ISOMETRIC EMBEDDINGS OF BANACH BUNDLES

Ming-Hsiu Hsu and Ngai-Ching Wong

Abstract

We show in this paper that every bijective linear isometry between the continuous section spaces of two non-square Banach bundles gives rise to a Banach bundle isomorphism. This is to support our expectation that the geometric structure of the continuous section space of a Banach bundle determines completely its bundle structures. We also describe the structure of an into isometry from a continuous section space into an other. However, we demonstrate by an example that a non-surjective linear isometry can be far away from a subbundle embedding.

1. Introduction

Let $\left\langle B_{X}, \pi_{X}\right\rangle$ be a Banach bundle over a locally compact Hausdorff space X. For each x in X, denote by $B_{x}=\pi_{X}^{-1}(x)$ the fiber Banach space. A continuous section f of the Banach bundle $\left\langle B_{X}, \pi_{X}\right\rangle$ is a continuous function from X into B_{X} such that $\pi_{X}(f(x))=x$, i.e., $f(x) \in B_{x}$ for all x in X. Denote by Γ_{X} the Banach space of all continuous sections of $\left\langle B_{X}, \pi_{X}\right\rangle$ vanishing at infinity, i.e. those f with $\lim _{x \rightarrow \infty}\|f(x)\|=0$.

Let $\left\langle B_{Y}, \pi_{Y}\right\rangle$ be an other Banach bundle over a locally compact Hausdorff space Y with continuous section space Γ_{Y}. Assume that Γ_{X} is isometrically isomorphic to Γ_{Y} as Banach spaces. We want to assert whether $\left\langle B_{X}, \pi_{X}\right\rangle$ is isometrically isomorphic to $\left\langle B_{Y}, \pi_{Y}\right\rangle$ as Banach bundles (see $\S 2$ for definitions). In other words, we expect that the geometric structure of the continuous sections of a Banach bundle determines its bundle structure.

Example 1.1. (Trivial line bundles). Let $B_{X}=X \times \mathbb{K}$ and $B_{Y}=Y \times \mathbb{K}$, where the underlying field \mathbb{K} is either the real \mathbb{R} or the complex \mathbb{C}. The continuous section

[^0]spaces are $C_{0}(X)$ and $C_{0}(Y)$, the Banach spaces of continuous scalar functions vanishing at infinity, respectively. The classical Banach-Stone Theorem (see, e.g., [1]) asserts that every linear isometry T from $C_{0}(X)$ onto $C_{0}(Y)$ is a weighted composition operator:
\[

$$
\begin{equation*}
T f(y)=h(y) f(\varphi(y)), \quad \forall f \in C_{0}(X), y \in Y \tag{1.1}
\end{equation*}
$$

\]

Here, φ is a homeomorphism from Y onto X, and h is a continuous scalar function on Y with $|h(y)|=1, \forall y \in Y$. This induces an isometric bundle isomorphism $\Phi: B_{X} \rightarrow B_{Y}$ from $B_{X}=X \times \mathbb{K}$ onto $B_{Y}=Y \times \mathbb{K}$ defined by

$$
\Phi(x, \alpha)=\left(\varphi^{-1}(x), h\left(\varphi^{-1}(x)\right) \alpha\right), \quad \forall(x, \alpha) \in X \times \mathbb{K}
$$

Hence, the trivial line bundles $\left\langle X \times \mathbb{K}, \pi_{X}\right\rangle$ and $\left\langle Y \times \mathbb{K}, \pi_{Y}\right\rangle$ are isometrically isomorphic if and only if they have isometrically isomorphic continuous section spaces.

Recall that a Banach space E is strictly convex if $\|x+y\|<2$ whenever $x \neq y$ in E with $\|x\|=\|y\|=1$. A Banach space E is said to be non-square if E does not contain a copy of the two-dimensional space $\mathbb{K} \oplus_{\infty} \mathbb{K}$ equipped with the norm $\|(a, b)\|=\max \{|a|,|b|\}$. In other words, if x and y are unit vectors in E, at least one of $\|x+y\|$ and $\|x-y\|$ is less than 2 . Note that a Banach space E is non-square if E or its dual E^{*} is strictly convex.

Example 1.2. (Trivial bundles). Let E and F be Banach spaces. We consider the trivial bundles $B_{X}=X \times E$ and $B_{Y}=Y \times F$. The continuous section spaces are $C_{0}(X, E)$ and $C_{0}(Y, F)$, the Banach spaces of continuous vector-valued functions vanishing at infinity, respectively. If E and F are strictly convex, by a result of Jerison [9] we know that every linear isometry T from $C_{0}(X, E)$ onto $C_{0}(Y, F)$ is of the form:

$$
\begin{equation*}
T f(y)=h_{y}(f(\varphi(y))), \quad \forall f \in C_{0}(X, E), y \in Y \tag{1.2}
\end{equation*}
$$

Here, φ is a homeomorphism from Y onto X, and h_{y} is a linear isometry from E onto F for all y in Y. Moreover, the map $y \mapsto h_{y}$ is SOT continuous on Y. In the case both the Banach dual spaces E^{*} and F^{*} are strictly convex, Lau gets the same representation (1.2) in [10]. It is further extended that the same conclusion holds whenever E and F are non-square in [8] or the centralizers of E and F are one dimensional in [1]. The representation (1.2) induces an isometric bundle isomorphism $\Phi: B_{X} \rightarrow B_{Y}$ from $B_{X}=X \times E$ onto $B_{Y}=Y \times F$ defined by

$$
\Phi(x, e)=\left(\varphi^{-1}(x), h_{\varphi^{-1}(x)}(e)\right), \quad \forall(x, e) \in X \times E .
$$

Hence, the trivial bundles $\left\langle X \times E, \pi_{X}\right\rangle$ and $\left\langle Y \times F, \pi_{Y}\right\rangle$ are isometrically isomorphic if and only if they have isometrically isomorphic continuous section spaces. We note
that if E or F is not non-square, the above assertion (1.2) can be false as shown in Example 3.4.

In this paper, we discuss the general Banach bundle case. Motivated by Example 1.2, we call a Banach bundle $\left\langle B_{X}, \pi_{X}\right\rangle$ non-square (resp. strictly convex) if every fiber Banach space $B_{x}=\pi_{X}^{-1}(x)$ is non-square (resp. strictly convex). The proof of the following theorem will be given in Section .

Theorem 1.3. Two non-square Banach bundles $\left\langle B_{X}, \pi_{X}\right\rangle$ and $\left\langle B_{Y}, \pi_{Y}\right\rangle$ are isometrically isomorphic as Banach bundles if and only if their continuous section spaces Γ_{X} and Γ_{Y} are isometrically isomorphic as Banach spaces.

We also consider the case when the continuous section space Γ_{X} is embedded into Γ_{Y} as a Banach subspace. We want to see whether $\left\langle B_{X}, \pi_{X}\right\rangle$ embedded into $\left\langle B_{X}, \pi_{X}\right\rangle$ as a subbundle. Assume F is strictly convex. It is shown in [2, 5, 7] that every linear isometry from $C_{0}(X, E)$ into $C_{0}(Y, F)$ induces a continuous function φ from a nonempty subset Y_{1} of Y onto X and a field $y \mapsto h_{y}$ of norm one linear operators from E into F on Y_{1}, such that

$$
\begin{equation*}
T f(y)=h_{y}(f(\varphi(y))), \quad \forall f \in C_{0}(X, E), y \in Y_{1}, \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left.T f\right|_{Y_{1}}\right\|=\sup \left\{\|T f(y)\|: y \in Y_{1}\right\}=\|f\|, \quad \forall f \in C_{0}(X, E) \tag{1.4}
\end{equation*}
$$

When F is not strictly convex, the conclusion does not hold (see [7]).
In Theorem 3.1, we extend the above representation (1.3) and (1.4) to the general strictly convex Banach bundle case. Supposing all h_{y} are isometries, we can consider $\left\langle B_{X}, \pi_{X}\right\rangle$ to be embedded into $\left\langle B_{Y}, \pi_{Y}\right\rangle$ as a subbundle. However, in Example 3.2 we have a linear into isometry between trivial bundles with all fiber maps h_{y} not being isometric.

2. Preliminaries

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} be the underlying field. Let X be a locally compact Hausdorff space. A Banach bundle (see, e.g. [4]) over X is a pair $\left\langle B_{X}, \pi_{X}\right\rangle$, where B_{X} is a topological space and π_{X} is a continuous open surjective map from B_{X} onto X, such that, for all x in X, each fiber $B_{x}=\pi_{X}^{-1}(x)$ carries a Banach space structure in the subspace topology and satisfying the following conditions:
(1) Scalar multiplication, addition and the norm on B_{X} are all continuous wherever they are defined.
(2) If $x \in X$ and $\left\{b_{i}\right\}$ is any net in B_{X} such that $\left\|b_{i}\right\| \rightarrow 0$ and $\pi\left(b_{i}\right) \rightarrow x$ in X, then $b_{i} \rightarrow 0_{x}$ (the zero element of B_{x}) in B_{X}.

The condition (2) above ensures that the zero section is in Γ_{X}.
Definition 2.1. ([4], p. 128). A Banach bundle $\left\langle B_{X}, \pi_{X}\right\rangle$ is said to be isometrically isomorphic to a Banach bundle $\left\langle B_{Y}, \pi_{Y}\right\rangle$ if there are homeomorphisms $\Phi: B_{X} \rightarrow B_{Y}$ and $\psi: X \rightarrow Y$ such that
(a) $\pi_{Y} \circ \Phi=\psi \circ \pi_{X}$, i.e., $\Phi\left(B_{x}\right)=B_{\psi(x)}, \forall x \in X$;
(b) $\left.\Phi\right|_{B_{x}}$ is a linear map from B_{x} onto $B_{\psi(x)}, \forall x \in X$;
(c) Φ preserves norm, i.e., $\|\Phi(b)\|=\|b\|, \forall b \in B_{X}$.

Clearly, all the fiber linear maps $\left.\Phi\right|_{B_{x}}$ are surjective isometries. In fact, an isometrical bundle isomorphism $(\Phi, \psi):\left\langle B_{X}, \pi_{X}\right\rangle \rightarrow\left\langle B_{Y}, \pi_{Y}\right\rangle$ induces a linear isometry T from Γ_{X} onto Γ_{Y} defined by setting $\varphi=\psi^{-1}: Y \rightarrow X, h_{y}=\left.\Phi\right|_{B_{\varphi(y)}}$: $B_{\varphi(y)} \rightarrow B_{y}$, and

$$
\begin{equation*}
T f(y)=\Phi(f(\varphi(y)))=h_{y}(f(\varphi(y))), \quad \forall f \in \Gamma_{X}, y \in Y \tag{2.1}
\end{equation*}
$$

In other words, isometrically isomorphic Banach bundles have isometrically isomorphic continuous section spaces. We want to establish the converse of this observation.

In general, let $\varphi: Y \rightarrow X$ be a continuous map, and let $y \mapsto h_{y}$ be a field of fiber linear maps $h_{y}: B_{\varphi(y)} \rightarrow B_{y}, \forall y \in Y$. We can define a linear map T sending vector sections f in $\left\langle B_{X}, \pi_{X}\right\rangle$ to vector sections $T f$ in $\left\langle B_{Y}, \pi_{Y}\right\rangle$ by setting $T f(y)=$ $h_{y}(f(\varphi(y))), \forall y \in Y$. The field $y \mapsto h_{y}$ is said to be continuous if $y_{\lambda} \rightarrow y$ implies $h_{y_{\lambda}}\left(f\left(\varphi\left(y_{\lambda}\right)\right)\right) \rightarrow h_{y}(f(\varphi(y)))$, and uniformly bounded if $\sup _{y \in Y}\left\|h_{y}\right\|<+\infty$. When $B_{X}=X \times E$ and $B_{Y}=Y \times F$, the continuity of a field $y \mapsto h_{y}$ of fiber linear maps reduces to the usual SOT continuity. In general, assuming φ is proper, i.e., $\lim _{y \rightarrow \infty} \varphi(y)=\infty$, if the field $y \mapsto h_{y}$ is uniformly bounded and continuous on Y, then $T\left(\Gamma_{X}\right) \subseteq \Gamma_{Y}$. Conversely, we will see in Theorem 3.1 that every linear into isometry $T: \Gamma_{X} \rightarrow \Gamma_{Y}$ defines a continuous field $y \mapsto h_{y}$ of fiber linear maps with all $\left\|h_{y}\right\|=1$, provided that $\left\langle B_{Y}, \pi_{Y}\right\rangle$ is strictly convex.

In terms of Banach bundles, Example 1.1 says that trivial line bundles are completely determined by the geometric structure of its continuous sections. It is also the case for trivial Banach bundles $X \times E$ and $Y \times F$ whenever E and F are non-square, as demonstrated in Example 1.2. In attacking the general Banach bundle case, we need the following result of Fell [4].

Proposition 2.2. ([4], p. 129). Let $\left\{s_{i}\right\}(i \in I)$ be a net of elements of B_{X} and s an element of B_{X} such that $\pi_{X}\left(s_{i}\right) \rightarrow \pi_{X}(s)$. Suppose further that for each $\epsilon>0$ we can find a net $\left\{u_{i}\right\}$ of elements of B_{X} (indexed by the same I) and an element u of B_{X} such that: (1) $u_{i} \rightarrow u$ in B_{X}, (2) $\pi_{X}\left(u_{i}\right)=\pi_{X}\left(s_{i}\right)$ for each i, (3) $\|s-u\|<\epsilon$, and (4) $\left\|s_{i}-u_{i}\right\|<\epsilon$ for all large enough i. Then $s_{i} \rightarrow s$ in B_{X}.

3. The Results

First, we discuss the into isometry case. We shall write E^{*} and S_{E} for the Banach dual space and the unit sphere of a Banach space E, respectively.

Theorem 3.1. Suppose $\left\langle B_{X}, \pi_{X}\right\rangle$ and $\left\langle B_{Y}, \pi_{Y}\right\rangle$ are Banach bundles such that $\left\langle B_{Y}, \pi_{Y}\right\rangle$ is strictly convex. Let $T: \Gamma_{X} \rightarrow \Gamma_{Y}$ be a linear into isometry. Then there exist a continuous map φ from a nonempty subset Y_{1} of Y onto X, and a field of norm one linear operators $h_{y}: B_{\varphi(y)} \rightarrow B_{y}$, for all y in Y_{1}, such that

$$
T f(y)=h_{y}(f(\varphi(y))), \quad \forall f \in \Gamma_{X}, y \in Y_{1}
$$

and

$$
\left\|\left.T f\right|_{Y_{1}}\right\|=\|T f\|, \quad \forall f \in \Gamma_{X} .
$$

Proof. We employ the notations developed in [7, 8]. For x in X, y in Y, μ in $S_{B_{x}^{*}}$ and ν in $S_{B_{y}^{*}}$, we set

$$
\begin{gathered}
S_{x, \mu}=\left\{f \in \Gamma_{X}: \mu(f(x))=\|f\|=1\right\}, \\
R_{y, \nu}=\left\{g \in \Gamma_{Y}: \nu(g(y))=\|g\|=1\right\} \\
Q_{x, \mu}=\left\{y \in Y: T\left(S_{x, \mu}\right) \subseteq R_{y, \nu} \text { for some } \nu \text { in } S_{B_{y}^{*}}\right\},
\end{gathered}
$$

and

$$
Q_{x}=\bigcup_{\mu \in S_{B_{x}^{*}}} Q_{x, \mu}
$$

As in [8], it is not difficult to see that
(a) For all x in X, the set $S_{x, \mu} \neq \emptyset$ for some μ in $S_{B_{x}^{*}}$;
(b) If $S_{x, \mu} \neq \emptyset$, then so is $Q_{x, \mu}$.

By the strict convexity of $\left\langle B_{Y}, \pi_{Y}\right\rangle$, we have
(c) $Q_{x_{1}} \cap Q_{x_{2}}=\emptyset$ for all $x_{1} \neq x_{2}$. Set

$$
Y_{1}=\bigcup_{x \in X} Q_{x}=\bigcup_{x \in X} \bigcup_{\mu \in S_{B_{x}^{*}}} Q_{x, \mu}
$$

From (c), we can define a map φ from Y_{1} onto X by

$$
\varphi(y)=x \quad \text { if } \quad y \in Q_{x} .
$$

Using the strict convexity of $\left\langle B_{Y}, \pi_{Y}\right\rangle$ again, we also have
(d) $f(\varphi(y))=0$ implies $T f(y)=0$, i.e. $\operatorname{ker} \delta_{\varphi(y)} \subseteq \operatorname{ker}\left(\delta_{y} \circ T\right)$.

Then there exists a linear operator $h_{y}: B_{\varphi(y)} \rightarrow B_{y}$ such that

$$
\delta_{y} \circ T=h_{y} \circ \delta_{\varphi(y)}, \quad \forall y \in Y_{1}
$$

In other words,

$$
T f(y)=h_{y}(f(\varphi(y))), \quad \forall f \in \Gamma_{X}, y \in Y_{1}
$$

For all b in $B_{\varphi(y)}$, choose an element f in Γ_{X} such that $f(\varphi(y))=b$ and $\|f\|=\|b\|$. It follows

$$
\left\|h_{y}(b)\right\|=\left\|h_{y}(f(\varphi(y)))\right\|=\|T f(y)\| \leq\|T f\|=\|f\|=\|b\|
$$

Since $y \in Y_{1}$, there exist x in X, μ in $S_{B_{x}^{*}}$ and ν in $S_{B_{y}^{*}}$ such that

$$
\nu(T f(y))=\mu(f(x))=1, \quad \forall f \in S_{x, \mu}
$$

and hence

$$
\left\|h_{y}(f(x))\right\|=\|T f(y)\|=1
$$

This shows that $\left\|h_{y}\right\|=1$.
For all f in Γ_{X} with norm one, $f \in S_{x, \mu}$ for some x and μ. As a result, $T f \in R_{y, \nu}$ for some y in Y_{1} and ν in $S_{B_{y}^{*}}$. Thus,

$$
\nu(T f(y))=\mu(f(x))=\|f\|=1
$$

Therefore, $\left\|\left.T f\right|_{Y_{1}}\right\|=1=\|f\|=\|T f\|$.
It remains to show that the map φ is continuous. Let y_{λ} be a net converging to y in Y_{1}. If $\varphi\left(y_{\lambda}\right)$ does not converge to $\varphi(y)$, then by passing to a subnet if necessary, we can assume it converges to an $x \neq \varphi(y)$ in X_{∞}. Let U_{1} and U_{2} be disjoint neighborhoods of x and $\varphi(y)$ in X_{∞}, respectively. Let f be an element of $S_{\varphi(y), \mu}$ supporting in U_{2}. Then $f\left(\varphi\left(y_{\lambda}\right)\right)=0$ for large λ. By (d), $T f\left(y_{\lambda}\right)=0$ for large λ. The definition of φ implies that there exists a ν in $S_{B_{y}^{*}}$ such that $\nu(T f(y))=\mu(f(\varphi(y)))=\|f\|=1$. Hence, $\|T f(y)\|=1$, contradicting to the fact $T f\left(y_{\lambda}\right)=0$ for large λ.

Example 3.2. For each θ in $[0,2 \pi]$, let $P_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the orthogonal projection onto the one-dimensional subspace of \mathbb{R}^{2} spanned by the unit vector $(\cos \theta, \sin \theta)$. Every element f in $C\left(\{0\}, \mathbb{R}^{2}\right)$ is given by the vector $f(0)=$ $(r \cos t, r \sin t)$ for some $r \geq 0$ and $t \in[0,2 \pi]$. Define a linear isometry T : $C\left(\{0\}, \mathbb{R}^{2}\right) \rightarrow C\left([0,2 \pi], \mathbb{R}^{2}\right)$ by

$$
\begin{aligned}
T(f)(\theta) & =P_{\theta}(f(0))=P_{\theta}(r \cos t, r \sin t) \\
& =(r \cos (t-\theta) \cos \theta, r \cos (t-\theta) \sin \theta)
\end{aligned}
$$

In the notations of Theorem 3.1, $h_{\theta}=P_{\theta}, Y_{1}=Y=[0,2 \pi]$, and

$$
T f(\theta)=h_{\theta}(f(0)), \quad \forall f \in C\left(\{0\}, \mathbb{R}^{2}\right), \theta \in[0,2 \pi]
$$

Note that $h_{\theta}=P_{\theta}$ is not an isometry for every θ in $Y_{1}=[0,2 \pi]$.
Here comes the proof of our main result.
Proof of Theorem 1.3. Let $\left\langle B_{X}, \pi_{X}\right\rangle$ and $\left\langle B_{Y}, \pi_{Y}\right\rangle$ be two non-square Banach bundles and T a linear isometry from Γ_{X} onto Γ_{Y}. Denote by

$$
K_{X}=\bigcup_{x \in X}\left(\{x\} \times U_{B_{x}^{*}}\right) \quad \text { and } \quad K_{Y}=\bigcup_{y \in Y}\left(\{y\} \times U_{B_{y}^{*}}\right)
$$

the disjoint unions of the compact sets $\{x\} \times U_{B_{x}^{*}}$ and $\{y\} \times U_{B_{y}^{*}}$, respectively. Note that both the Hausdorff spaces K_{X} and K_{Y} are locally compact. Define a linear isometry $\Psi: \Gamma_{Y} \rightarrow C_{0}\left(K_{Y}\right)$ by

$$
\Psi(g)(y, \nu)=\nu(g(y)), \quad \forall g \in \Gamma_{Y},(y, \nu) \in K_{Y}
$$

Then $\widetilde{T}=\Psi \circ T$ is a linear isometry from Γ_{X} into $C_{0}\left(K_{Y}\right)$. By Theorem 3.1, there exist a continuous map $\widetilde{\varphi}$ from a nonempty subset A_{Y} of K_{Y} onto X and bounded linear functionals $\widetilde{h}_{(y, \nu)} \in B_{\widetilde{\varphi}(y, \nu)}^{*}$ such that

$$
\begin{equation*}
\widetilde{T} f(y, \nu)=\nu(T f(y))=\widetilde{h}_{(y, \nu)}(f(\widetilde{\varphi}(y, \nu))), \quad \forall f \in \Gamma_{X}, \quad(y, \nu) \in A_{Y} \tag{3.1}
\end{equation*}
$$

Applying the same argument to T^{-1}, there exist a continuous map $\widetilde{\psi}$ from a subset A_{X} of K_{X} onto Y and bounded linear functionals $\widetilde{k}_{(x, \mu)}$ in $B_{\widetilde{\psi}(x, \mu)}^{*}$ such that

$$
\mu\left(T^{-1} g(x)\right)=\widetilde{k}_{(x, \mu)}(g(\widetilde{\psi}(x, \mu))), \quad \forall g \in \Gamma_{Y}, \quad(x, \mu) \in A_{X}
$$

Let

$$
C_{y}=\left\{\nu \in S_{B_{y}^{*}}:(y, \nu) \in A_{Y}\right\}
$$

$$
X_{I}=\left\{x \in X: \text { there exists a } \mu \text { in } S_{B_{x}^{*}} \text { such that }(x, \mu) \in A_{X}\right\}
$$

and

$$
Y_{I}=\left\{y \in Y: \text { there exists a } \nu \text { in } S_{B_{y}^{*}} \text { such that }(y, \nu) \in A_{Y}\right\}
$$

We make the following easy observations:
(I) $X_{I}=X$ and $Y_{I}=Y$;
(II) C_{y} is total in B_{y}^{*}, for all y in Y.

By modifying the arguments in [8], it is not difficult to show that if $\left\langle B_{Y}, \pi_{Y}\right\rangle$ is non-square, $\widetilde{\varphi}\left(y, \nu_{1}\right)=\widetilde{\varphi}\left(y, \nu_{2}\right)$ for all ν_{i} in C_{y} and for all y in Y. Consequently, we can define a continuous map $\varphi: Y \rightarrow X$ by

$$
\varphi(y)=\widetilde{\varphi}(y, \nu), \text { for some } \nu \in C_{y}
$$

In view of (3.1) and (II), we have $f(\varphi(y))=0$ implies $T f(y)=0$. Then there exists a bounded linear operator $h_{y}: B_{\varphi(y)} \rightarrow B_{y}$ such that

$$
\begin{equation*}
T f(y)=h_{y}(f(\varphi(y))), \forall f \in \Gamma_{X}, y \in Y \tag{3.2}
\end{equation*}
$$

By symmetry, T^{-1} also carries a form

$$
T^{-1} g(x)=k_{x}(g(\psi(x))), \forall g \in \Gamma_{Y}, x \in X
$$

for some continuous map ψ from X onto Y, and bounded linear operators k_{x} from $B_{\psi(x)}$ into B_{x}, for all x in X. Consequently,

$$
f(x)=\left(T^{-1}(T f)\right)(x)=k_{x}(T f(\psi(x)))=k_{x} h_{\psi(x)}(f(\varphi(\psi(x))))
$$

This implies that φ is a homeomorphism with inverse ψ, and h_{y} are bijective linear isometries with inverses $k_{\varphi(y)}$ for all y in Y.

Let $\Phi=\left(h_{y}^{-1}\right)_{y \in Y}$, i.e. $\left.\Phi\right|_{B_{y}}=h_{y}^{-1}$. Then it defines a map from B_{Y} onto B_{X} as follows: for all b in B_{Y} and $\pi_{Y}(b)=y_{0}$. Choose a continuous section g in Γ_{Y} such that $g\left(y_{0}\right)=b$. Then

$$
\Phi(b)=h_{y_{0}}^{-1}\left(g\left(y_{0}\right)\right)=T^{-1}(g)\left(\varphi\left(y_{0}\right)\right)
$$

We show that Φ is a homeomorphism from B_{Y} to B_{X}. By symmetry, it suffices to prove that Φ is continuous. We shall make use of Proposition 2.2 in below.

Let $b_{i} \rightarrow b$ in B_{Y}. We show that $\Phi\left(b_{i}\right) \rightarrow \Phi(b)$ in B_{X}. Since π_{Y} and φ are continuous, we have $\pi_{Y}\left(b_{i}\right) \rightarrow \pi_{Y}(b)$ and $\varphi\left(\pi_{Y}\left(b_{i}\right)\right) \rightarrow \varphi\left(\pi_{Y}(b)\right)$. Let $s_{i}=\Phi\left(b_{i}\right)$ and $s=\Phi(b)$. Choose a continuous section g in Γ_{Y} such that $g\left(\pi_{Y}(b)\right)=b$. Then, for all $\epsilon>0$, we have $\left\|g\left(\pi_{Y}\left(b_{i}\right)\right)-b_{i}\right\|<\epsilon$ for all large enough i. The fact $\pi_{X} \circ \Phi=$ $\varphi \circ \pi_{Y}$ (this follows from (3.2)) implies that $\pi_{X}\left(s_{i}\right)=\pi_{X}\left(\Phi\left(b_{i}\right)\right)=\varphi\left(\pi_{Y}\left(b_{i}\right)\right)$ approaches $\varphi\left(\pi_{Y}(b)\right)=\pi_{X}(\Phi(b))=\pi_{X}(s)$. Let $u_{i}=\Phi\left(g\left(\pi_{Y}\left(b_{i}\right)\right)\right)$ and $u=$ $\Phi\left(g\left(\pi_{Y}(b)\right)\right)$. Since $\left.\Phi\right|_{B_{y}}$ is an isometry, we have $\left\|u_{i}-s_{i}\right\|=\left\|g\left(\pi_{Y}\left(b_{i}\right)\right)-b_{i}\right\|<\epsilon$, for all large enough i. And

$$
u_{i}=\Phi\left(g\left(\pi_{Y}\left(b_{i}\right)\right)\right)=h_{\pi_{Y}\left(b_{i}\right)}^{-1}\left(g\left(\pi_{Y}\left(b_{i}\right)\right)\right)=f\left(\varphi\left(\pi_{Y}\left(b_{i}\right)\right)\right)
$$

for some f in Γ_{X}, which converges to

$$
f\left(\varphi\left(\pi_{Y}(b)\right)\right)=h_{\pi_{Y}(b)}^{-1}\left(g\left(\pi_{Y}(b)\right)\right)=\Phi(b)=u
$$

in B_{X}. By Proposition 2.2, we have $\Phi\left(b_{i}\right)=s_{i} \rightarrow s=\Phi(b)$ in B_{X}. This shows that Φ is continuous and complete the proof of Theorem 1.3.

Corollary 3.3. Assume $\left\langle B_{X}, \pi_{X}\right\rangle$ and $\left\langle B_{Y}, \pi_{Y}\right\rangle$ are two non-square Banach bundles over locally compact Hausdorff spaces with isometrically isometric continuous sections. If $\left\langle B_{X}, \pi_{X}\right\rangle$ is locally trivial, then so is $\left\langle B_{Y}, \pi_{Y}\right\rangle$.

The following example shows that the conclusion in Theorem 1.3 might not hold if $\left\langle B_{X}, \pi_{X}\right\rangle$ or $\left\langle B_{Y}, \pi_{Y}\right\rangle$ is not non-square.

Example 3.4. Let π_{i} be the i-th coordinate map of $\mathbb{R} \oplus_{\infty} \mathbb{R}, i=1,2$. Each element f in $C\left(\{0\}, \mathbb{R} \oplus_{\infty} \mathbb{R}\right)$ is given by the vector $f(0)$ in $\mathbb{R} \oplus_{\infty} \mathbb{R}$. Define a linear map $T: C\left(\{0\}, \mathbb{R} \oplus_{\infty} \mathbb{R}\right) \rightarrow C(\{1,2\}, \mathbb{R})$ by

$$
T f(i)=\pi_{i}(f(0)), \quad \forall f \in C\left(\{0\}, \mathbb{R} \oplus_{\infty} \mathbb{R}\right), \quad i=1,2
$$

It is easy to see that T is an isometrical isomorphism, but $\mathbb{R} \oplus_{\infty} \mathbb{R}$ and \mathbb{R} are not isomorphic as Banach spaces. In particular, $\mathbb{R} \oplus_{\infty} \mathbb{R}$ is not isometrically isomorphic to $\{1,2\} \times \mathbb{R}$ as Banach bundles, although they have isometrically isomorphic continuous section spaces.

References

1. E. Behrends, M-structure and the Banach-Stone theorem, Lecture Notes in Mathematics, 736, Springer-Verlag, New York, 1979.
2. \qquad , A Holsztyński theorem for spaces of continuous vector-valued functions, Studia Math., 63 (1978), 213-217.
3. J. Dixmier, C^{*}-algebras, North-Holland publishing company, Amsterdam-New YorkOxford, 1977.
4. J. M. G. Fell and R. S. Doran, Representations of *-Algebras, Locally Compact Groups, and Banach Algebraic Bundles, Vol. 1, Academic, New York, 1988.
5. W. Holsztyński, Continuous mappings induced by isometries of spaces of continuous functions, Studia Math., 26 (1966), 133-136.
6. J. S. Jeang and N. C. Wong, Weighted composition operators of $C_{0}(X)$'s, J. Math. Anal. Appl., 201 (1996), 981-993.
7. -_, Into isometries of $C_{0}(X, E)$'s, J. Math. Anal. Appl., 207 (1997), 286-290.
8. ——, On the Banach-Stone Problem, Studia Math., 155 (2003), 95-105.
9. M. Jerison, The space of bounded maps into a Banach space, Ann. of Math., $\mathbf{5 2}$ (1950), 309-327.
10. K. S. Lau, A representation theorem for isometries of $C(X, E)$, Pacific J. of Math., 60 (1975), 229-233.

Ming-Hsiu Hsu and Ngai-Ching Wong
Department of Applied Mathematics
National Sun Yat-sen University
Kaohsiung, 80424, Taiwan
E-mail: hsumh@math.nsysu.edu.tw wong@math.nsysu.edu.tw

[^0]: Received December 1, 2009, accepted April 26, 2010.
 Communicated by J. C. Yao.
 2010 Mathematics Subject Classification: 46B40, 46E40, 46M20.
 Key words and phrases: Isometries, Banach bundles, Bundle isomorphisms, Banach-Stone type theorems.
 This work is jointly supported by a Taiwan NSC Grant (NSC96-2115-M-110-004-MY3).

