
The computational time of the proposed measurement system was
about 30 ms with TOSHffiA EWS (engineering work station) AS4080
from the acquisition of the sensor outputs to the measurement of the
ship's attitude. If advanced computer technology will be used or the
sampling time is a little enlarged, a microcomputer will be available
for the on-line measurement. Furthermore, by increasing the number
of the candidates, the accuracy of the measurement is much more
improved, and for that aim a multiprocessor technique which enables
the parallel computation in a bank of Kalman filters is efficiently used.
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ISOlation of Resonance in Acoustic Backscatter from
Elastic Targets Using Adaptive Estimation Schemes

Mahmood R. Azimi-Sadjadi, JoEllen Wilbur, and Gerald 1. Dobeck

Abstract- The problem of underwater target detection and classifi
cation from acoustic backscatter is the central focus of this paper. It
has been shown that at certain frequencies the acoustic backscatter from
elastic targets exhibits certain resonance behavior which closely relates
to the physical properties of the target such as dimeusion, thickness, and
composition. Several techniques in both the time domain and frequency
domain have been developed to characterize the resonance phenomena
in acoustic backscatter from spherical or cylindrical thin shells. The
purpose of this paper is to develop an automated approach for identifying
the presence of resonance in the acoustic backscatter from an unknown
target by isolating the resonance part from the specular contribution. An
adaptive transversal filter structure is used to estimate the specular part
of the backscatter and consequently the error signal would provide an
estimate of the resonance part. An important aspect of this scheme lies
in the fact that it does not require an underlying model for the elastic
return. The adaptation rule is based upon fast Recursive Least Squares
(RLS) learning. The approach taken in this paper is general in the sense
that it can be applied to targets of unknown geometry and thickness
and, further, does not require any a priori information about the target
and/or the environment. Test results on acoustic data are presented which
indicate the effectiveness of the proposed approach.

V. CONCLUSION

The paper proposed an on-line automatic measurement system
which accurately measured the heaving, rolling, and pitching of ship
by adequately processing the outputs of four accelerometers and one
inclinometer appropriately located on the ship. By modeling the heav
ing, rolling, and pitching signals by adequate linear dynamic systems
and using a bank of Kalman filters, on-line accurate measurement
of ship's attitude was realized. Further improvement of the accuracy
of the measurement is achieved by increasing the number of the
candidates used in a bank of Kalman filters.
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I. INTRODUCTION

The theory of acoustic resonance scattering from submerged elastic
shells has received considerable attention [1]-[13]. In the acoustic
scattering response, the mid-frequency band is of particular interest
in the characterization of small elastic targets [1]-[4]. This band is
dominated by the specular reflection and the lowest order symmetric
and anti-symmetric Lamb modes which propagate on the shell. The
resonant backscatter attributed to these modes have been found to
offer viable signature clues for identifying submerged elastic targets
[3], [4]. However, identification of the elastic response associated
with the mid-frequency region is nontrivial, especially for targets
of arbitrary geometry. That is, the resonant return can be difficult
to isolate from the specular component and is often buried in the
noise. When the target parameters are not known a priori a large
time-bandwidth product (TB) may be sent to sufficiently excite the
resonant modes. However, the specular and resonant responses in
the acoustic backscatter may overlap both temporally and spectrally.
This, coupled with other factors in a real target detection environment,
such as sensitivity of the sensors to the environmental and operating
conditions, nonrepeatability of the target signatures, competing clutter
objects having similar response as the actual targets, and lack of a
priori information about the actual targets, create a complex signal
processing problem.

Various schemes have been proposed [7]-[13] to extract resonance
information from the acoustic backscatter from a thin spherical
shell submerged in water. These either use temporal information or
transform domain processing to determine the presence of resonances.
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An increment in T of one unit corresponds to the amount of time it
takes for sound to travel a distance equal to the shell radius a in the
surrounding water. Now, (1) can be rewritten as

where B n(ka) and D'; (ka) are 5 x 5 determinants whose elements
are linear combinations of spherical Bessel and Hankel functions of
the first kind [6]. These elements contain all the material parameter
dependence of f(ka) and they also depend on the shell's radius and
thickness. Define the dimensionless time T as

where ka = Ztca.] >.; k represents the wave number, >. the wavelength
of the incident wave; a is the outer radius of the shell; R is the radial
distance from the shell; c is the phase velocity; line is the amplitude
of the incident planar wave and f(ka) is the "backscattering form
function" of the shell which is given by

II. ACOUSTIC RESONANCE CHARACTERIZATION

The problem of acoustic scattering from submerged elastic tar
gets and in particular spherical and cylindrical shells has attracted
considerable interest [1]-[13] in the last decade. It has been shown
that at certain frequencies the acoustic backscatter from an elastic
target exhibits certain resonance behavior which closely relates to
the physical properties of the target such as dimension, thickness,
and composition. Although the theoretical and experimental results
for a wide frequency range have concentrated on thin spherical
shells, thorough understanding of these results would certainly help in
dealing with subtleties associated with targets of more complicated
shapes. In what follows the phenomenon of resonance in acoustic
backscattering from a spherical thin shell will be briefly reviewed in
order to establish a basis for understanding of this important property
of elastic objects. A more thorough discussion can be found in [1].

The far-field steady-state backscattered pressure of an evacuated
elastic spherical shell immersed in water can be written [2] as

(4)

(3)

(1)

(2)

T = (ct - Rv]«.

p(T) = (a/2R) Re {Iinee-jxT f(x)}

p(t) = (a/2R) Re {/ineejk(R-ct) f(ka)}

2 ~ n ) Bn(ka)
f(ka) = jka L...,(-1) (2n + 1 Dn(ka)

n=O

where x: = ka is the dimensionless frequency. As can be seen in
this case the transient scattering is determined by shifting the form
function in phase. However, for more general cases of the incident
wave such as sinusoidal or FM modulated bursts the scattered signal
can be written using Fourier analysis as [2]

p(T) = (a/2R) Re {~1°° l(x)f(x)e-
jxT dX} (5)

where I (x) represents the spectrum of the incident wave. The Fourier
integral in (5) can be performed using the Discrete Fourier transform
(DFT) via fast Fourier transform (FFT) algorithms [2].

Fig. l(a) shows the transfer function for a steel spherical shell
where the ratio of the shell thickness to outer radius is 2%. The
contribution corresponding to the specular reflection yields a broad
band nearly flat spectral response over the passband of the transmit
pulse. In the low frequency region (0 < ka ::; 10) where the acoustic
wavelength is comparable to the shell diameter, the nature of the
coupled-fluid elastic waves depends strongly on the shell geometry
and thickness. For "very thin" shells (h < 0.005 a) there is evidence
[3] of only one elastic mode and the transfer function exhibits a
relatively broad resonance peak associated with the breathing mode
and two dips; while for "thin" shells (0.01 a ::; h::; 0.1 a) there are
generally two elastic modes and the transfer function is characterized

Murphy et al. [7] separated the resonant part from the "background"
given the impulse response of a fluid-loaded elastic spherical shell
by formulating the background amplitude as that of a rigid body.
This method is shown to be particularly effective for thick spherical
shells. In the work by Ripoche et at. [8] a large aspect ratio
aluminum cylindrical shell is insonified by an incident burst of several
cycles. The frequency of the incident is then varied slowly and the
spectrum of the acoustic backscatter is examined. The position of
the resonances and their associated "mode number" are confirmed
experimentally by studying the corrected and gated spectrum of the
backscattered data. De-Billy [9] used short pulses and a similar
approach to determine the resonance of submerged elastic cylindrical
wires. A joint time-frequency examination of the impulse response
of a thin spherical shell is investigated in [11] using the Wigner-Ville
distribution. This time-frequency representation provides localization
of the signal energy along both the time and frequency axis. In [12]
Wilbur and Kargl applied a wavelet transform to detect the resonance
corresponding to the mid-frequency enhancement of a thin spherical
shell submerged in water and surrounded by biologics. It is shown,
in the simulation results in [12], that the mid-frequency enhancement
corresponding to the lowest order symmetric Lamb mode can be
identified through the wavelet decomposition in the acoustic return
from a thin spherical shell surrounded by biologics. More specifically,
the specular reflection manifests itself in the form of a persistent ridge
along all dilations while the acoustic backscatter corresponding to
the subsonic branch of the lowest order anti-symmetric Lamb wave
or the mid-frequency enhancement region yields a rather localized
ridge in the wavelet plane. The position of the ridge moves to lower
frequencies as the shell thickness increases.

The purpose of this paper is to present an automated approach
for isolating the resonant response from the acoustic backscatter of
a submerged elastic target of unknown shape. The approach uses
an adaptive filtering process which allows for resonance extraction
directly from backscattered data. Although resonance extraction has
been studied and developed extensively for spherical shells, large
aspect ratio cylindrical shells and cylinders with spherical end caps,
the problem is difficult when applied to an elastic target of arbitrary
geometry for which the poles of the resonances are not known a
priori. This is especially true when the specular and resonant returns
overlap in both the time and frequency domains. The method in this
paper is general in the sense that it does not require generation of
the impulse response or the transfer function and can be applied to
a target of unknown geometry and thickness. The only assumptions
made by the approach are: the specular is more correlated to the
incident than is the resonance, and while the specular and resonance
may overlap in time, the onset of the specular proceeds that of the
resonance. An adaptive transversal filter structure is used to estimate
the specular part of the backscatter and extract the hidden resonance
characteristics of the elastic objects. The estimate of the specular part
is provided at the output of the system and consequently the error
signal extracts the resonant part. The adaptation rule is based upon
the Recursive Least Squares (RLS) learning which does not have the
accuracy-speed trade-off associated with the standard Least Mean
squares (LMS) algorithm. The adaptive processor is first tested on
acoustic backscatter data collected from a submerged spherical shell.
It is then applied to acoustic backscatter from a submerged elastic
target whose shape is that of a tapered, notched cylinder with flattened
ends and rivets. The results are then compared to those collected for
a nontarget concrete chunk of a size similar to that of the target.
Using this scheme detection and classification can be facilitated by
applying various feature extraction schemes to the isolated resonant
part. The extracted information may then be applied to a classifier to
perform the classification task [13], [14].
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Fig. 1. (a) Transfer function of 2% spherical shell. (b) Impulse response of
2% spherical shell.

by a large number of strong, high-Q resonance peaks, and a smaller
number of broad dips. For "thick" shells (0.2 a < h), however, the
pronounced high-Q resonance is no longer evident as the breathing
mode becomes damped [3]. The mid-frequency region in which the
acoustic wavelength is small compared to the shell radius but large
compared to the shell thickness is dominated by the So and ao modes.
The lowest order symmetric Lamb mode, designated So, yields high
Q resonances of regular spacing which is inversely related to shell
diameter. The symmetric Lamb wave contributions maintain a bi
phase relationship with the specular return which manifests itself
in the transfer function in the form of narrow-band notches or
nulls. The lowest order anti-symmetric Lamb wave, designated ao,
bifurcates into two distinct modes around the shell: the subsonic,
ao-, and the supersonic, ao+, Lamb modes. The subsonic branch of
the anti-symmetric Lamb mode, ao-, is characterized in the target
transfer function by narrow-band tones atop a broad nearly Gaussian
envelope. The center frequency of the Gaussian is inversely related
to shell diameter and thickness. The elastic resonance associated with
the ao- portion is referred to as the mid-frequency enhancement. For
thick shells, this enhancement, if it exists, moves to lower frequency
regions in the shell transfer function. The mid-frequency enhancement
is the consequence of the constructive interference among the ao
resonances. In the high frequency region where the wavelength is of
the order of the shell thickness, there are generally a large number
of elastic modes. In particular, the S1 symmetric Lamb wave is
associated with a second prominent peak known as the thickness
quasi-resonance.

In [3] a method is developed using the residue theorem to analyze
the scattering behavior through the study of the pole locations of the
scattering amplitude. It was observed that the poles associated with
So lie close to the real axis. This mode is bi-phase to the specular
component resulting in notches at regular spacings of 4ka in the
transfer function in Fig. lea). The regular spacing between these dips
corresponds to circumnavigations around the shell. That is, the So

mode contribution to the impulse response function is a decaying

III. ADAPTIVE SIGNAL DETECTION AND PARAMETER ESTIMATION

Using the conventional detection and estimation techniques gener
ally requires some a priori information on the signal and noise/clutter.
Often, this information is not available in a real-life environment.
In such environments, the application of adaptive signal processing
schemes [14] becomes very attractive. The adaptive detector and
estimator should be designed in such a way that the changes in the sta
tistical characteristics of the signal and noise can be taken into account
in the structure of the adaptive system. In this manner the system is
capable of adjusting itself to a new environment and consequently
providing more robust target detection and classification.

The structure of the adaptive system used for separating the hidden
resonance in the acoustic backscatter is shown in Fig. 2. The reference
input to the adaptive system is the incident waveform while the
desired signal is the backscattered. In this way, the adaptive system
produces an output which is the estimate of the specular part and the

sequence of pulses whose spacing relates directly to shell diameter.
As shell thickness decreases the effects will be less evident. At high
er frequencies the poles move closer to the real axis and this mode
becomes more visible again. For the subsonic portion of the lowest
order anti-symmetric Lamb mode, ao-, the poles associated with the
high-Q and nonoverlapping resonances are close to the real axis and
tend to have a strong effect on the scattering. However, as frequency
increases beyond a certain threshold which depends on the thickness
of the shell, the poles move rapidly into the complex plane (with
increasing frequency and order), and become broader and tend to
have significant overlap with other poles of the scattering amplitude.
The poles associated with the supersonic portion of the lowest order
anti-symmetric Lamb mode, ao+, are found to be sufficiently deep
in the complex plane so that they do not have a strong influence on
the scattering amplitude.

Fig. l(b) shows the corresponding impulse response for the 2%
steel shell. This impulse response exhibits several prominent parts
which are associated with different scattering phenomena [2]-[6].
The leading spike is associated with the specular reflection (direct
geometrically reflected return) on the outer surface of the shell. This
is followed by a decaying sequence which is partly attributed to
the first order symmetric Lamb wave (sd and partly due to the
transmitted bulk waves undergoing multiple reflections between shell
surfaces. This contribution is in the high frequency region and is
sometimes referred to as the "thickness quasi-resonance" [4]. The
echos labeled by So and a1 are associated with the lowest symmetric
Lamb wave and the first order supersonic anti-symmetric Lamb wave,
respectively. The mid-frequency enhancement corresponds to those
prominent oscillations designated by ao-.

In the next section a new approach for identifying the presence
of resonance in the acoustic backscatter from a target of unknown
geometry is introduced. This method uses an adaptive filter structure
to isolate the resonance part from the specular contribution.

'VI "0

"0_ (Midfrequency enhancement)
.••1••

"0

-0.5

Specular
0.5
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Fig. 3. (a) Backscattered: 108 KHz. (b) Backscattered: 150 KHz.

error signal would provide an estimate of the resonance part. There
are two principal ideas behind the development of this structure: I)
the specular part of the acoustic backscatter is more correlated with
the incident than the resonance (elastic) part, and 2) there is always
a time delay between the onset of the specular part and that of the
resonance part. Thus, provided that the learning is fast enough, during
this period of time the adaptive system produces an output which is an
accurate estimate of the specular part. Since the system has infinite
memory and further the specular part is more correlated with the
input (incident) the system continues to provide a good estimate of
the specular part even after the resonance has appeared. As a result,
the error signal provides an estimate of the resonance part of the
backscattered. Note that the delay ~ is provided to account for the
actual delay between the incident and the backscattered. For spherical
shells this time delay can be evaluated [2] theoretically from the
knowledge of the speed of sound in the water and the group velocity
associated with the carrier frequency of the tone burst.

If the adaptive system is of moving average (MA) type [14]
with tap weights denoted by w;(n)' s for Vi E [0, N - 1], and
n E [0, P - 1] where Nand P, respectively, represent the filter
order and the number of points in the signal, then the output of the
filter at time n is the weighted sum of the N present and past input
samples x(k)' s, k E [n, n - N + 1] , weighted by the associated
tap weight, w k (n - 1). In vector form the expression for the output
y(n) is given by
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y(n) = Wt(n - l)X(n) (8)

where X(n) and W(n - 1) represent the input and weight vectors,
respectively, i.e.,

W(n - 1) = [wo(n - l)wl(n - 1)··· wN-l(n - l)]t (9a)

X(n) = [x(n)x(n - 1)··· x(n - N + l)r (9b)

As can be observed from (8), the output at time n, i.e., y (n) is
estimated using the weights at time (n - 1). Now, using the current
sample of the desired signal, d(n), the weights can be updated using a
weight adaptation rule for transversal filter structures [14]. Owing to
the inherent benefits of the RLS adaptation rule which include speed
of convergence, accuracy in estimation, variable and data dependent
step size, robustness in presence of noise and independency of the
performance on data covariance matrix, we have used this learning
scheme throughout this paper. In addition, the simplicity of the
architecture of the RLS learning together with the above-mentioned
benefits makes this algorithm ideal for real-life implementation.

The weight updating equations using the RLS scheme are given
in order as [14]:

K(n) = P(n - l)X(n) (lOa)
fL + Xt(n)P(n - l)X(n)

e(n) = d(n) - y(n) = d(n) - Wt(n - l)X(n) (lOb)

W(n) = W(n - 1) + K(n)e(n) (lOc)

P(n) = fL-l[[ - K(n)Xt(n)]P(n - 1) (!Od)

where W is the estimate of the weight vector W; e(n) is the
estimation error (resonant part); K(n) is the gain vector; P(n) is the
inverse of the input data covariance matrix and fL is the "forgetting
factor" which determines the memory (M = 1/(1 - fL» of the
adaptation process and 0 < fL :::; 1. Generally, for stationary processes
fL is chosen to be unity (i.e., infinite memory) which corresponds

to standard LS solution, while for nonstationary processes where
limited memory is more desirable 0.95 :::; fL :::; 0.99. Note that in our
application we require infinite memory in order to provide a consistent
estimate of the specular component even though the backscattered is
a nonstationary process. The process starts with a set of initial values
for P(O) and W(O). In this paper, we have chosen P(O) = 8- 1 I
and W(O) = 0 where 8 is chosen to be smaller than 0.010"; and
0"; is the variance of the input process [14]. For large sequences the
choices of the initial conditions do not impact the performance of
the RLS scheme.

IV. TEST RESULTS

The first experiment examines backscatter data collected from
a 2% spherical shell submerged in water. The mid-frequency en
hancement for a 2% shell is known to center around a ka of 65
(refer to Fig. I(a)). Experimental confirmation of the mid-frequency
enhancement region for the fabricated shell was first conducted using
a ping-by-ping sweep of narrow-band continuous wave pulses over
incremental frequencies. The experimental data included the acoustic
backscatter from the shell when excited by a pulse of length T = 3.6
with a cosine roll-off envelope for two different carrier frequencies
with respective ka values of 63.2 and 87.8. The first signal is in
the vicinity of the mid-frequency enhancement region. As shown
in Fig. 3(a), the first echo in the backscattered return corresponds
to the specular reflection while the subsequent echo is associated
with the resonant part. In Fig. 3(b), which corresponds to the case of
ka = 87.8, the subsequent echo is significantly attenuated as the
pass-band of the excitation barely overlaps any part of the mid
frequency enhancement region. The desired and reference inputs to
the adaptive estimator were the backscattered and incident signals.
The adaptive system had only 16 tap weights in this experiment
because of the short length of the incident burst and initial conditions
were P(O) = 5000 I and W(O) = O. The plots of the error and
output signals for these frequencies and their spectra are presented
in Figs. 4(a)-(d) and 5(a)-(d), respectively. As expected, these plots
show two narrow-band spectra corresponding to the specular and the
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resonant parts. The peak of the spectrum of the specular component is
at the carrier frequency of the incident. For ka = 63.2 the spectrum of
the error indicates a peak around ka = 64.4 which is in agreement
with the theoretical results. In addition, the resonant component is
substantially stronger in magnitude than the specular contribution as
the frequency of excitation is close to that of the resonance. As the
frequency of excitation increases the resonant component gradually
disappears. This is due to the fact that the elastic shell responds as a
linear system. The apparent shift in the spectra can be explained when
the spectrum of the incident signal is compared with the frequency

response of the resonant component. Owing to the fact that the
incident is a tone burst with sinusoidal envelope, its spectrum has a
large magnitude main lobe centered at the carrier frequency and some
side lobes with smaller magnitudes. For ka = 87.8, the tail of the
spectrum of the resonant component is overlapped with the main lobe,
thus producing a small mid-frequency enhancement type behavior at
the neighborhood of the carrier frequency. As expected the specular
part has a spectrum with the same shape as the incident. The side
lobes are not evident in these figures because of their low magnitudes
relative to that of the main lobe. Note that the thickness quasi-
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resonance component is not seen in these signals as the frequency
for this mode is well above the excitation frequency.

The adaptive estimation method was then applied to the data
obtained from a submerged elastic target and an irregularly shaped
concrete chunk of similar size. The elastic target had the form of a
tapered, notched cylinder with flattened ends and rivets and an aspect
ratio of 4 to 1. The incident signal was a wide-band linear FM with
a time-bandwidth product of T B = 20. The signal was set to sweep
over the mid-frequency band. The returns from each object were
collected over 3600 in 50 increments to produce 72 data records of

differing aspect angle per object. Note that 00 corresponds to broad
side incident. The measurements were performed under controlled
operating and environmental conditions. The adaptive system had
32 tap weights and the initial conditions were P(O) = 5000 I
and W(O) = O. The signal estimation was completed only after
one pass over all the samples of the backscattered. Figs. 6(a}-(d),
7(a)-(d), 8(a}-(d), and 9(a)--(d) give the respective outputs of the
adaptive system and the error signals together with their spectra for
o and 2250, for the target and nontarget. As can be seen in these
results, for the elastic target the output of the adaptive system, which
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Fig. 8. (a) Error signal: 21.000. (b) Output of the adaptive system: 21.000. (c) Spectrum of the error: 21.000. (d) Spectrum of the output: 21.000.
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Fig. 9. (a) Error signal: 21.225. (b) Output of the adaptive system: 21.225. (c) Spectrum of the error: 21.225. (d) Spectrum of the output: 21.225.

provides the estimate of the specular part, has a broad-band spectrum
while the error signal which provides an estimate of the resonant
part generally contains one or more narrow-band components. For
the nontarget anomaly, however, both the error and output signals
were relatively wide-band. Based upon this criterion, over 89%
of the cases were correctly identified. The remaining cases were
not clearly distinguishable owing to the sensitivity of the adaptive
system to strong subsequent specular returns whose onsets arise too
quickly for the weights to converge. The results, however, verify the

important conclusion that the adaptive estimation scheme is capable
of identifying narrow-band phenomena present in the returns collected
from targets and nontargets without requiring an underlying model
for the returns.

Finally, to determine the effects of noise on the performance
of the RLS parameter estimator and to demonstrate the robustness
of the RLS learning, the above experiment, for zero aspect angle,
was repeated for the elastic target when additive white Gaussian
noise was injected to the backscattered signal. The variance of the
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additive noise was chosen so that the narrow-band SNR, i.e., the SNR
computed within the bandlimits of the incident, was approximately
16 dB. Examination of the plots of the signals and their spectra in
Fig. lO(a)-(d) which were obtained for one realization of the random
noise, clearly reveals the robustness of the RLS learning scheme in
the presence of noise.

V. CONCLUSIONS

The development of an adaptive system for detection and classifi
cation of underwater targets from acoustic backscatter was presented
in this paper. The adaptive processing was shown to be an effective
method for detecting the presence of submerged elastic targets. This
is accomplished by determining the existence of a narrow-band
resonance which is typically hidden in the acoustic backscatter. An
adaptive estimator trained with the RLS rule was used, in this paper,
to extract this resonant component in the acoustic backscatter from
elastic targets. A unique aspect of this method for submerged targets is
that no underlying model assumption is made about the elastic return.
The adaptive system is trained to provide an estimate of the specular
part which is highly correlated with the incident input. This enables
the extraction of the resonant component at the error signal. The test
results on experimental data obtained from 2% spherical shell, an
elastic target and a nontarget (concrete chunk) were obtained which
show the success of this scheme in isolating narrow-band phenomena
which discriminates the target from nontargets. The extracted features
can then be applied to a neural network classifier for final decision
making.
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