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Abstract. The problem of isometry-invariant representation and com-
parison of surfaces is of cardinal importance in pattern recognition appli-
cations dealing with deformable objects. Particularly, in three-dimensional
face recognition treating facial expressions as isometries of the facial sur-
face allows to perform robust recognition insensitive to expressions.

Isometry-invariant representation of surfaces can be constructed by iso-
metrically embedding them into some convenient space, and carrying out
the comparison in that space. Presented here is a discussion on isomet-
ric embedding into S3, which appears to be superior over the previously
used Euclidean space in sense of the representation accuracy.

1 Introduction

The problem of isometry-invariant representation of surfaces arises in numerous
pattern recognition applications dealing with deformable objects. Particularly,
in three-dimensional face recognition, it was shown that facial expressions can
be modelled as isometric transformations of the facial surface [1, 2]. Under this
assumption, the problem of expression invariant face recognition is reduced to
finding similarity between isometric surfaces.

Figure 1 illustrates the problem of isometric surface matching. The first row
(a)-(c) shows three isometric transformations of the same hand (assume that
the fingers do not touch each other, such that the topology is preserved), which,
with a bit of imagination, look like a grenade, a dog and a cobra (d)-(f). In other
words, from the point of view of their extrinsic geometry3, isometric surfaces can
look completely different, while being just instances of the same surface.

3 Formally, intrinsic geometry refers to all the properties of the manifold expressed
in terms of the metric (first fundamental form), and extrinsic geometry refers to
properties expressed in terms of the second fundamental form. We use these terms
in a broader sense, by which extrinsic geometry defines the properties that describe
the way the manifold is immersed in the ambient space.
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(a) Hand 1

 
(b) Hand 2

 
(c) Hand 3

 
(d) Grenade

 
(e) Dog

 
(f) Cobra

Fig. 1. Illustration of the deformable surface matching problem. (a) - (c): isome-
tries of a hand. (d) - (f): different objects that resemble the hands from extrinsic
geometry point of view.

    

Fig. 2. Several facial expressions of the same person that can be modelled as
isometries. Face data shown by courtesy of Eyal Gordon.

Formally, given two complete compact smooth Riemannian manifolds (S, g)
and (Q, h), the diffeomorphism f : (S, g) → (Q, h) is called an isometry if
f∗h = g, where f∗h denotes pullback of the metric. As the result, all the intrinsic
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(a) Original surface (b) Isometric (c) Non-isometric

transformation transformation

Fig. 3. Illustration of isometric (b) and non-isometric (c) transformations of a
surface (a). Isometries do not change the intrinsic geometry of the surface, such
that an imaginable creature living on the surface does not feel the transforma-
tion.

geometric properties of the surface are preserved. Equivalently, an isometry can
be defined as a diffeomorphism preserving the geodesic distances, that is

dS(ξ1, ξ2) = dQ(η1, η2) ∀ξ1, ξ2 ∈ S, η1, η2 ∈ Q. (1)

where dS and dQ denote the geodesic distances induced by g and h, respectively.

2 Bending-invariant canonical forms

Let (S, h) and (Q, h) be two-dimensional Riemannian manifolds (surfaces) re-
lated by an isometry f(S) = Q. In the context of face recognition S and Q
are different expressions of the same face. Since geodesic distances are preserved
under an isometry, they are suitable candidates for an isometry-invariant repre-
sentation of the surface.

However, we should remember that the surfaces S and Q are sampled and
therefore in practice we have two finite metric spaces ({ξ1, ..., ξNS},DS) and
({η1, ..., ηNQ},DQ), respectively. The matrices DS = (dS(ξi, ξj)) and DQ =
(dQ(ηi, ηj)) denote the mutual geodesic distances between the points in S and
Q. There is neither guarantee that S and Q are sampled at the same points, nor
that the number of samples of the two surfaces is the same (NS 6= NQ). Moreover,
even if the samples are the same, they can be ordered arbitrarily. This ambiguity
makes impractical the use of D itself as an invariant representation.

2.1 Isometric embedding

An alternative proposed in [3] is to avoid dealing explicitly with the matrix of
geodesic distances and represent the Riemannian surface as a subset of some
convenient m-dimensional space S ′m, such that the original intrinsic geometry
is preserved. We call such a procedure isometric embedding. This embedding
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allows to get rid of the extrinsic geometry, which no more exists in the new
space. As a consequence, the resulting representation is identical for all isometric
transformations of the surface. Another advantage is related to the fact that a
general Riemannian metric is usually inconvenient to work with. The embedding
space, on the other hand, can be chosen completely to our discretion. That is,
the embedding replaces a complicate geometric structure by a convenient one.

Isometric embedding is a mapping between two finite metric spaces

ϕ : ({ξ1, ..., ξN} ⊂ S,D) → ({ξ′1, ..., ξ′N} ⊂ S ′m,D′) , (2)

such that
d′ij = dij ∀i, j = 1, ..., N. (3)

The matrices D = (dij) = (d(ξi, ξj)) and D′ = (d′ij) = (d′(ξ′i, ξ
′
j)) denote the

mutual geodesic distances between the points in the original and the embedding
space, respectively. Following Elad and Kimmel, the image of {ξ1, ..., ξN} under
ϕ is called the canonical form of (S, g) [3].

In general, such isometric embedding does not exist, and therefore one has to
bear in mind that the canonical form is an approximate representation of the dis-
crete surface. It is possible to find optimal canonical forms in sense of some metric
distortion criterion. Also, the canonical form is not defined uniquely, but up to
any transformation in the embedding space that does not alter the distances
(e.g. in an Euclidean space, such transformations are translations, rotations and
reflections). Yet this ambiguity is much easier to cope with compared to the vast
degrees of freedom in the matrix D.

2.2 The choice of the embedding space

An important question is how to choose the embedding space. First, the geometry
of the embedding space is important. Popular choices include spaces with flat [4,
3, 5, 6], spherical [7] or hyperbolic [8] geometry. This choice should be dictated
by the convenience of a specific space and the resulting embedding error, which,
in turn, depends on the embedding error definition.

Secondly, the dimension m of the embedding space must be chosen in such
a way that the codimension of ϕ(S) in S ′m is at least 1. The reason is made
clear if we limit our manifolds to be graphs of functions (in our case - functions
of two variables). Sampling of a graph z(x, y) produces a set of points, which
when embedded into R2 (or some other two-dimensional manifold), reflect the
sampling pattern while the intrinsic geometry is captured mainly by the de-
formation of the boundaries of that function. Increasing the sampling rate will
not enhance the intrinsic geometry captured by the embedded space. It would
mainly indicate the x, y parametric shadow, or numerical support in R2 of the
sampled function. On the other hand, when embedded into R3 (or other higher-
dimensional manifolds), the sample points will lie along some two-dimensional
submanifold of R3, and increasing the sampling rate would better capture the
geometry of this submanifold.
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Embedding with codimension zero (e.g. embedding of a surface in a plane) is
useful when the manifold is endowed with some additional property, for example,
texture. Such embedding can be thought of as an intrinsic parameterization of
the manifold and has been explored in the context of medical visualization [4],
texture mapping [6] and registration of facial images [9].

The main focus of present paper is embedding into a three-dimensional sphere
S3. This space appears to be more suitable for embedding of facial surfaces
than the Euclidean space used beforehand in [3, 1, 2]. Embedding into a two-
dimensional sphere S2 was employed by Elad and Kimmel for visualization of
convoluted brain cortical surface [7]. Here, we present embedding into S3 as a
more accurate representation of facial surfaces.

3 Embedding into S3

A unit4 m-dimensional sphere can be represented as the geometric locations of
all unit vectors in Rm+1

Sm =
{
x ∈ Rm+1 : ‖x‖2 = 1

}
. (4)

For every point on Sm, there exists a correspondence between the parameter-
ization coordinates ξ1, ..., ξm and the unit vector in Rm+1. Given two points
ξi, ξj on the sphere (corresponding to unit vectors xi,xj ∈ Rm+1), the geodesic
distance between them is the great circle arc length, given by

dSm(ξi, ξj) = cos−1(〈xi,xj〉). (5)

Specifically, S3 can be parameterized as

x1(ξ) = cos ξ1 cos ξ2 cos ξ3, (6)
x2(ξ) = cos ξ1 sin ξ2 cos ξ3,

x3(ξ) = sin ξ1 cos ξ3,

x4(ξ) = sin ξ3.

where ξ ∈ [0, π]× [0, 2π]× [0, π]. The geodesic distance is explicitly expressed as

dS3(ξi, ξj) = cos−1( cos ξ1
i cos ξ3

i cos ξ1
j cos ξ3

j cos(ξ2
i − ξ2

j ) + (7)

cos ξ3
i cos ξ3

j sin ξ1
i sin ξ1

j + sin ξ1
i sin ξ3

j ).

We use the normalized weighted stress [10] as the embedding error criterion

ε(Ξ′;D,W) =

∑
i<j wij(d′ij(Ξ

′)− dij)2∑
i<j d′2ij(Ξ

′)
=

A

B
, (8)

4 Without loss of generality, we discuss a unit sphere. The sphere radius is taken into
account by scaling the distances.
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where Ξ′ = (ξ′ij ) is a 3 × N matrix representing the parametric coordinates of
the canonical form points, and D = (dij) and W = (wij) are N ×N matrices of
geodesic distances and weights, respectively. The weight are chosen as wij = 1;
choosing wij ∝ d−2

ij gives the relative stress [10].
The stress ε(Ξ′;D,W) is minimized w.r.t. Ξ using the BFGS quasi-Newton

algorithm (medium-scale optimization implemented in MATLAB function fminunc).
The gradient of ε(Ξ′;D,W) w.r.t. Ξ′ is given by

∂

∂ξ′lk
ε(Ξ′;D,W) = B−2

(
B

∂

∂ξ′lk
A−A

∂

∂ξ′lk
B

)
, (9)

where

∂

∂ξ′lk
A = 2

∑

i

wik(d′ij − dij)
∂

∂ξ′lk
d′ik, (10)

∂

∂ξ′lk
B = 2

∑

i

d′ik
∂

∂ξ′lk
d′ik,

and

∂

∂ξ′lk
d′ik = (1− C2

ik)−1/2 ∂

∂ξ′lk
Cik,

Cik = cos ξ′1i cos ξ′3i cos ξ′1k cos ξ′3k cos(ξ′2i − ξ′2k ) +
cos ξ′3i cos ξ′3k sin ξ′1i sin ξ′1k + sin ξ′1i sin ξ′1k (11)

4 Numerical results

The spherical embedding approach was tested on a set of human faces. Facial
surfaces were acquired using a structured light 3D scanner [11] and underwent
preprocessing by cropping, smoothing and subsampling (see details in [2]). The
final surfaces contained about 750 points. An efficient modification of the para-
metric Fast Marching algorithm [12–14] was used to measure geodesic distances
on the discrete surfaces.

Comparison of canonical form was performed in R4 using the moments sig-
natures. A pqrs moment of the canonical form is defined as

µX′
pqrs =

N∑

i=1

(
x′1i

)p (
x′2i

)q (
x′3i

)r (
x′4i

)s
, (12)

where X′ = x′ij denotes the 4×N matrix of R4 coordinates of the canonical form
points, corresponding to the parametric coordinates ξi

j .
Canonical forms were first aligned using an Euclidean transformation, by

eliminating the first-order moments m1000,m0100,m0010,m0001 and the mixed
second-order moments m1100, m1010, m1001, m0110, m0101, m0011. The axes were
reordered according to the second order moments, making the projection onto the
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Fig. 4. Maximum-variance projection onto R3 of a facial surface embedded into
S3 with radius R = 10cm.

first axis x1 have the largest variance, and onto the fourth axis x4 the smallest
variance. This operation resolves the translation and rotation ambiguities for
non-trivial objects. Next, reflections were applied to each axis xk in order to set

N∑

i=1

sign
(
x′ki

) ≥ 0. (13)

This operation resolves the reflection ambiguity.
Next, a signature of moments up to the fifth order was computed. The dis-

tance between two canonical forms X′ and Y′ was computed according to the
standard Euclidean distance between their moments signatures:

d2
mom(X′,Y′) =

∑
p+q+r+s=2,..,5

(
µX′

pqrs − µY′
pqrs

)2

. (14)

Figure 4 depicts the maximum-variance projection onto R3 of a canonical
form obtained by embedding into a sphere of radius R = 10cm. Figure 5 depicts
the embedding of the same face into spheres of different radii.

Figure 6 shows the embedding error ε as a function of the sphere radius. The
minimum error is obtained around R = 7.5cm and then increases asymptoti-
cally, as R grows to infinity. The asymptote corresponds to embedding into R3.
Therefore, spherical embedding allows to obtain more than twice lower embed-
ding error.

Finally, Figures 2–8 show a toy “face recognition” experiment that was per-
formed on a set of 33 faces of four subjects in the presence of extreme facial
expressions (Figure 2). Figure 8 depicts a two-dimensional visualization of the
similarities (in sense of dmom) between the faces.
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(a) R = 5cm (b) R = 7.5cm (c) R = 15cm

Fig. 5. Maximum-variance projections onto R3 of a facial surface embedded into
S3 with different radii.
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Fig. 6. Embedding error as the function of the sphere radius in cm. The asymp-
tote R →∞ corresponds to embedding into R3.

5 Conclusions

We presented the three-dimensional sphere S3 as an alternative to the Euclidean
space used beforehand in [3, 1, 2] to construct expression-invariant representation
of human faces. Using S3 results in smaller embedding error, and leads to a more
accurate representation.
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(a) Alex (b) Michael (c) Mark (d) Mitya

   

(e) Surprise (f) Disgust (g) Inflate

Fig. 7. (a) - (d) Faces used in the experiment. Alex and Michael are identical
twins. (e) - (g) Representative facial expressions of subject Mark.

 

�   Neutral �   Smile � Anger � Surprise � Disgust � Inflate

Fig. 8. Two-dimensional visualization of dissimilarities between faces. Colors
represent different subjects. Symbols represent different facial expressions.
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