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ISOMETRIC EMBEDDINGS OF BANACH BUNDLES

Ming-Hsiu Hsu and Ngai-Ching Wong

Abstract. We show in this paper that every bijective linear isometry between
the continuous section spaces of two non-square Banach bundles gives rise
to a Banach bundle isomorphism. This is to support our expectation that
the geometric structure of the continuous section space of a Banach bundle
determines completely its bundle structures. We also describe the structure of
an into isometry from a continuous section space into an other. However, we
demonstrate by an example that a non-surjective linear isometry can be far
away from a subbundle embedding.

1. INTRODUCTION

Let 〈BX , πX〉 be a Banach bundle over a locally compact Hausdorff space X .
For each x in X , denote by Bx = π−1

X (x) the fiber Banach space. A continuous
section f of the Banach bundle 〈BX , πX〉 is a continuous function from X into BX
such that πX(f(x)) = x, i.e., f(x) ∈ Bx for all x in X . Denote by ΓX the Banach
space of all continuous sections of 〈BX , πX〉 vanishing at infinity, i.e. those f with
lim
x→∞ ‖f(x)‖ = 0.

Let 〈BY , πY 〉 be an other Banach bundle over a locally compact Hausdorff space
Y with continuous section space ΓY . Assume that ΓX is isometrically isomorphic
to ΓY as Banach spaces. We want to assert whether 〈BX , πX〉 is isometrically
isomorphic to 〈BY , πY 〉 as Banach bundles (see §2 for definitions). In other words,
we expect that the geometric structure of the continuous sections of a Banach bundle
determines its bundle structure.

Example 1.1. (Trivial line bundles). Let BX = X×K and BY = Y ×K, where
the underlying field K is either the real R or the complex C. The continuous section
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spaces are C0(X) and C0(Y ), the Banach spaces of continuous scalar functions
vanishing at infinity, respectively. The classical Banach-Stone Theorem (see, e.g.,
[1]) asserts that every linear isometry T from C0(X) onto C0(Y ) is a weighted
composition operator:

Tf(y) = h(y)f(ϕ(y)), ∀ f ∈ C0(X), y ∈ Y.(1.1)

Here, ϕ is a homeomorphism from Y onto X , and h is a continuous scalar function
on Y with |h(y)| = 1, ∀ y ∈ Y . This induces an isometric bundle isomorphism
Φ : BX → BY from BX = X × K onto BY = Y × K defined by

Φ(x, α) = (ϕ−1(x), h(ϕ−1(x))α), ∀ (x, α) ∈ X × K.

Hence, the trivial line bundles 〈X × K, πX〉 and 〈Y × K, πY 〉 are isometrically
isomorphic if and only if they have isometrically isomorphic continuous section
spaces.

Recall that a Banach space E is strictly convex if ‖x+y‖ < 2 whenever x �= y
in E with ‖x‖ = ‖y‖ = 1. A Banach space E is said to be non-square if E does
not contain a copy of the two-dimensional space K ⊕∞ K equipped with the norm
‖(a, b)‖ = max{|a|, |b|}. In other words, if x and y are unit vectors in E , at least
one of ‖x+y‖ and ‖x−y‖ is less than 2. Note that a Banach space E is non-square
if E or its dual E∗ is strictly convex.

Example 1.2. (Trivial bundles). Let E and F be Banach spaces. We consider
the trivial bundles BX = X × E and BY = Y × F . The continuous section
spaces are C0(X,E) and C0(Y, F ), the Banach spaces of continuous vector-valued
functions vanishing at infinity, respectively. If E and F are strictly convex, by a
result of Jerison [9] we know that every linear isometry T from C0(X,E) onto
C0(Y, F ) is of the form:

Tf(y) = hy(f(ϕ(y))), ∀ f ∈ C0(X,E), y ∈ Y.(1.2)

Here, ϕ is a homeomorphism from Y onto X , and hy is a linear isometry from E
onto F for all y in Y . Moreover, the map y 	→ hy is SOT continuous on Y . In
the case both the Banach dual spaces E∗ and F ∗ are strictly convex, Lau gets the
same representation (1.2) in [10]. It is further extended that the same conclusion
holds whenever E and F are non-square in [8] or the centralizers of E and F

are one dimensional in [1]. The representation (1.2) induces an isometric bundle
isomorphism Φ : BX → BY from BX = X ×E onto BY = Y × F defined by

Φ(x, e) = (ϕ−1(x), hϕ−1(x)(e)), ∀ (x, e) ∈ X ×E.

Hence, the trivial bundles 〈X×E, πX〉 and 〈Y ×F, πY 〉 are isometrically isomorphic
if and only if they have isometrically isomorphic continuous section spaces. We note
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that if E or F is not non-square, the above assertion (1.2) can be false as shown in
Example 3.4.

In this paper, we discuss the general Banach bundle case. Motivated by Example
1.2, we call a Banach bundle 〈BX , πX〉 non-square (resp. strictly convex) if every
fiber Banach space Bx = π−1

X (x) is non-square (resp. strictly convex). The proof
of the following theorem will be given in Section .

Theorem 1.3. Two non-square Banach bundles 〈BX , πX〉 and 〈BY , πY 〉 are
isometrically isomorphic as Banach bundles if and only if their continuous section
spaces ΓX and ΓY are isometrically isomorphic as Banach spaces.

We also consider the case when the continuous section space ΓX is embedded
into ΓY as a Banach subspace. We want to see whether 〈BX , πX〉 embedded into
〈BX , πX〉 as a subbundle. Assume F is strictly convex. It is shown in [2, 5, 7] that
every linear isometry from C0(X,E) into C0(Y, F ) induces a continuous function
ϕ from a nonempty subset Y1 of Y onto X and a field y 	→ hy of norm one linear
operators from E into F on Y1, such that

Tf(y) = hy(f(ϕ(y))), ∀ f ∈ C0(X,E), y ∈ Y1,(1.3)

and

‖Tf |Y1‖ = sup{‖Tf(y)‖ : y ∈ Y1} = ‖f‖, ∀ f ∈ C0(X,E).(1.4)

When F is not strictly convex, the conclusion does not hold (see [7]).
In Theorem 3.1, we extend the above representation (1.3) and (1.4) to the general

strictly convex Banach bundle case. Supposing all hy are isometries, we can consider
〈BX , πX〉 to be embedded into 〈BY , πY 〉 as a subbundle. However, in Example 3.2
we have a linear into isometry between trivial bundles with all fiber maps hy not
being isometric.

2. PRELIMINARIES

Let K = R or C be the underlying field. Let X be a locally compact Hausdorff
space. A Banach bundle (see, e.g. [4]) over X is a pair 〈BX , πX〉, where BX is
a topological space and πX is a continuous open surjective map from BX onto X ,
such that, for all x in X , each fiber Bx = π−1

X (x) carries a Banach space structure
in the subspace topology and satisfying the following conditions:

(1) Scalar multiplication, addition and the norm on BX are all continuous wher-
ever they are defined.

(2) If x ∈ X and {bi} is any net in BX such that ‖bi‖ → 0 and π(bi) → x in
X , then bi → 0x (the zero element of Bx) in BX .



1972 Ming-Hsiu Hsu and Ngai-Ching Wong

The condition (2) above ensures that the zero section is in ΓX .

Definition 2.1. ([4], p. 128). A Banach bundle 〈BX , πX〉 is said to be iso-
metrically isomorphic to a Banach bundle 〈BY , πY 〉 if there are homeomorphisms
Φ : BX → BY and ψ : X → Y such that

(a) πY ◦ Φ = ψ ◦ πX , i.e., Φ(Bx) = Bψ(x), ∀ x ∈ X ;
(b) Φ|Bx is a linear map from Bx onto Bψ(x), ∀ x ∈ X ;
(c) Φ preserves norm, i.e., ‖Φ(b)‖ = ‖b‖, ∀ b ∈ BX .

Clearly, all the fiber linear maps Φ|Bx are surjective isometries. In fact, an
isometrical bundle isomorphism (Φ, ψ) : 〈BX , πX〉 → 〈BY , πY 〉 induces a linear
isometry T from ΓX onto ΓY defined by setting ϕ = ψ−1 : Y → X , hy = Φ|Bϕ(y)

:
Bϕ(y) → By , and

Tf(y) = Φ(f(ϕ(y))) = hy(f(ϕ(y))), ∀ f ∈ ΓX , y ∈ Y.(2.1)

In other words, isometrically isomorphic Banach bundles have isometrically isomor-
phic continuous section spaces. We want to establish the converse of this observa-
tion.

In general, let ϕ : Y → X be a continuous map, and let y 	→ hy be a field of
fiber linear maps hy : Bϕ(y) → By , ∀ y ∈ Y . We can define a linear map T sending
vector sections f in 〈BX , πX〉 to vector sections Tf in 〈BY , πY 〉 by setting Tf(y) =
hy(f(ϕ(y))), ∀y ∈ Y . The field y 	→ hy is said to be continuous if yλ → y implies
hyλ

(f(ϕ(yλ))) → hy(f(ϕ(y))), and uniformly bounded if supy∈Y ‖hy‖ < +∞.
When BX = X × E and BY = Y × F , the continuity of a field y 	→ hy of fiber
linear maps reduces to the usual SOT continuity. In general, assuming ϕ is proper,
i.e., limy→∞ ϕ(y) = ∞, if the field y 	→ hy is uniformly bounded and continuous
on Y , then T (ΓX) ⊆ ΓY . Conversely, we will see in Theorem 3.1 that every linear
into isometry T : ΓX → ΓY defines a continuous field y 	→ hy of fiber linear maps
with all ‖hy‖ = 1, provided that 〈BY , πY 〉 is strictly convex.

In terms of Banach bundles, Example 1.1 says that trivial line bundles are
completely determined by the geometric structure of its continuous sections. It is
also the case for trivial Banach bundles X × E and Y × F whenever E and F
are non-square, as demonstrated in Example 1.2. In attacking the general Banach
bundle case, we need the following result of Fell [4].

Proposition 2.2. ([4], p. 129). Let {si} (i ∈ I) be a net of elements of BX

and s an element of BX such that πX(si) → πX(s). Suppose further that for each
ε > 0 we can find a net {ui} of elements of BX (indexed by the same I) and an
element u of BX such that: (1) ui → u in BX , (2) πX(ui) = πX(si) for each i,
(3) ‖s−u‖ < ε, and (4) ‖si−ui‖ < ε for all large enough i. Then s i → s in BX .
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3. The RESULTS

First, we discuss the into isometry case. We shall write E ∗ and SE for the
Banach dual space and the unit sphere of a Banach space E , respectively.

Theorem 3.1. Suppose 〈BX , πX〉 and 〈BY , πY 〉 are Banach bundles such that
〈BY , πY 〉 is strictly convex. Let T : ΓX → ΓY be a linear into isometry. Then
there exist a continuous map ϕ from a nonempty subset Y 1 of Y onto X , and a
field of norm one linear operators h y : Bϕ(y) → By , for all y in Y1, such that

Tf(y) = hy(f(ϕ(y))), ∀ f ∈ ΓX , y ∈ Y1,

and
‖Tf |Y1‖ = ‖Tf‖, ∀ f ∈ ΓX .

Proof. We employ the notations developed in [7, 8]. For x in X , y in Y , µ
in SB∗

x
and ν in SB∗

y
, we set

Sx,µ = {f ∈ ΓX : µ(f(x)) = ‖f‖ = 1},

Ry,ν = {g ∈ ΓY : ν(g(y)) = ‖g‖ = 1},
Qx,µ = {y ∈ Y : T (Sx,µ) ⊆ Ry,ν for some ν in SB∗

y
},

and
Qx =

⋃
µ∈SB∗

x

Qx,µ.

As in [8], it is not difficult to see that

(a) For all x in X , the set Sx,µ �= ∅ for some µ in SB∗
x
;

(b) If Sx,µ �= ∅, then so is Qx,µ.

By the strict convexity of 〈BY , πY 〉, we have
(c) Qx1

⋂
Qx2 = ∅ for all x1 �= x2. Set

Y1 =
⋃
x∈X

Qx =
⋃
x∈X

⋃
µ∈SB∗

x

Qx,µ.

From (c), we can define a map ϕ from Y1 onto X by

ϕ(y) = x if y ∈ Qx.

Using the strict convexity of 〈BY , πY 〉 again, we also have
(d) f(ϕ(y)) = 0 implies Tf(y) = 0, i.e. ker δϕ(y) ⊆ ker(δy ◦ T ).
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Then there exists a linear operator hy : Bϕ(y) → By such that

δy ◦ T = hy ◦ δϕ(y), ∀ y ∈ Y1.

In other words,

Tf(y) = hy(f(ϕ(y))), ∀ f ∈ ΓX , y ∈ Y1.

For all b in Bϕ(y), choose an element f in ΓX such that f(ϕ(y)) = b and
‖f‖ = ‖b‖. It follows

‖hy(b)‖ = ‖hy(f(ϕ(y)))‖ = ‖Tf(y)‖ ≤ ‖Tf‖ = ‖f‖ = ‖b‖.
Since y ∈ Y1, there exist x in X , µ in SB∗

x
and ν in SB∗

y
such that

ν(Tf(y)) = µ(f(x)) = 1, ∀ f ∈ Sx,µ,

and hence
‖hy(f(x))‖ = ‖Tf(y)‖ = 1.

This shows that ‖hy‖ = 1.
For all f in ΓX with norm one, f ∈ Sx,µ for some x and µ. As a result,

Tf ∈ Ry,ν for some y in Y1 and ν in SB∗
y
. Thus,

ν(Tf(y)) = µ(f(x)) = ‖f‖ = 1.

Therefore, ‖Tf |Y1‖ = 1 = ‖f‖ = ‖Tf‖.
It remains to show that the map ϕ is continuous. Let yλ be a net converging

to y in Y1. If ϕ(yλ) does not converge to ϕ(y), then by passing to a subnet if
necessary, we can assume it converges to an x �= ϕ(y) in X∞. Let U1 and U2 be
disjoint neighborhoods of x and ϕ(y) in X∞, respectively. Let f be an element of
Sϕ(y),µ supporting in U2. Then f(ϕ(yλ)) = 0 for large λ. By (d), Tf(yλ) = 0
for large λ. The definition of ϕ implies that there exists a ν in SB∗

y
such that

ν(Tf(y)) = µ(f(ϕ(y))) = ‖f‖ = 1. Hence, ‖Tf(y)‖ = 1, contradicting to the
fact Tf(yλ) = 0 for large λ.

Example 3.2. For each θ in [0, 2π], let Pθ : R2 → R2 be the orthogonal
projection onto the one-dimensional subspace of R

2 spanned by the unit vector
(cos θ, sin θ). Every element f in C({0},R2) is given by the vector f(0) =
(r cos t, r sin t) for some r ≥ 0 and t ∈ [0, 2π]. Define a linear isometry T :
C({0},R2) → C([0, 2π],R2) by

T (f)(θ) = Pθ(f(0)) = Pθ(r cos t, r sin t)
= (r cos(t− θ) cos θ, r cos(t− θ) sin θ).
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In the notations of Theorem 3.1, hθ = Pθ , Y1 = Y = [0, 2π], and

Tf(θ) = hθ(f(0)), ∀ f ∈ C({0},R2), θ ∈ [0, 2π].

Note that hθ = Pθ is not an isometry for every θ in Y1 = [0, 2π].

Here comes the proof of our main result.

Proof of Theorem 1.3. Let 〈BX , πX〉 and 〈BY , πY 〉 be two non-square Banach
bundles and T a linear isometry from ΓX onto ΓY . Denote by

KX =
⋃
x∈X

({x} × UB∗
x
) and KY =

⋃
y∈Y

({y} × UB∗
y
),

the disjoint unions of the compact sets {x} × UB∗
x

and {y} × UB∗
y
, respectively.

Note that both the Hausdorff spaces KX and KY are locally compact. Define a
linear isometry Ψ : ΓY → C0(KY ) by

Ψ(g)(y, ν) = ν(g(y)), ∀ g ∈ ΓY , (y, ν) ∈ KY .

Then T̃ = Ψ◦T is a linear isometry from ΓX into C0(KY ). By Theorem 3.1, there
exist a continuous map ϕ̃ from a nonempty subset AY of KY onto X and bounded
linear functionals h̃(y,ν) ∈ B∗

ϕ̃(y,ν) such that

T̃ f(y, ν) = ν(Tf(y)) = h̃(y,ν)(f(ϕ̃(y, ν))), ∀ f ∈ ΓX , (y, ν) ∈ AY .(3.1)

Applying the same argument to T−1, there exist a continuous map ψ̃ from a subset
AX of KX onto Y and bounded linear functionals k̃(x,µ) in B∗

ψ̃(x,µ)
such that

µ(T−1g(x)) = k̃(x,µ)(g(ψ̃(x, µ))), ∀ g ∈ ΓY , (x, µ) ∈ AX .

Let
Cy = {ν ∈ SB∗

y
: (y, ν) ∈ AY },

XI = {x ∈ X : there exists a µ in SB∗
x

such that (x, µ) ∈ AX},
and

YI = {y ∈ Y : there exists a ν in SB∗
y

such that (y, ν) ∈ AY }.
We make the following easy observations:

(I) XI = X and YI = Y ;

(II) Cy is total in B∗
y , for all y in Y .
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By modifying the arguments in [8], it is not difficult to show that if 〈BY , πY 〉 is
non-square, ϕ̃(y, ν1) = ϕ̃(y, ν2) for all νi in Cy and for all y in Y . Consequently,
we can define a continuous map ϕ : Y → X by

ϕ(y) = ϕ̃(y, ν), for some ν ∈ Cy .

In view of (3.1) and (II), we have f(ϕ(y)) = 0 implies Tf(y) = 0. Then there
exists a bounded linear operator hy : Bϕ(y) → By such that

Tf(y) = hy(f(ϕ(y))), ∀ f ∈ ΓX , y ∈ Y.(3.2)

By symmetry, T−1 also carries a form

T−1g(x) = kx(g(ψ(x))), ∀ g ∈ ΓY , x ∈ X,

for some continuous map ψ from X onto Y , and bounded linear operators kx from
Bψ(x) into Bx, for all x in X . Consequently,

f(x) = (T−1(Tf))(x) = kx(Tf(ψ(x))) = kxhψ(x)(f(ϕ(ψ(x)))).

This implies that ϕ is a homeomorphism with inverse ψ, and hy are bijective linear
isometries with inverses kϕ(y) for all y in Y .

Let Φ = (h−1
y )y∈Y , i.e. Φ|By = h−1

y . Then it defines a map from BY onto BX
as follows: for all b in BY and πY (b) = y0. Choose a continuous section g in ΓY
such that g(y0) = b. Then

Φ(b) = h−1
y0 (g(y0)) = T−1(g)(ϕ(y0)).

We show that Φ is a homeomorphism from BY to BX . By symmetry, it suffices to
prove that Φ is continuous. We shall make use of Proposition 2.2 in below.

Let bi → b in BY . We show that Φ(bi) → Φ(b) in BX . Since πY and ϕ are
continuous, we have πY (bi) → πY (b) and ϕ(πY (bi)) → ϕ(πY (b)). Let si = Φ(bi)
and s = Φ(b). Choose a continuous section g in ΓY such that g(πY (b)) = b. Then,
for all ε > 0, we have ‖g(πY (bi))−bi‖ < ε for all large enough i. The fact πX ◦Φ =
ϕ ◦ πY (this follows from (3.2)) implies that πX(si) = πX(Φ(bi)) = ϕ(πY (bi))
approaches ϕ(πY (b)) = πX(Φ(b)) = πX(s). Let ui = Φ(g(πY (bi))) and u =
Φ(g(πY (b))). Since Φ|By is an isometry, we have ‖ui−si‖ = ‖g(πY (bi))−bi‖ < ε,
for all large enough i. And

ui = Φ(g(πY (bi))) = h−1
πY (bi)

(g(πY (bi))) = f(ϕ(πY (bi))),

for some f in ΓX , which converges to

f(ϕ(πY (b))) = h−1
πY (b)

(g(πY (b))) = Φ(b) = u

in BX . By Proposition 2.2, we have Φ(bi) = si → s = Φ(b) in BX . This shows
that Φ is continuous and complete the proof of Theorem 1.3.
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Corollary 3.3. Assume 〈BX , πX〉 and 〈BY , πY 〉 are two non-square Banach
bundles over locally compact Hausdorff spaces with isometrically isometric con-
tinuous sections. If 〈BX , πX〉 is locally trivial, then so is 〈BY , πY 〉.

The following example shows that the conclusion in Theorem 1.3 might not
hold if 〈BX , πX〉 or 〈BY , πY 〉 is not non-square.

Example 3.4. Let πi be the i-th coordinate map of R ⊕∞ R, i = 1, 2. Each
element f in C({0},R ⊕∞ R) is given by the vector f(0) in R ⊕∞ R. Define a
linear map T : C({0},R⊕∞ R) → C({1, 2},R) by

Tf(i) = πi(f(0)), ∀ f ∈ C({0},R ⊕∞ R), i = 1, 2.

It is easy to see that T is an isometrical isomorphism, but R ⊕∞ R and R are not
isomorphic as Banach spaces. In particular, R ⊕∞ R is not isometrically isomor-
phic to {1, 2}×R as Banach bundles, although they have isometrically isomorphic
continuous section spaces.
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