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ISOMETRIC DILATIONS FOR INFINITE SEQUENCES

OF NONCOMMUTING OPERATORS

GELU POPESCU

Abstract. This paper develops a dilation theory for {Tn}^Lx an infinite se-

quence of noncommuting operators on a Hubert space, when the matrix [Tx, Tj,

...] is a contraction. A Wold decomposition for an infinite sequence of isome-

tries with orthogonal final spaces and a minimal isometric dilation for {Tn}^Lx

are obtained. Some theorems on the geometric structure of the space of the min-

imal isometric dilation and some consequences are given. This results are used

to extend the Sz.-Nagy-Foias. lifting theorem to this noncommutative setting.

This paper is a continuation of [5] and develops a dilation theory for an

infinite sequence {Tn}f=x of noncommuting operators on a Hubert space ß?

when E~ i T„T*n ̂ Isc  (fV is the identity on %*) ■

Many of the results and techniques in dilation theory for one operator [8]

and also for two operators [3, 4] are extended to this setting.

First we extend Wold decomposition [8, 4] to the case of an infinite sequence

{Vn}°f=x of isometries with orthogonal final spaces.

In §2 we obtain a minimal isometric dilation for {Tn}°f=x by extending the

Schaffer construction in [6, 4]. Using these results we give some theorems on

the geometric structure of the space of the minimal isometric dilation. Finally,

we give some sufficient conditions on a sequence {Tn}°f=x to be simultaneously

quasi-similar to a sequence {Rn}f=x of isometries on a Hubert space S¡A with

E~i*X = fV
In §3 we use the above-mentioned theorems to obtain the Sz.-Nagy-Foias.

lifting theorem [7, 8, 1,4] in our setting.

In a subsequent paper we will use the results of this paper for studying the

"characteristic function" associated to a sequence {Tn}fLx with Yff=\ T„T* <

far •

1

Throughout this paper A stands for the set {1,2, ... ,k} (k e N) or the

set N = {1,2,...}.
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For every n e N let F(n,A) be the set of all functions from the set

{1,2,...,«} to A and

00

SA=\jF(n,A),    whereF(0,A) = {0}.
7!=0

Let ^ be a Hubert space and "V = {Vf¡leK be a sequence of isometries on

ßtf. For any feF(n,A) we denote by Vf the product V.^.Vr,^- ■ -Vj-, and

V — I

A subspace Jz? c ßf will be called wandering for the sequence "V if for any

distinct functions /, g e AF we have

Vf5C A Vg5f   (_L means orthogonal).

In this case we can form the orthogonal sum

M?<&. = 0 Vf^-
fer

A sequence "V = {Vx}ÀeA of isometries on %A is called a A-orthogonal shift

if there exists in %A a subspace A&, which is wandering for 'V and such that

* = Mp'S?).
This subspace J? is uniquely determined by ^ :  indeed we have A? =

* © (0A£A Vi^) ■ Tne dimension of S? is called the multiplicity of the A-

orthogonal shift. One can show, by an argument similar to the classical unilat-

eral shift, that a A-orthogonal shift is determined up to unitary equivalence by

its multiplicity. It is easy to see that for A = {1} we find again the classical

unilateral shift.

Let us make some simple remarks whose proofs will be omitted.

Remark 1.1. If "V = {Vx}XeA is a A-orthogonal shift on ßif, with the wandering

subspace Sf , then for any n e N , A G A and / G F(n , A) we have

(a)

v*v ={vm)vmvvm  */0> = *.
A   f    \o if/(l)*A,

and Vf/ = 0  (/ G S?).
(b) E;<ea V)Yl A Pj, = 1^,, where P^ stands for the orthogonal projection

from ßif into Sf.

Remark 1.2. If T = {VÀ}?eA is a A-orthogonal shift on ß? then

(a) lim^ooE/€í-(„,A)ll^l|2 = 0.forany he*.

(b) Vf   -> 0 (strongly) as k —► oo, for any X e A .
(c) There exists no nonzero reducing subspace *a c ßif for each Vx   (Xe

A) suchthat (/jr-EtóAnOU = °-

Let us consider a model A-orthogonal shift.
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DILATIONS FOR SEQUENCES OF NONCOMMUTING OPERATORS 525

Form the Hubert space

l2(F,*)=\(hf)f^; £P/lf <oo,A/G

We embed * in / (& ,*) as a subspace, by identifying the element he*

with the element (hA),^ , where \ = h and hf = 0 for any f eAF, f / 0.

For each /l G A we define the operator Sx on / (9~ ,*) by Sk((h A) r.&9-) =

(h'g)gB9r, where ¿0 = 0 and for g- g F(n,A)   (n>l)

h'=l

h0   ifgeF(l,A)andg(l)=A,

hf   if g eF(n,A) (n>2), fe F(n - 1 ,A) and g(l) = k,

g(2) = f(l), g(3) = f(2),...,g(n) = f(n-l),

. 0     otherwise.

It is easy to see that {Sx}XeA is the A-orthogonal shift, acting on / (¿F ,*),

with the wandering subspace *.

This model plays an important role in this paper. The following theorem is

our version of Wold decomposition for a sequence of isometries.

Theorem 1.3. Let "V = {VX}X€A be a sequence of isometries on a Hubert space

Jf such that ¿ZXeAVxVf<Ix.

Then JÍA decomposes into an orthogonal sum A% = 3tA0®A%Ax such that A%AQ

and A%AX reduce each operator Vx (A G A) and we have (I^-YLxeh ^Vf)]^ = 0

and {Vf^ }X€A is a A-orthogonal shift acting on Jf^ .

This decomposition is uniquely determined, indeed we have

77=0  \feF(n,A)

Jf0 = Mp.(&), where Sf = 3IA e (©AeA VxJf).

Proof. It is easy to see that the subspace Jz? = JÍA e ((B¿eA Vk3¡A) is wandering

for y.

Now let JT0 = Mp'Sf) and &[ = Jf e^0 . Observe that k e .Tx   if and

only if k ± ®feSr Vf5? for every n e N, where ^ stands for \J"k=0 F(k, A).
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We have

s? © (  0   V;Sr
V/€F(1,A)

0   v¿*
,geF(n,A)

jre\   0
/€F(1,A)

0   VjX  e     0   VfX
feF(\,A) J \feF(2,A) j

0     VjX\A      0
JeF(n,A) J \feF(n+\,A)

0      VjX\.
KfeF(n+l,A)

Thus k e.Wx   if and only if A: g @feF(n+x A) I^^ for every n G N. Since

it follows that

0    VjX^     0     F^      («eN)
f€F(n,A) feF(n+\,A)

7i=o \/eF(77,A) y

Let us notice that

w<=n  0 ^ cn   0 vg^ :JT,
77 = 0    \/£F(71,A)

/   (

vfx, c n
71=1

71=0  \ geF(n+\,A)

0   v¿*
g€F(n,A)1 I gfc/-(7i.

V       V 5(i)= ;;

= ñ(    0    Vr*
77=1    V./GF(77-1,A) ,

3t,.

Therefore 31AX   reduces each  Vx   (A e A).   Hence Jf^ also reduces each  Vx

(A e A).

Since Jfx c ©AeA VkJT it follows that (/, - E^a *aOU = °- The fact

that {^|^}^eA is a A-orthogonal shift is obvious. The uniqueness of the de-

composition follows by an argument similar to the classical Wold decomposition

[8, Chapter I, Theorem 1.1]. The proof is completed.

Remark 1.4. The subspaces ^,  Xx   from Wold decomposition can be de-

scribed as follows:

JT0 = | k G X: Jim     J2    WVfkW2 = ° f >
[ "~*°° f&F(n ,A) j

3Tx = \ke%r:     Y,    ll^/^H2 = ||/c||2 for every «gnI.
{ f€F(n,A) J
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DILATIONS FOR SEQUENCES OF NONCOMMUTING OPERATORS 527

We call the sequence W = {VX}X€A in Theorem 1.3 pure if A%AX = 0, that is,

if "V is a A-orthogonal shift on A%A.

Let AT = {TX}X€A a sequence of contractions on a Hubert space * such

that 22X€ATXT*X<I^.

We say that a sequence 'V = {Vx}XeA of isometries on a Hubert space A% d

* is a minimal isometric dilation of AT if the following conditions hold:

(a) Z,eAVxVf < 1^ .
(b) * is invariant for each Vf   (A G A) and Vf\^ = T¡   (XeA).

(c) JT = Mf€9. Vf*.
Let Dt on * and D on ®AeA ̂    (^ is a copy of X) be the positive

*   1 /2
operators uniquely defined by Dt = (1^ - Ejga ^t^i )      an^ D = DT, where

T stands for the matrix [TX,T2, ...] and DT = (I - T* T) '  .

Let us denote 39 = L\* and 3) = D(®XeA*f).

Theorem 2.1. For every sequence AT = {Tx}XeA of noncommuting operators on

a Hilbert space * such that Ei£a TfT*x < IT, there exists a minimal isometric

dilation W = { Vf¡X€A on a Hilbert space JT D *, which is uniquely determined

up to an isomorphism.

Proof. Let us consider the Hilbert space 3¡A = * © l2(AT ,3¡). We embed *

and 3S into A* in a natural way.   For each X e A we define the isometry

Vx : A% -»• 3!A by the relation

(2.1) Vx(h © (dj)jesr) = Txh © (D(Oi;^,h,0, ...) + Sx(dj)fe9r)

X— 1 times

where {5/l}/leA is A-orthogonal shift on / (Af ,3) (see§l).

Obviously, for any X, pe A, X^ p we have range Sx A range 5   and

(T*Txh,ti) = -(D2(0, ... ,0 ,h,0, ...),(0, ... ,0 ,h' ,0, ...)).

A— 1 times n—\ times

Hence, taking into account (2.1), it follows that

range Vx A range F        (X,peA,X^p)

therefore £a€a Fa F/ < Ix.

It is easy to show that * is invariant for each Vf (X e A) and Vf \r = Tx

(XeA).
Finally, we verify that 3^ = {Vf}XeA is the minimal isometric dilation of

AT.

Let *X=*\J (V/efd ,a) F/^) and

*n=Xn_,v\     V     VfK-\     if«>2-
V/gf(i,a)       y
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528 GELU POPESCU

It is easy to see that *x = * © 3¡ and

*=*®3®l    0    Sf3    ©•••©[      0      Sj3l\     ifn>2.
V/€F(1,A)    '       j \feF(n-l,A) J

Clearly *n c *n+x and we have

oo

\J*n=*® Mp(ß) = *® I2 (AT ,3) = X.
i

Therefore X = V/G^ Vf*.
Following Theorem 4.1 in [8, Chapter I] it is easy to show that the minimal

isometric dilation ^ of AT is unique up to a unitary operator. To be more

precise, let "V' = {Vx}XeA be another minimal isometric dilation of AT, on a

Hilbert space X' D *. Then there exists a unitary operator U : X —> X'

such that VXU = UVX   (XeA) and Uh = h for every he*.

This completes the proof.

Remark 2.2. For each X e A, Vfn —» 0 (strongly) as n —► co if and only if

77*" —> 0 (strongly) as «-»co.

From this remark and Theorem 2.1 one can easily deduce Proposition 1.1 in

[5].
The following is a generalization of [2] or Theorem 1.2 in [8, Chapter II].

Propostion 2.3. Let 'V = {Vx}XeA be the minimal isometric dilation of AT =

{TX}X€A. Then *V is pure if and only if

(2.2) lim     Y.    WT*fh\\2 = 0
77—»OO ¿—' J

feF(n ,A)

for any he*.

Proof. Assume that 'V is pure. Then, by Theorem 1.3 it follows that 'V is a

A-orthogonal shift on the space X D * of the minimal isometric dilation of

AT.
Taking into account Remark 1.2 and the fact that for each f eAT, V*

Tj , we have

lim     V    \\T*h\\2 = lim     V    ll^7*Äl|2 = 0   for any/z g .
feF(n,A) feF(n,A)

Conversely, assume that (2.2) holds. We claim that

(2.3) lim     Y    \\V*k\\2 = 0   for any k eX = \J Vf*.
7i—»oo     ^—' / v       y

feF(n ,A) fer

By (2.2) we have

/

lim     V    \\v*h\\2 = 0      (he*).
71—»OO

fef(n,A)
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For each k e V/€y -/yo Vf* and anv £ > 0, there exists

K=   £'   vghg      (hge*)
ger ;glio

such that \\k — k \\ < e . (Here J2' stands for a finite sum.)

Since the isometries Vx   (A G A) have orthogonal final spaces, it follows that

lim     Y    II^H2=lim     Y    \\Vf*(k-ke)\\2<\\k-kE\\2<e2,
71—»OO *—' J 77—»OO '—' J <■ <■

feF(n ,A) f€F(n ,A)

for any e > 0. Thus, (2.3) holds and by Remark 1.4 we have that 'V is pure.

This completes the proof.

Corollary 2.4. If Ea<=a ̂ f^l — r^sr . f < 1 > then the minimal isometric dilation

ofAT = {Tx}XeA is pure.

Now let us establish when the minimal isometric dilation 'V = {VX}X€A can-

not contain a A-orthogonal shift. The notations being the same as above we

have

Proposition 2.5.  £A€A VxVf = Ix if and only if ^€A TfT*x = 1^ .

Proof.   (=>)  Since   Vf\^ = 77*   (X e A)  it follows that Y,keATxT*xh = h
(he*).

(<=) If E^A^r; = I,, then EfeF(n,A)\\T}h\\2 = \\h\\2 for any n e N

and he*. Taking into account Theorem 1.3 let us assume that there exists

keX® (0;eA VXX), k =£ 0. Using Remark 1.4 it follows that

(2.4) lim     Y    ll*7*H2 = °-
71—»OO *—^ J71—»OO

feF(n ,A)

On the other hand, since

X = *\i V/       Vj*
fer

and      V/   F/Jc0F1J
fer xeA

v /yo      y /yo

it follows that k e * and by (2.4) that limn_>00 E/6f(„,A) ll7^!)2 = °> con-

tradiction. Thus we have Ea€a ^ Vf = 1% and the proof is complete.

Dropping out the minimality condition in the definition of the isometric

dilation of a sequence AT = {TX}X€A , we can prove the following.

Proposition 2.6. For any sequence AT = {Tx}XeA of operators on a Hilbert space

* such that J2XeA TXTX < 1%, there exists an isometric dilation 'W = {Vf}X€A

on a Hilbert space X D * such that Eapa V¡Vf = Ix .

Proof. Taking into account Theorems 2.1 and 1.3, we show, without loss of

generality, that the A-orthogonal shift SA' = {Sx}XeA on *0 = I2 (AT, f)   (% is
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a Hubert space) can be extended to a sequence W = {VX}X€A of isometries on

a Hubert space X0D*0 such that

(2-5) EW-7*   and   Vxyo = Sx       (XeA).
AGA

Consider the Hubert space

x = [i2 (at , g) © r] © /2(^, r).

We embed l2(AT,g) into JT by identifying the element {<?y}/e5r G I2(AT,8')

with the element 0 © {e,-}ye5¡- G X .

Let us define the isometries Vx   (X e A) on X.  For X > 2 we set  Vx =

^)\p(r,g)Qg®^), ■
Consider the countable set

^' = {/e^\f(l,A):/(l)=l}uF(l,A)U{0}

and a one-to-one map y : <^"\{0} —> <?"'.

For {^/}/€.5T\{o} ® {ef}fegr G -^ the isometry K, is defined as follows

Vx (0 © {ef}fer) = 0 © S,«^}^),

^ív^/Ve^Xío} © °) = {^ }?e^\{0} © ieg}ger >

where „
<?/  if £ = ?(/),

g      [ 0     otherwise

and

c0 = é>; ify(/) = 0,    c; = o ifgG^uo}.

Now it is easy to see that the relations (2.5) hold.

Following the classification of contractions from [8] we give, in what follows,

a classification of the sequences of contractions.

Let AT = {Tx}XeA on a Hilbert space * such that E¿gA -^t-T* - ^sr •

Consider the following subspace of * :

(2.6) |o = lAG'r:j|iîa, £ h*;aii2=o|.
{ feF(n.A) J

(2.7) *x = he*:     Y    \\Tfh\\2 = \\h\\2 for any «gN
( feF(n,A) \

Remark 2.7. The subspaces *Q and *x are orthogonal and invariant for each

operator 77*   (X e A).

Proof. Taking into account Theorem 2.1, 1.3 and Remark 1.4 the proof is im-

mediately.

Thus, the Hilbert space * decomposes into an orthogonal sum * = *Q ©
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For each k e {0,1,2} we shall denote by C( ' (respectively C,k)) the set of

all sequences AT = {TX}X€A on * for which we have *k = {0} (respectively

ifi    = t/£¡.) ■

Let us mention that *x is the largest subspace in * on which the matrix

n

acts isometrically.

Consequently, a sequence AT eC will be also called completely noncoiso-

metric (c.n.c).

In the particular case when AT = {T} (\\T\\ < 1) we have that AT e C(1)

if and only if T* is completely nonisometric, that is, if there is no nonzero

invariant subspace for T* on which T* is an isometry.

We continue this section with the study of the geometric structure of the

space of the minimal isometric dilation.

For this, let AT = {Tx}XeA be a sequence of operators on a Hilbert space

* such that Eaça-Ti-Tî* - V anc* ^ = {VX}X€A be the minimal isometric

dilation of AT on the Hilbert space X = * ® V''(AT,3) (see Theorem 2.1).

Considering the subspaces of X

Sf=\J(Vx-Tx)*   and    <%= [l^-YVJl ) *
xeA \        xeA        I

we can generalize some of the results from [8, Chapter II, §§1,2] concerning the

geometric structure of the space of the minimal isometric dilation.

Theorem 2.8. (i) The subspaces Sf and Sft are wandering subspaces for Jf

and

dimJ^ = dim.^;    dim A¿f, = dim 3t.

(ii)  The space X can be decomposed as follows:

X = m ©M^(SfJ =*® M^(Sf),

and the subspace ATA reduces each operator Vx   (XeA).

(iii) .2*1-1.2^ = 0.
(iv)  The subspace A% reduces to {0} if and only if AT e C'(0).

Proof. The Wold decomposition (see Theorem 1.3) for the minimal isometric

dilation T on the space X = * ®l2(Sr ,3) gives X = SI © M^&f),

where £% = f)f=0[ÇBjeF{n A) VjX] reduces each operator Vx (XeA) and

y,'=le (©¿€A VXX) is a wandering subspace for *V.

It is easy to see that J2^' = Sf^ and that the operator <P# : Jz? —> 3t defined

by

-DM      (he*)
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is unitary. Hence it follows that dim Sf = dim3t. Equation (2.1) yields

Y(VX - Tf)hx = 0 © D((hx)XeA)   for (hx)XeA e §>*x
xeA XeA

(*x is a copy of *).

By this relation we deduce that there exists a unitary operator <P: AT —» 3

defined by equation

®^Vx-Tx)h^=D((hx)x^A)

and hence that dim Sf = dim 3 .

The fact that SA is a wandering subspace for "V and that * ± M^-(Sf)

follows from the form of the isometries Vx   (XeA) defined by (2.1).

Taking into account the minimality of X it follows that X = *®M9-(SA).

Let us now show that Sf n Sft = 0. First we need to prove that

(2.8) Sft®l@Vx*\=*®Sf.
\xeA        /

This follows from the fact that, for an element u e X, the possibility of a

representation of the form

u=(ljr-EvxT;)ho + YvA>       h0e*, (hx)XeAe®*x,
\ xeA        / xeA xeA

is equivalent to the possibility of a representation of the form

u = hw + Y(Vx-Tx)hw,       hwe*, (hw)XeAe$>*x.

XeA

Indeed, we have only to set

.(0)      rnW        u   _ t*l(0)   ,   lWh0 = h™-Yrxh", hx = rxh™+¿
xeA

and, conversely,

hm = Y TA + (ijr - £ TxTl) *o.    hW = hx- T*xh0.
xeA \ xeA /

Thus (2.8) holds. On the other hand, since

^c    0K/   v/   and    @VX* cSf®*
\xeA / xeA

we have that * v (0¿eA Vx*) = *®Sf. This relation and (2.8) show that

^n=2: = {0}.
The statement (iv) is contained in Proposition 2.3. The proof is complete.
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Propostion 2.9. For every sequence AT = {7^^ of operators on * and for its

minimal isometric dilation 'V = {Vx}XeA on X, we have

(2.9) Mr(Sf)vMr(SfJ=Xe*x

where *x is given by (2.7).

In particular, if AT is c.n.c, then

(2.10) M^(Sf)vMr(SfJ=X.

Proof. Taking into account Theorem 2.8 and that *x c .X it follows that

*x±M^(Sf)\/Mr(Sft).
Now let keX be such that k 1 M^Sf) and k ± M^Sff).
From the same theorem it follows that k e * and k A. VfSft for every

/ G AT. Hence we have

o=(^vf(ir-Yvj;)h)=(T}k,h)-Y(T;T}k,rxh)
\ \ xeA )   ) xeA

for every he*.

Choosing h = T*-k   (f e AT) we obtain

for any f eAT .
Hence we deduce

\Tjkf = Y\\T¡T}k\
xeA

Y ii*;*h2=ii*ii2
geF(n,A)

for any n e N. We conclude that k e *x . Conversely, for every k e *x it is

easy to see that k ± M9-(Sf) v M9-(Sft). The relation (2.10) follows because

for AT c.n.c. we have *x = {0} .

The last aim of this section is to generalize some of the results from [8,

Chapter II, §3]. Throughout 'V = {Vx}XeA is the minimal isometric dilation of

AT = {Tx}XeA . The space of the minimal isometric dilation is

(2.11) X =S?®M^(Sft)=*®l2(AT,3).

Proposition 2.10. For every he* we have

(2.12) P*h=*!L    E     VfT}h
71—»OO

/€F(77,A)

and consequently

(2.13) ||/V»U   = Hm     Y    H7/*
•" 77—»OO t—• J

feF(n.A)

where P^ denotes the orthogonal projection of X into *.
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Proof. An easy computation shows that

Y      VfT}h-    Y     VfT}h
feF(n+\,A) feF(n,A)

=   E   \\T?w2- E ii?X<o
/GF(7i+l,A) feF(n,A)

for every « g N. This implies the convergence of {^2f€F,n A) VjTjh}f=x the

sequence in X . Setting

k= lim     y    V,T*h,
71-.00        A—* J     I

feF(n ,A)

let us show that k = P^h , i.e. k J_ Msr(Sft) and h-k e M^(Sft).

Since for every g eAT there exists nQe N such that

E VjT;h±vgsft
f£F(n ,A)

for any n > n0, it follows that k _L Msr(SfJ .

On the other hand we have

h~    E    VfT}h=(lJr-Yvj;)h+    Y    Vjíl^-YVxT^T'jh
feF(n,A) \ XeA J feF(\,A)        V xeA /

E   vg(ir-Yvj;)T¡heM^(^)
F(77-i,A)      V XeA J

+ ■■■ +

feF(n-\,A)

and therefore

h-k = }^oo\h-    E    VjT}h]eM^(Sft).
V feF(n ,A) y

This ends the proof.

Proposition 2.11. Let AT = {7^}^ A be a sequence of operators on * such that

the matrix [TX,T2, ...] is an injection. Then P^* = AM .

Proof. Let us suppose that there exists k e 31, k ^ 0 such that k A. Pg¡*,

or equivalently, such that k _L Msr(SfJ and k 1 *.

By Theorem 2.8 we have X = * ® M^.(Sf). It follows that k G M^(Sf)

and hence k = Efe.gr Vflf where I( e SC (f e &~) and £/€^ ||//||2 < °°-

Since k ^ 0 there exists f0 e AT, such that Vjlf / 0 and

v;k=if^YvÁ  «>^-
ger
g¿o

One can easily show that for every g e AT, g ^ 0, VgSf _L Jz? . Since

V*k A Sf^ it follows that lfo A Sft. By the relation (2.8) we deduce that

//o°e©,eA^
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Therefore, there exists a nonzero ®i€Ahx e ©¿eA^ such that L =

Easa V}_hx. Since Sf L *, it follows that E;ga -^A = ^ which is a con-
tradiction with the hypothesis.

Thus P¿g* = 31 and the proof is complete.

For each X e A let us denote by Rx the operator Vf^ . Taking into account

the Wold decomposition (Theorem 1.3) we have E^a^a^I = ^ •

The following theorem is a generalization of Proposition 3.5 in [8, Chapter

II].

Proposition 2.12. Let AT = {7^}AgA a sequence of operators on * such that

AT eC     and the matrix [TX,T2, ...] is an injective contraction.

Then AT is quasi-similar to {Rf}k€A, i.e., there exists a quasi-affinity Y from

3Î to * such that TXY = YRX for every XeA.

Proof. According to Proposition 2.10 we have

v;^h=lim     Y    VfVfT}h
feF(n ,A)

=  lim       Y      VT*T*h = P^T*h
«-»OO A—» g     g      X MX

geF(n-\,A)

for all he* and each X e A.

Setting X = P^\^ it follows that R\X = XTX for every X e A. Let us

show that X is a quasi-affinity.

Since AT e C<0) we have that

lim     Y,    \\Trh\\   = 0   for every nonzero h e *.

°° feF(n,A)

By Proposition 2.10 we deduce that P^h ± 0 for every nonzero he*,

i.e., X is an injection.

On the other hand, Proposition 2.11 shows that X* = 31.

If we take Y = X*, this finishes the proof.

In this section we extend the Sz.-Nagy-Foias lifting theorem [7, 8, 1,4] to

our setting.

Let AT = {TX}X€A be a sequence of operators on * with E^a ^f^l - !%■

and "V = {VX}X€A be the minimal isometric dilation of the Hilbert space X =

*®l2(AT,3) (see Theorem 2.1).

Consider the following subspaces of X

.X=*V\      \J     Vf*
^feF(\,A)
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and

K=K-^\     V     Vj*\     for«>2.
v/€F(i,A)       y

Note that *n c *n+x and that all the space *n (n > I) are invariant for each

operator Vf   (XeA).
As in [7, 8, 1,4] the «-stepped dilation of AT is the sequence ATn = {(Tx)n}XeA

of operators defined by (Tf)*n = Vf\^   (n>l,XeA).

One can easily show that 'V is the minimal isometric dilation on ATn and

that ATn+x is the one-step dilation of ATn.

Let us observe that *x = * © 3 and

(n>2)

where Sf = {Sf}XeA is the A-orthogonal shift acting on / (AT ,3).

Now Lemma 2 and Theorem 3 in [4] can be easily extended to our setting.

Thus, we omit the proofs in what follows.

Lemma 3.1. Let Pn be the orthogonal projection from X into *n.

Then V„>i *n= X and for each X e A we have

(Tx)*nPn ~* vf    (strongly) as n -> oo.

Let AT' = {TX}X€A be another sequence of operators on a Hilbert space *'

with E;ga T¿T'f < 1%,, and T~' = {VX}X€A be the minimal isometric dilation

of AT' acting on the Hilbert space X' = *' ® l2(Sr ,3').

Theorem 3.2. Let A : * —» *' be a contraction such that for each XeA

TXA = ATx. Then there exists a contraction B: X —* X' such that for each

XeA   V'XB = BVX and B*\r, = A*.
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