/PI immunostaining after 20-min digestion 
showed 0.8 ± 0.4% of viable endothelial cells were An-
nexin V-positive, suggesting a very low percentage of cells 

in early apoptosis. We suggest that Annexin V not be used 
in the gating strategy, as this would eliminate early apop-
totic events that may be important to include in the anal-
yses of disease models and transgenic mice. Overall, the 
20-min digestion time resulted in ∼400,000 total retinal 
cells per mouse, in which ∼0.6% of the total cells were 
CD31+/CD45− endothelial cells, yielding ∼2,000 endo-
thelial cells per mouse.

Assessing Viability and Purity of Endothelial Cells 
Post-FACS
Next-generation sequencing applications require viable 

and pure cell populations; therefore, the single endothelial 
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cells isolated using this method were assessed for viability 
and gene expression. Viability was assessed via Trypan Blue 
staining, which revealed that the percentage of nonviable 
endothelial cells remained constant for up to 60 min after 
FACS, with an increase in nonviable endothelial cells be-
tween 60 and 90 min after FACS (Fig. 5a). These results 
suggested that there is a short window of cell viability, up to 
60 min after FACS, to process endothelial cells for next-
generation sequencing applications. Additionally, RNA 
was isolated and gene expression was quantified in 3 iso-
lated populations: CD31−CD45− cells, CD31+CD45− cells 
and CD31−CD45+ cells. The RNA from the CD31+CD45− 
population was highly enriched for endothelial cell markers 
CD31 and VE-cadherin, while the CD45+CD31− popula-
tion was highly enriched for CD45 RNA expression 
(Fig. 5b). Collectively, these data show that the isolated cell 
population is highly enriched for endothelial cells and is vi-
able for up to 60 min after FACS isolation.

Statistical Analysis
Statistical analyses were performed using either 1-way 

ANOVA or 2-way ANOVA test. Multiple comparison 
analysis was performed using Tukey’s post hoc test, com-
paring either one control group to all other groups or all 
groups within a dataset.

Discussion

In these studies, we established a protocol for the isola-
tion of endothelial cells from retinal tissue, optimized for 
cell purity and viability. This method contains novel, de-
tailed steps for tissue digestion and FACS isolation of en-
dothelial cells that have been optimized for viability and 
population purity. The stringent attention to these pa-
rameters enables the isolated endothelial cells to be used 
for next-generation sequencing. Furthermore, the isolat-
ed endothelial cell population remained viable up to 60 
min post-FACS isolation. The purity of the isolated endo-
thelial cell population and maintenance of their viability 
for 60 min post-FACS are critical to the success of next-
generation sequencing applications, as these techniques 
allow only a small amount of preparation time between 
FACS isolation and cell lysis.

Using this cell isolation method in the well-described 
retinal vascular development model, combined with next-
generation sequencing approaches, can reveal novel in-
sights into vascular development and maturation. The reti-
nal vascularization model has been used to study the role of 
signaling pathways (VEGF, Notch, TGF-β, BMP, Hedge-

hog, and Wnt) in angiogenesis and endothelial cell fate 
specification during vessel formation and maturation [33–
38]. However, these signaling pathways are highly intercon-
nected during blood vessel formation and remodeling [39–
41], and their synergistic roles are difficult to decipher. 
Next-generation sequencing applications can help dissect 
their specific, and coordinated, roles through computation-
al analysis of signaling pathways and transcription factor 
networks [42–44]. Single cell analysis, combined with trans-
genic approaches, can further define the role of specific 
molecules and pathways [45, 46]. Thus, the application of 
next-generation sequencing approaches to the retinal vas-
cular development model will greatly improve our under-
standing of vascular development and maturation.

Modifications can be made to this method for specific 
applications. That is, a more specific or different cell popu-
lation can be isolated by the addition or substitution of se-
lect fluorescent-conjugated antibodies. For example, stud-
ies on other tissues have shown the importance of subsets 
of endothelial cells expressing markers such as Gja4 [6], 
Esm1 [47], Apelin [48], CD34 [49], and Aqp7 [26]. Addi-
tionally, retinal tissues at different postnatal time points can 
be analyzed. However, the exact parameters outlined in this 
method should be reassessed for each time point to opti-
mize the yield of purified endothelial cells, accounting for 
the overall number of endothelial cells in the tissues at var-
ious time points and/or the changing extracellular matrix 
composition of the tissue during development, which may 
affect efficiency of tissue digestion.

Limitations
This method has several limitations to consider when 

planning potential experiments, including low cell yield 
and narrow window of viability. The yield of endothelial 
cells using this method is relatively low, ∼2,000 cells per 
mouse. Therefore, an average litter size of 6 pups will yield 
∼12,000 endothelial cells. A cell suspension this low in 
number may limit the downstream applications. Addition-
ally, the limited viability of the endothelial cells after FACS 
sorting requires fast access to downstream processing for 
sequencing applications. Adjustments to methodologies 
may help overcome these limitations. Starting genetic ma-
terial can be amplified through PCR methods to reach the 
necessary concentration for experimental assays. SMART-
er Universal Low Input RNA Kit for Sequencing (Takara-
Bio Cat# 634940), Chromium Single Cell 3′ Kit v3 (10x Ge-
nomics Cat# PN-1000092), and ATAC sequencing [11] can 
all be used with ∼12,000 endothelial cells by incorporating 
a PCR amplification step after cDNA library preparation. 
Also, preparation time after FACS isolation in experimental 
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assays may need to be shortened to maintain cell viability. 
Additionally, alternative digestion times or digestion en-
zymes could be tried that may yield higher endothelial cell 
numbers and percentages within digested cells; however, 
these changes may negatively impact cell viability com-
pared to the method outlined here.
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