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Abstract. Using an isometric version of the Davis, Figiel, Johnson,
and Pe%lczyński factorization of weakly compact operators, we prove
that a Banach space X has the approximation property if and only
if, for every Banach space Y , the finite rank operators of norm ≤ 1
are dense in the unit ball of W(Y, X), the space of weakly compact
operators from Y to X, in the strong operator topology. We also show
that, for every finite dimensional subspace F of W(Y, X), there are a
reflexive space Z, a norm one operator J : Y → Z, and an isometry
Φ: F → W(Z, X) which preserves finite rank and compact operators
so that T = Φ(T ) ◦ J for all T ∈ F . This enables us to prove that X
has the approximation property if and only if the finite rank operators
form an ideal in W(Y, X) for all Banach spaces Y .

Introduction

Let us recall that a linear subspace F of a Banach space E is an ideal
in E if F⊥ is the kernel of a norm one projection in E∗. The notion of
an ideal was introduced and studied by Godefroy, Kalton, and Saphar in
[14].

J. Johnson [20] proved that if X is a Banach space with the metric
approximation property, then, for every Banach space Y , F(Y,X), the
space of finite rank operators from Y to X, is an ideal in L(Y,X), the
space of bounded operators from Y to X. Lima [23] has shown that the
converse is true if X has the Radon-Nikodým property. It is not known
whether the converse is true in general.
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In [25], Lima and Oja proved that X has the approximation property if
and only if F(Y,X) is an ideal in K(Y,X), the space of compact operators
from Y to X, for all Banach spaces Y . In fact, they showed something
stronger: X has the approximation property if (and only if) F(Y,X) is
an ideal in K(Y,X) for all separable reflexive spaces Y , or, equivalently,
for all closed subspaces Y of c0.

It is natural to ask what happens if we look at F(Y,X) as a subspace of
W(Y,X), the space of weakly compact operators from Y to X, instead of
looking at F(Y,X) as a subspace of K(Y,X). The answer to this question
is the main result of this paper: X has the approximation property if and
only if F(Y,X) is an ideal in W(Y,X) for all Banach spaces Y , which in
turn, is equivalent to the condition that, for every Banach space Y and
every T ∈ W(Y,X), there is a net (Tα) in F(Y,X) with supα ‖Tα‖ ≤ ‖T‖
such that Tαy → Ty for all y ∈ Y .

We depart from the remarkable factorization theorem due to Davis,
Figiel, Johnson, and Pe;lczyński [5] asserting that any weakly compact
operator factors through a reflexive Banach space. In Section 1 (cf.
Lemma 1.1), we make a quantitative change in the Davis-Figiel-Johnson-
Pe;lczyński construction which enables us to show, in Section 2, that one
can factorize weakly compact operators through reflexive Banach spaces
isometrically and even uniformly. In Theorem 1.2, we give a new char-
acterization of the approximation property in terms of the Davis-Figiel-
Johnson-Pe;lczyński factorization. We apply these results in Corollary 1.4
where we prove that X has the approximation property if and only if
every weakly compact operator into X can be approximated in the strong
operator topology by finite rank operators whose norms are at most equal
to the norm of the weakly compact operator.

In Section 2 (cf. Lemma 2.1), we show that on the absolutely convex
weakly compact set that is used in the factorization theorem of Davis,
Figiel, Johnson, and Pe;lczyński to construct the reflexive Banach space,
the two norm topologies coincide. (It was a part of the original construc-
tion that the two weak topologies coincide on the unit ball of the reflexive
Banach space.) This, together with the quantitative modification of the
Davis-Figiel-Johnson-Pe;lczyński construction made in Section 1, leads us
to an isometric version of the Davis-Figiel-Johnson-Pe;lczyński factoriza-
tion theorem (cf. Theorem 2.2). This also applies to show that the isomet-
ric factorization can even be uniform with respect to finite dimensional
subspaces in the space of weakly compact operators (cf. Theorem 2.3 and
Corollaries 2.4 and 2.5).
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We apply the uniform isometric factorization from Section 2 in Sections
3 and 4. Our main results in Section 3 are Theorem 3.3 and Theorem 3.4.
They characterize the approximation property of X and X∗ in terms of
ideals of finite rank operators. In particular, Theorem 3.3 shows that
X has the approximation property if and only if F(Y,X) is an ideal in
W(Y,X) for all Banach spaces Y , and Theorem 3.4 shows that X∗ has
the approximation property if and only if F(X,Y ) is an ideal in W(X,Y )
for all Banach spaces Y .

In Section 4, an easy example shows that it is not possible to character-
ize the compact approximation property of X by K(Y,X) being an ideal
in W(Y,X) for all Y (although this property characterizes the compact
approximation property for reflexive X). In Theorem 4.1, we give some
conditions equivalent to K(Y,X) being an ideal in W(Y,X) for all Y . We
also show, by using the description of duals of spaces of compact opera-
tors due to Feder and Saphar [12], that these conditions are implied by
the compact approximation property of X (cf. also Theorem 4.1).

In Theorems 5.1 and 5.2 of the final Section 5, we demonstrate how
the method of proof of Theorem 1.2 can be further developed to give
alternative proofs (through ideals of finite rank or compact operators) for
known results about cases when the (compact) approximation property
implies the metric (compact) approximation property. In particular, as an
immediate corollary, we obtain the result due to Godefroy and Saphar [15]
that X∗ has the metric compact approximation property with conjugate
operators whenever X∗ has the compact approximation property with
conjugate operators and X∗ or X∗∗ has the Radon-Nikodým property.

Let us fix some more notation. In a linear normed space X, we denote
the closed unit ball by BX and the closed ball with center x and radius
r by BX(x, r). For a set A ⊂ X, its norm closure is denoted by A, its
linear span by spanA, its convex hull by convA, and the set of its strongly
exposed points by sexpA.

We shall write KX (resp. WX) for the family of all compact (resp.
weakly compact) absolutely convex subsets of BX .

1. Criteria of the approximation property in terms of the

Davis-Figiel-Johnson-Pe�lczyński factorization

In this section, we depart from the famous Davis, Figiel, Johnson, and
Pe;lczyński factorization construction (cf. Lemma 1 on p. 313 in [5], [6,
pp. 160-161], [7, p. 227], [33, p. 51] or Lemma 1.1 below) and apply
the Grothendieck-Feder-Saphar description of duals of spaces of compact



4 ÅSVALD LIMA, OLAV NYGAARD, AND EVE OJA

operators (cf. [16] or [8] and [12]) to obtain several conditions equivalent
to the approximation property of Banach spaces, all of them expressed
in terms of the Davis-Figiel-Johnson-Pe;lczyński construction (cf. Theo-
rem 1.2 below). This leads us to an interesting “metric” characterization of
the approximation property (cf. Corollary 1.4) similar to the well-known
characterization of the metric approximation property as the denseness
of BF(Y,X) in BL(Y,X) in the topology of uniform convergence on compact
sets, for all Banach spaces Y .

We shall need a quantitative version of the classical Davis, Figiel, John-
son, Pe;lczyński factorization construction, which in fact consists in re-
placing the number 2 in the original construction by

√
a for any a > 1.

We now fix the notation to describe the Davis-Figiel-Johnson-Pe;lczyński
construction, and we shall also use this notation in the following sections.

Let a > 1. Let X be a Banach space and let K be a closed absolutely
convex subset of its unit ball BX . For each n ∈ N = {1, 2, . . . }, put
Bn = an/2K + a−n/2BX and denote by ‖ ‖n the equivalent norm on X
defined by the gauge of Bn. Let ‖x‖K = (

∑∞
n=1 ‖x‖2

n)
1/2, XK = {x ∈

X : ‖x‖K < ∞} and CK = {x ∈ X : ‖x‖K ≤ 1}. Further, let JK denote
the identity embedding of XK into X. Finally, we put

f(a) =

( ∞∑
n=1

an

(an + 1)2

)1/2

and note that f : (1,∞) → R is a continuous, strictly decreasing function
with lima→1+ f(a) = ∞ and lima→∞ f(a) = 0. Hence, there is a unique
point ã ∈ (1,∞) such that f(ã) = 1. (A “good” estimate of this ã is
exp(4/9) = 1.55962349761....) For this ã, one has K ⊂ CK ⊂ BX (this is
clear from Lemma 1.1 below).

The following is the classical Davis-Figiel-Johnson-Pe;lczyński factoriza-
tion lemma with some “cosmetic” changes.

Lemma 1.1 (cf. p. 313 in [5]).
(i) K ⊂ f(a)CK .
(ii) XK is a Banach space with the closed unit ball CK , and JK ∈

L(XK ,X), and ‖JK‖ ≤ 1/f(a).
(iii) J∗∗

K is injective.
(iv) XK is reflexive if and only if K is weakly compact.

Proof. Only (i) and ‖JK‖ ≤ 1/f(a) in (ii) need to be verified.
Suppose x ∈ K. Since x ∈ BX , we get

an/2x + a−n/2x ∈ Bn,
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so that

‖x‖n ≤ 1
an/2 + a−n/2

=
an/2

an + 1

for all n. Hence ‖x‖K ≤ f(a). This proves (i).
Since BX is convex and K ⊂ BX , we have

1
an/2 + a−n/2

(an/2K + a−n/2BX) ⊂ BX ,

that is

an/2

an + 1
Bn ⊂ BX .

Hence

‖x‖n ≥ an/2

an + 1
‖x‖

and therefore ‖x‖K ≥ f(a)‖x‖ for all x ∈ XK , meaning that ‖JK‖ ≤
1/f(a).

Theorem 1.2. For a Banach space X, the following assertions are equiv-
alent.

(i) X has the approximation property.
(ii) F(XK ,X) is an ideal in L(XK ,X) for every K ∈ WX .
(iii) For every K ∈ WX , there exists a net (Aα) in F(XK ,X) with

supα ‖Aα‖ ≤ ‖JK‖ such that Aαx −→
α

JKx for all x ∈ XK .

(iv) For every K ∈ WX , there exists a bounded net (Aα) in F(XK ,X)
such that Aαx −→

α
JKx for all x ∈ XK .

(v) For every K ∈ KX , there exists a net (Aα) in F(XK ,X) such
that ‖Aα − JK‖ −→

α
0.

Remark 1.1. Condition (v) means that JK belongs to the norm closure of
F(XK ,X) in L(XK ,X) and (iii) can be viewed as its “metric” version:
JK belongs to the closure of the ball F(XK ,X)∩B(0, ‖JK‖) in the strong
operator topology of L(XK ,X).

The proof of Theorem 1.2, as well as some other proofs of this paper,
will use the following result.

Lemma 1.3. Let X and Y be Banach spaces. Let A be a subspace of
L(Y,X) containing F(Y,X) and let T ∈ L(Y,X). If A is an ideal in
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L := span (A ∪ {T}) and P is an ideal projection, then there exists a net
(Aα) ⊂ A with supα ‖Aα‖ ≤ ‖T‖ such that

y∗∗(A∗
αx∗) −→

α
(P (y∗∗ ⊗ x∗))(T ) for all x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗.

Moreover, if Y has the Radon-Nikodým property (in particular, if Y is
reflexive), then (Aα) can be chosen to satisfy

Aαy → Ty for all y ∈ Y.

Proof. Let P be a norm one projection on L∗ with kerP = A⊥. Since
P ∗(T ) ∈ A⊥⊥ ⊂ L∗∗ and ‖P ∗(T )‖ ≤ ‖T‖, there exists a net (Aα) ⊂ A
with supα ‖Aα‖ ≤ ‖T‖ such that Aα → P ∗(T ) weak∗ in L∗∗. In particular,
for x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗, we have

y∗∗(A∗
αx∗) = (y∗∗ ⊗ x∗)(Aα) −→

α
(y∗∗ ⊗ x∗)(P ∗(T )) = (P (y∗∗ ⊗ x∗))(T ).

It is straightforward to verify that, for any f ∈ L∗, Pf is a norm-
preserving extension of f |A ∈ A∗. On the other hand, it is proved in [24,
Lemma 3.4, (b)] that y ⊗ x∗ ∈ F(Y,X)∗ has a unique norm-preserving
extension to the whole L(Y,X) whenever x∗ ∈ X∗ and y ∈ sexpBY .
Therefore P (y ⊗ x∗) = y ⊗ x∗ ∈ L∗ and

(A∗
αx∗)(y) −→

α
(y ⊗ x∗)(T ) = (T ∗x∗)(y) for all x∗ ∈ X∗ and y ∈ sexpBY .

If Y has the Radon-Nikodým property, then Y = span (sexpBY ), and we
get that

(A∗
αx∗)(y) −→

α
(T ∗x∗)(y) for all x∗ ∈ X∗ and y ∈ Y.

This means that Aα → T in the weak operator topology of L(Y,X).
Since the weak and strong operator topologies yield the same dual space
(cf. e.g. [9, Theorem VI.1.4]), after passing to convex combinations, we
may assume that Aα → T strongly.

Proof of Theorem 1.2. (i)⇒ (ii). Since XK is reflexive (cf. Lemma 1.1)
and X has the approximation property, by a classical representation the-
orems due to Grothendieck [16] (cf. also e.g. [8, Chapter VIII]), we have
F(XK ,X)∗ = X∗⊗̂πXK , the duality between F(XK ,X) and X∗⊗̂πXK

being expressed by the formula

v(T ) = trace(Tv), T ∈ F(XK ,X), v ∈ X∗⊗̂πXK .

We also have a natural linear transformation Φ: X∗⊗̂πXK → L(XK ,X)∗
defined by

(Φv)(T ) = trace(Tv), T ∈ L(XK ,X), v ∈ X∗⊗̂πXK .
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It is clear that ‖Φ‖ ≤ 1 (because |trace(Tv)| ≤ ‖Tv‖π ≤ ‖T‖‖v‖π).
Since Φv extends v, we have ‖v‖ ≤ ‖Φv‖ ≤ ‖v‖, hence ‖Φv‖ = ‖v‖
for all v ∈ F(XK ,X)∗ = X∗⊗̂πXK . It is straightforward to verify that
P : L(XK ,X)∗ → L(XK ,X)∗ defined by

Pf = Φ(f |F(XK ,X)), f ∈ L(XK ,X)∗,

is the desired ideal projection.
(ii)⇒ (iii). This is immediate from Lemma 1.3 because XK is reflexive.
(iii)⇒ (iv). This is obvious.
(iv)⇒ (v). Let K ∈ KX . Then JK ∈ K(XK ,X) because

JK(CK) = CK ⊂ an/2K + a−n/2BX , for all n ∈ N,

implies that JK(CK) has, for any ε > 0, a finite ε-net and therefore it is
relatively compact in X. By the description of the weak convergence in
spaces of compact operators due to Feder and Saphar [12, Corollary 1.2]
(the reflexivity of XK and the boundedness of (Aα) are used here), we
get that (Aα − JK) → 0 weakly in K(XK ,X). After passing to convex
combinations, we may assume that ‖Aα − JK‖ → 0.

(v)⇒ (i). Let K be a compact subset of X and let ε > 0. We have to
show that there is an operator T ∈ F(X,X) such that ‖Tx−x‖ < ε for all
x ∈ K. We may assume that K ∈ KX (note that, by a theorem of Mazur,
the absolutely convex hull of a compact set in a Banach space is compact).
By (v), there is an operator A =

∑n
i=1 y∗i ⊗ xi ∈ F(XK ,X) (with y∗i ∈

X∗
K , xi ∈ X) such that ‖A − JK‖ < ε/2f(a). Since J∗∗

K is injective
(cf. Lemma 1.1), J∗

K(X∗) is norm dense in X∗
K . Let x∗

i ∈ X∗ satisfy
‖y∗i − J∗

Kx∗
i ‖ < ε/2f(a)

∑n
i=1 ‖xi‖ and let T =

∑n
i=1 x∗

i ⊗ xi ∈ F(X,X).
Then, for every x ∈ K (recall from Lemma 1.1 that K ⊂ f(a)CK ), we
have

‖Tx − x‖ = ‖TJKx − JKx‖
≤ ‖A − JK‖‖x‖K + ‖TJK − A‖‖x‖K

<
ε

2
+ f(a)‖

n∑
i=1

(J∗
Kx∗

i − y∗i )⊗ xi‖

≤ ε

2
+ f(a)

n∑
i=1

‖J∗
Kx∗

i − y∗i ‖‖xi‖ <
ε

2
+

ε

2
= ε

Remark 1.2. A famous theorem due to Grothendieck [16] (cf. e.g. [26,
p. 32]) asserts that X has the approximation property if and only if
F(Y,X) = K(Y,X) for all Banach spaces Y . Here the “only if” part is
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easy and straightforward (cf. e.g. [26, p. 32]). The “classical” proof of
the “if” part relies on Grothendieck’s characterization of a compact set as
a subset of the closed convex hull of a norm-null sequence (cf. e.g. [26, pp.
32-33]) which is used to construct a Banach space Y - a linear subspace
of X - such that the formal identity map from Y into X is compact. The
proof of the implication (v)⇒ (i) above provides an alternative easier proof
to the “if” part (where XK together with the identity map JK plays the
role of Y ). And combined together with Theorem (AP) in [25], this also
gives an easy short proof for the classical fact (due to Grothendieck) that
X∗ has the approximation property if and only if F(X,Y ) = K(X,Y ) for
all Banach spaces Y .

A Banach space X has the approximation property if and only if, for
every Banach space Y , the finite rank operators are dense in L(Y,X) in
the topology τ of uniform convergence on compact sets, and X has the
metric approximation property if and only if the “metric” version of this
condition holds: for every Banach space Y , the finite rank operators of
norm ≤ 1 are dense in the unit ball of L(Y,X) in the topology τ (cf. e.g.
[26, pp. 32, 39]). The next result provides a similar “metric” criterion for
the approximation property.

Corollary 1.4. For a Banach space X, the following assertions are equiv-
alent.

(i) X has the approximation property.
(ii) For every Banach space Y , BF(Y,X) is dense in BW(Y,X) in the

strong operator topology.
(iii) For every Banach space Y and every T ∈ W(Y,X), there is a net

(Tα) in F(Y,X) with supα ‖Tα‖ ≤ ‖T‖ such that Tαy → Ty for
all y ∈ Y .

(iv) For every separable reflexive Banach space Y and every T ∈
W(Y,X) there is a sequence (Tn) in F(Y,X) with supn ‖Tn‖ ≤
‖T‖ such that Tny → Ty for all y ∈ Y .

Proof. (i)⇒ (iii). We may assume that ‖T‖ = 1. Then K := T (BY ) ∈
WX . Let the number a be fixed so that f(a) = 1. Then (cf. Lemma 1.1)
T (BY ) ⊂ CK = BXK

and ‖JK‖ ≤ 1. By Theorem 1.2 ((i)⇒ (iii)), there
exists a net (Aα) in F(XK ,X) with supα ‖Aα‖ ≤ 1 such that Aαx → JKx
for all x ∈ XK . Define Tα : Y → X by Tαy = AαTy, y ∈ Y . Then
Tα : Y → X is linear and of finite rank, Tαy → Ty for all y ∈ Y , and
‖Tα‖ ≤ sup{‖Ty‖K : y ∈ BY } ≤ 1 for all α.

(iii)⇒ (ii). This is obvious.
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(ii)⇒ (i). By Lemma 1.1, JK ∈ W(XK ,X) whenever K ∈ WX (because
XK is reflexive). Therefore, (ii) implies assertion (iv) of Theorem 1.2,
which is equivalent to (i).

(iii)⇒(iv). Let Y be a separable Banach space and let T ∈ W(Y,X).
Let (yn) be a dense sequence in BY . By a standard argument, picking
from the given net (Tα), for each n = 1, 2, . . . , operators Tαn so that
‖Tαny1 − Ty1‖ < 1/n, . . . , ‖Tαnyn − Tyn‖ < 1/n, one obtains the desired
sequence (Tn) = (Tαn).

(iv)⇒(i). Let Z be any reflexive Banach space and let T ∈ W(Z,X).
Recall that every separable subspace of Z is contained in a separable
1-complemented subspace Y of Z, meaning that there exists a norm one
projection PY from Z onto Y (this so-called “separable 1-complementation
property” is shared by all weakly compactly generated spaces (cf. [1] or
e.g. [6, p. 149])). Therefore the set of all triples α = (F, Y, ε), where F
is a finite dimensional subspace of Z, Y is a separable 1-complemented
subspace of Z containing F , and ε > 0, is a directed set in the natural way.
For any α = (F, Y, ε), considering T |Y ∈ W(Y,X), we choose an operator
Tε ∈ F(Y,X) with ‖Tε‖ ≤ ‖T |Y ‖ such that ‖Tεy−Ty‖ < ε for all y ∈ BF

and let Tα = Tε ◦ PY . Then (Tα) ⊂ F(Z,X) satisfies supα ‖Tα‖ ≤ ‖T‖
and Tαz → Tz for all z ∈ Z. In particular, this gives assertion (iii) of
Theorem 1.2 which is equivalent to (i).

Remark 1.3. Concerning the implication (i)⇒ (ii) of Corollary 1.4, we
note that, by a result due to Grothendieck [16, Corollary 2, p. 141],
the approximation property of the dual space X∗ implies condition (ii) of
Corollary 1.4. We are grateful to the Referee for pointing out this for us.
Grothendieck’s proof relies on his theorem stating that if A and B are,
respectively, integral and weakly compact operators, then AB is a nuclear
operator with the nuclear norm not greater than ‖B‖ multiplied by the
integral norm of A.

2. Uniform isometric factorization

The remarkable factorization theorem due to Davies, Figiel, Johnson,
and Pe;lczyński [5] asserts that any weakly compact operator T factors
through a reflexive space. In this case, if we write T = A ◦ B, it is clear
that the operators A and B are weakly compact. By a theorem of Figiel
and Johnson ([13] and [21]), if T is a compact operator, then it admits a
factorization T = A ◦ B where A and B are compact. (This fact can also
be deduced from the Davis-Figiel-Johnson-Pe;lczyński theorem (cf. e.g.
[19, p. 374]).)
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In Theorem 2.2 below, we shall see that the quantitative modification
in the Davis-Figiel-Johnson-Pe;lczyński construction made in Section 1,
together with the following Lemma 2.1, leads to an isometric factorization
in the Davis-Figiel-Johnson-Pe;lczyński and the Figiel-Johnson theorems.
(In particular, if ‖T‖ = 1, then ‖A‖ = ‖B‖ = 1; the estimates from [33,
p. 51] would give ‖A‖, ‖B‖ ≤ 4.)

Lemma 2.1 (Lemma 1.1 continued).
(i) For x ∈ K, one has

‖x‖2
K ≤ (

1
4
+

1
ln a

)‖x‖.
(ii) The X-norm and XK-norm topologies coincide on K.
(iii) The weak topologies defined by X∗ and X∗

K coincide on CK .
(iv) CK as a subset of X is compact, weakly compact, or separable if

and only if K has the same property.

Proof. (i) Let x ∈ K, x �= 0. Then we have

an/2x + a−n/2 x

‖x‖ ∈ Bn,

so that

‖x‖2
K ≤

∞∑
n=1

1
(an/2 + a−n/2‖x‖−1)2

= ‖x‖
∞∑

n=1

an‖x‖
(an‖x‖+ 1)2

.

Let h(t) = at‖x‖/(at‖x‖ + 1)2, 1 ≤ t < ∞. The graph of h has a bell-
shaped form and maxh(t) = 1/4. Let k ∈ N be such that

h(1) ≤ h(2) ≤ · · · ≤ h(k − 1) ≤ h(k) ≥ h(k + 1) ≥ · · · .

Then

‖x‖2
K

‖x‖ ≤
∞∑

n=1

h(n) ≤ h(k) +
∫ ∞

1
h(t) dt

≤ 1
4
+

1
ln a

∫ ∞

1+a‖x‖

du

u2

=
1
4
+

1
ln a

(
1

1 + a‖x‖
)

≤ 1
4
+

1
ln a

.

(ii) For x, y ∈ K, we have x−y
2 ∈ K. By (i),

‖x − y‖2
K ≤ (

1
2
+

2
ln a

)‖x − y‖.
This together with (ii) in Lemma 1.1 gives (ii).
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(iii) This is proved in [5].
(iv) This is essentially known (cf. [5] or [7, p. 228]) and follows from

the inclusions (f(a))−1K ⊂ CK ⊂ an/2K + a−n/2BX , for all n, and from
the fact that CK =

⋂∞
n=1{x ∈ X :

∑n
k=1 ‖x‖2

k ≤ 1} is closed and weakly
closed.

Theorem 2.2. Suppose T ∈ L(Y,X). Let K = T (BY (0, 1/‖T‖)) and let
TK : Y → XK be defined by TKy = Ty, y ∈ Y . Then T = JK ◦ TK and

(i) T is separably valued, weakly compact, compact, or of finite rank
if and only if TK has the same property if and only if JK has the
same property.

(ii) ‖T‖ = ‖TK‖ and ‖JK‖ = 1 whenever f(a) = 1.

Proof. (i) We only need to prove that the above-mentioned properties of
T imply the same properties for TK and JK . Since TK is algebraically the
same operator as T , they have the same rank and, by Lemma 2.1, (ii) and
(iii), TK is separably valued, compact, or weakly compact whenever T is.
If T is of finite rank, then JK has finite rank since

JK(BXK
) = CK ⊂

∞⋂
n=1

(T (Y ) + a−n/2BX) = T (Y ) = T (Y ).

That the other properties of T imply the same properties for JK , it is
clear from Lemma 2.1, (iv).

(ii) If f(a) = 1, then ‖JK‖ ≤ 1 by Lemma 1.1, (ii). Without loss of
generality, we may assume that ‖T‖ = 1. Since K ⊂ CK (cf. Lemma 1.1),
(i), we get ‖TK‖ = supy∈BY

‖Ty‖K ≤ supz∈K ‖z‖K ≤ supz∈CK
‖z‖K = 1.

But then

1 = ‖T‖ = ‖JK ◦ TK‖ ≤ ‖JK‖‖TK‖ ≤ min{‖TK‖, ‖JK‖}.
Therefore ‖TK‖ = ‖JK‖ = 1.

By developing the method of proof of Theorem 2.2, we shall show (cf.
Theorem 2.3 and Corollaries 2.4 and 2.5) that the isometric factorization
can even be uniform with respect to finite dimensional subspaces in the
space of weakly compact operators.

Theorem 2.3. Let F be a finite dimensional subspace of W(Y,X). Then
there exist a reflexive space Z, a norm one operator J : Z → X, and a
linear isometry Φ: F → W(Y,Z) such that T = J ◦ Φ(T ) for all T ∈ F .
Moreover,

(i) Z = XK and J = JK for some K ∈ WX whenever the number a
is fixed so that f(a) = 1,
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(ii) T is compact if and only if Φ(T ) is compact,
(iii) T has finite rank if and only if Φ(T ) has finite rank.

Proof. Let K = conv{Ty : T ∈ BF and y ∈ BY }. Then K is a weakly
closed absolutely convex subset of BX . We shall use Grothendieck’s lemma
(cf. e.g. [7, p. 227]) to show that K is weakly compact. For given ε > 0, let
{T1, . . . , Tn} be an ε/2-net of BF . Let Kε be the closed convex hull of the
weakly compact set T1(BY )∪. . .∪Tn(BY ). By the Krein-Šmulian theorem,
Kε is weakly compact. Since K ⊂ Kε + εBX , the weak compactness of K
follows from Grothendieck’s lemma.

Choose a such that f(a) = 1. Put Z = XK , J = JK , and define
Φ: F → W(Y,Z) by Φ(T )y = Ty, y ∈ Y . Then Z is reflexive (since K
is weakly compact), Φ is linear, and T = J ◦ Φ(T ) for all T ∈ F . As in
the proof of Theorem 2.2, we show (i) and (ii), and we also obtain that
‖Φ(T )‖ = 1, whenever ‖T‖ = 1, and that ‖J‖ = 1.

Remark 2.1. The proof of Theorem 2.3 shows how norm compact sets in
the space of weakly compact operators can be uniformly and isometrically
factorized.

Corollary 2.4. Let F be a finite dimensional subspace of W(X,Y ). Then
there exist a reflexive space Z, a norm one operator J : X → Z, and a
linear isometry Φ: F → W(Z, Y ) such that T = Φ(T ) ◦ J for all T ∈ F .
Moreover,

(i) T is compact if and only if Φ(T ) is compact,
(ii) T has finite rank if and only if Φ(T ) has finite rank.

Proof. Let us consider the finite dimensional subspace G = {T ∗ : T ∈ F}
ofW(Y ∗,X∗). By Theorem 2.3, there exist a reflexive space Z, a norm one
operator I : Z∗ → X∗, and a linear isometry Ψ: G → W(Y ∗, Z∗) so that
T ∗ = I ◦Ψ(T ∗) for all T ∈ F . Put J = I∗|X and define Φ(T ) = (Ψ(T ∗))∗
for T ∈ F . Since T ∗∗|X = T whenever T ∈ F , we have T = Φ(T ) ◦ J
and Φ(T ) ∈ W(Z, Y ) for all T ∈ F . Moreover, ‖Φ(T )‖ = ‖(Ψ(T ∗))∗‖ =
‖Ψ(T ∗)‖ = ‖T ∗‖ = ‖T‖ for T ∈ F . The linearity of Φ and properties (i)
and (ii) are also clear from the definition of Φ. Finally, it is easily seen
that ‖J‖ = 1.

Corollary 2.4 will be applied in the next section to prove that F(Y,X) is
an ideal in W(Y,X) for all Banach spaces Y whenever X has the approx-
imation property. We conclude this section with an immediate corollary
from Theorem 2.3 and Corollary 2.4.

Corollary 2.5. For every finite dimensional subspace F of W(X,Y ),
there exist reflexive spaces Z and W , norm one operators J : X → Z
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and I : W → Y , and a linear isometry Φ: F → W(Z,W ) such that
T = I ◦ Φ(T ) ◦ J for all T ∈ F .

3. The approximation property and ideals of finite rank

operators

In this section, our main objective is to prove that a Banach space X has
the approximation property if and only if F(Y,X) is an ideal in W(Y,X)
for all Banach spaces Y (see Theorem 3.3 below which also lists other
criteria of the approximation property in terms of ideals of finite rank
operators). In fact, we have already proved (see Theorem 1.2 and the
proof of its implication (i)⇒(ii)) that X has the approximation property
if and only if F(Y,X) is an ideal in W(Y,X) for all reflexive Banach
spaces Y . The next result extends this assertion from reflexive spaces to
all Banach spaces.

Theorem 3.1. Let X be a Banach space. Then F(Y,X) (resp. K(Y,X))
is an ideal in W(Y,X) for all Banach spaces Y if and only if F(Z,X)
(resp. K(Z,X)) is an ideal in W(Z,X) for all reflexive spaces Z.

The proof of Theorem 3.1 will use the uniform isometric factorization
of weakly compact operators from Section 2 and the following alternative
characterization of ideals (proved e.g. in Lima [23], Fakhoury [11], and
Kalton [22]).

Theorem 3.2. Let F be a closed subspace of a Banach space E. The
following statements are equivalent.

(i) F is an ideal in E.
(ii) F is locally 1-complemented in E, i.e. for every finite dimensional

subspace G of E and for all ε > 0, there is an operator A : G → F
such that ‖A‖ < 1 + ε and Ax = x for all x ∈ G ∩ F .

Remark 3.1. It is straightforward to verify that the condition Ax = x for
all x ∈ G ∩ F in Theorem 3.2 can be replaced by ‖Ax − x‖ ≤ ε for all
x ∈ BG∩F .

Let us recall that, for a linear subspace F of a Banach space E (as it is
clear from the definition of the ideal), F is an ideal in E if and only if F
is an ideal in E.

Proof of Theorem 3.1. We shall first consider the case of ideals of compact
operators. Let K(Z,X) be an ideal in W(Z,X) for all reflexive Banach
spaces Z. For a Banach space Y , let G be a finite dimensional subspace
of W(Y,X) and let ε > 0. By Corollary 2.4, we can find a reflexive space
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Z, a norm one operator J : Y → Z, and an isometry Φ taking G into
W(Z,X) and preserving compact operators such that T = Φ(T ) ◦ J for
T ∈ G. By Theorem 3.2, there is an operator A : Φ(G) → K(Z,X) which
“locally 1-complement” K(Z,X) in W(Z,X). Then B : G → K(Y,X)
defined by B(T ) = A(Φ(T )) ◦ J , T ∈ G,“locally 1-complements” K(Y,X)
in W(Y,X). This proves the claim about compact operators.

Now, if F(Z,X) is an ideal in W(Z,X) for all reflexive spaces Z, then,
as we mentioned above, X has the approximation property. Consequently,
F(Y,X) = K(Y,X) for all Banach spaces Y (cf. e.g. Remark 1.2). There-
fore, by the first part of the proof, F(Y,X) is an ideal in W(Y,X) for all
Banach spaces Y .

Remark 3.2. The assertion of Theorem 3.1 concerning ideals of finite rank
operators can also be proved similarly to the case of ideals of compact
operators in Theorem 3.1, using that the isometry from Corollary 2.4
preserves finite rank operators. However, in this case, one should apply
Remark 3.1 and notice that the condition from Remark 3.1 works also for
subspaces F which are not necessarily closed.

In the next result, we summarize criteria of the approximation property
expressed in termes of ideals of finite rank operators obtained in this paper
and in the paper [25] by Lima and Oja.

Theorem 3.3. Let X be a Banach space. The following statements are
equivalent.

(i) X has the approximation property.
(ii) F(Y,X) is an ideal in W(Y,X) for all Banach spaces Y .
(iii) F(Y,X) is an ideal in W(Y,X) for all separable reflexive Banach

spaces Y .
(iv) F(Y,X) is an ideal in W(Y,X) for all closed subspaces Y ⊂ c0.
(v) F(Y,X) is an ideal in K(Y,X) for all Banach spaces Y .
(vi) F(Y,X) is an ideal in K(Y,X) for all separable reflexive Banach

spaces Y .
(vii) F(Y,X) is an ideal in K(Y,X) for all closed subspaces Y ⊂ c0.

Proof. The equivalence (i)⇔ (ii) has just been proved above. The implica-
tions (vi)⇒ (i) and (vii)⇒ (i) are proved in [25, Theorem 5.1]. The other
required implications (e.g. (ii)⇒ (v)⇒ (vi)& (vii)) are obvious.

In the paper [25] by Lima and Oja, it was proved that interchanging
the roles of X and Y in statements (v), (vi), and (vii) of Theorem 3.3
gives conditions equivalent to the approximation property of X∗. This
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result will be used and extended in the following symmetric version of
Theorem 3.3.

Theorem 3.4. The following statements are equivalent:
(i) X∗ has the approximation property.
(ii) F(X,Y ) is an ideal in W(X,Y ) for all Banach spaces Y .
(iii) F(X,Y ) is an ideal in W(X,Y ) for all separable reflexive Banach

spaces Y .
(iv) F(X,Y ) is an ideal in W(X,Y ) for all closed subspaces Y ⊂ c0.
(v) F(X,Y ) is an ideal in K(X,Y ) for all Banach spaces Y .
(vi) F(X,Y ) is an ideal in K(X,Y ) for all separable reflexive Banach

spaces Y .
(vii) F(X,Y ) is an ideal in K(X,Y ) for all closed subspaces Y ⊂ c0.

Let us recall that, by a fundamental result due to Grothendieck [16]
(cf. e.g. [26, p. 33]), X∗ has the approximation property if and only if
F(X,Y ) = K(X,Y ) for all Banach spaces Y .

In the proof of Theorem 3.4, we shall need the following symmetric
version of Theorem 3.1.

Theorem 3.5. Let X be a Banach space. Then F(X,Y ) (resp. K(X,Y ))
is an ideal in W(X,Y ) for all Banach spaces Y if and only if F(X,Z)
(resp. K(X,Z)) is an ideal in W(X,Z) for all reflexive Banach spaces Z.

Proof. The case of compact operators can be proved as in Theorem 3.1
by applying Theorem 2.3 instead of Corollary 2.4.

Let F(X,Z) be an ideal in W(X,Z) for all reflexive spaces Z. Then,
by the natural isometry T → T ∗|X between W(Z∗,X∗) and W(X,Z), we
have that F(Y,X∗) is an ideal in W(Y,X∗) for all reflexive Banach spaces
Y , meaning that X∗ has the approximation property. Therefore, as we
recalled above, F(X,Y ) = K(X,Y ) for all Banach spaces Y . And the
already proved case of compact operators implies that F(X,Y ) is an ideal
in W(X,Y ) for all Banach spaces Y .

Proof of Theorem 3.4. The equivalence (i)⇔ (ii) is clear from Theorem 3.5
and its proof. The implications (vi)⇒ (i) and (vii)⇒ (i) are proved in [25,
Theorem 5.2], and the other required implications are obvious.

4. The compact approximation property and ideals of

compact operators

Replacing the finite rank operators by compact operators gives the de-
finition of the compact approximation property: one says that a Banach
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space X has the compact approximation property (resp. the met-
ric compact approximation property) if IX belongs to the closure of
K(X,X) (resp. BK(X,X)) with respect to the topology of uniform conver-
gence on compact subsets in X. It is known that even the metric compact
approximation property does not imply the approximation property [32].

By the previous section, X has the approximation property if and only
if F(Y,X) is an ideal in W(Y,X) for all Banach spaces Y . We shall show
that one can replace finite rank operators by compact operators in the
“only if” part of this characterization (cf. Theorem 4.1), but one cannot
do this in the “if” part (cf. the following example).

Example. There is a Banach space X without the compact approxima-
tion property such that K(Y,X) = W(Y,X) (i.e. K(Y,X) is trivially an
ideal in W(Y,X)) for all Banach spaces Y .

Let X be a closed subspace of '1 without the compact approximation
property (cf. [31] or e.g. [27, p. 107]). If T ∈ W(Y,X) for a Banach space
Y , then by the Eberlein-Šmulian theorem and the Schur property of '1, it
follows that T is compact.

Theorem 4.1. Let X be a Banach space and let the number a be fixed
so that f(a) = 1. The following assertions are equivalent and they hold
whenever X has the compact approximation property.

(a) K(Y,X) is an ideal in W(Y,X) for all Banach spaces Y .
(b) K(Y,X) is an ideal in W(Y,X) for all separable reflexive Banach

spaces Y .
(c) K(XK ,X) is an ideal in span(K(XK ,X) ∪ {JK}) for every K ∈

WX .
(d) For every Banach space Y and every T ∈ W(Y,X), there is a net

(Tα) in K(Y,X) with supα ‖Tα‖ ≤ ‖T‖ such that Tαy −→
α

Ty for
all y ∈ Y .

(e) For every separable reflexive Banach space Y and every T ∈
W(Y,X), there is a sequence (Tn) in K(Y,X) with supn ‖Tn‖ ≤
‖T‖ such that Tny −→

n
Ty for all y ∈ Y .

(f) For every K ∈ WX , there is a net (Aα) in BK(XK ,X) such that
Aαx −→

α
JKx for all x ∈ XK .

For the proof of Theorem 4.1, and also in the sequel, we shall need
the following well-known description of duals of spaces of compact oper-
ators due to Feder and Saphar [12]. Let us recall that if X and Y are
Banach spaces, then for any v ∈ X∗⊗̂πY ∗∗, v =

∑∞
n=1 x∗

n ⊗ y∗∗n with
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n=1 ‖x∗

n‖‖y∗∗n ‖ < ∞, and for any T ∈ L(Y,X), the element T ∗∗v ∈
X∗⊗̂πX∗∗ is defined by T ∗∗v =

∑∞
n=1 x∗

n ⊗ T ∗∗y∗∗n .

Lemma 4.2 (cf. [12, Theorem 1]). Let X and Y be Banach spaces such
that X∗ or Y ∗∗ has the Radon-Nikodým property. Let Φ: X∗⊗̂πY ∗∗ →
L(Y,X)∗ be defined by

(Φv)(T ) = trace (T ∗∗v), T ∈ L(Y,X), v ∈ X∗⊗̂πY ∗∗.

Then, for all g ∈ K(Y,X)∗, there exists v ∈ X∗⊗̂πY ∗∗ such that g =
(Φv)|K(Y,X) and ‖g‖ = ‖Φv‖.

Proof of Theorem 4.1. The implications (a)⇒ (b), (a)⇒ (c), and (d)⇒
(f) are obvious. The implications (c)⇒ (f) and (b)⇒ (e) are immediate
from Lemma 1.3 (for (b)⇒ (e), one should also use the standard argument
from the proof of (iii)⇒ (iv) in Corollary 1.4). The proofs of (e)⇒ (f) and
(f)⇒ (d) are essentially the same as, respectively, the proofs of (iv)⇒ (i)
and (i)⇒ (iii) in Corollary 1.4.

(f)⇒ (a). We shall apply Theorem 3.2 together with Remark 3.1 to
show that K(Y,X) is an ideal in W(Y,X). Let G be a finite dimensional
subspace of W(Y,X) and let ε > 0. By Theorem 2.3, there exist K ∈ WX

and a linear isometry Φ: G → W(Y,XK) preserving compact operators
such that T = JK ◦Φ(T ) for all T ∈ G. Let a net (Aα) in BK(XK ,X) satisfy
‖(Aα − JK)x‖ −→

α
0 for all x ∈ XK . Since {Φ(T )y : T ∈ BG∩K(Y,X), y ∈

BY } is a relatively compact subset of XK , there is an α so that ‖(Aα −
JK)Φ(T )y‖ ≤ ε for all T ∈ BG∩K(Y,X) and y ∈ BY . This means that
‖Aα ◦ Φ(T ) − T‖ ≤ ε for all T ∈ BG∩K(Y,X). And denoting A(T ) =
Aα ◦Φ(T ), T ∈ G, we get an operator A : G → K(Y,X) as desired.

Finally, let us assume that X has the compact approximation property.
We shall show that K(Y,X) is an ideal inW(Y,X) for any reflexive Banach
space Y . To this end, we shall develop the proof of the implication (i)⇒(ii)
in Theorem 1.2 using instead of Grothendieck’s representation theorem the
description of K(Y,X)∗ due to Feder and Saphar (see Lemma 4.2).

Consider f ∈ L(Y,X)∗. For g = f |K(Y,X), let v =
∑∞

n=1 x∗
n ⊗ yn ∈

X∗⊗̂πY with
∑∞

n=1 ‖x∗
n‖ < ∞ and ‖yn‖ → 0 be given by Lemma 4.2. We

assume that (Kα) ⊂ K(X,X) converge to IX uniformly on the compact
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subsets of X. Then, for T ∈ L(Y,X),

|(Φv)(T ) − f(KαT )| = |(Φv)(T − KαT )|

= |
∞∑

n=1

x∗
n((T − KαT )yn)|

≤ sup
n

‖(IX − Kα)(Tyn)‖
∞∑

n=1

‖x∗
n‖ −→

α
0

because {0, T y1, T y2, . . . } is a compact subset of X. Since Φv ∈ L(Y,X)∗
is a norm-preserving extension of f |K(Y,X), the mapping P : L(Y,X)∗ →
L(Y,X)∗ defined by

P (f)(T ) = lim
α

f(KαT ) = (Φv)(T ), f ∈ L(Y,X)∗, T ∈ L(Y,X),

is a norm one projection with kerP = K(Y,X)⊥.

Remark 4.1. Since XK is reflexive whenever K ∈ WX , Theorem 3.1 im-
mediately follows from Lemma 1.3 and the implication (f)⇒ (a) of Theo-
rem 4.1. However, the proof of Theorem 3.1 we gave in Section 3 is easier
and more direct.

Remark 4.2. The idea to define a norm one projection with kerP =
K(Y,X)⊥ on L(Y,X)∗ by (Pf)(T ) = limα f(KαT ), f ∈ L(Y,X)∗, T ∈
L(Y,X), whenever Kα ∈ BK(Y,X) and Kα → IX , is due to J. Johnson [20].
In Theorem 4.1, the set of operators Kα is not necessarily bounded.

Remark 4.3. As we saw above, F(Y,X) is an ideal in W(Y,X) for all
Banach spaces Y whenever there exists a number a > 1 so that F(XK ,X)
is an ideal in W(XK ,X) for all K ∈ WX . By Theorem 4.1, (c)⇒(a), the
similar assertion for compact operators holds for the number a for which
f(a) = 1.

We say that a Banach space X has the weakly compact approxi-
mation property if IX belongs to the closure of W(X,X) with respect
to the topology of uniform convergence on compact subsets in X. This
notion was considered by Reinov [30] and by Grønbæk and Willis [17].
Note that Astala and Tylli [2] use this notion when IX belongs to the
closure of W(X,X) with respect to the topology of uniform convergence
on weakly compact subsets in X.

Corollary 4.3. The assertions of Theorem 4.1 are equivalent to the com-
pact approximation property of X whenever X has the weakly compact
approximation property.
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Proof. Let K ∈ KX , let ε > 0, and choose T ∈ W(X,X) such that
‖Tx − x‖ < ε/2 for all x ∈ K. By assertion (d) of Theorem 4.1, there is
a bounded net (Tα) in K(X,X) such that Tαx → Tx for all x ∈ X. By
compactness of K, supx∈K ‖Tαx− Tx‖ → 0 and therefore supx∈K ‖Tαx−
x‖ < ε for some α.

Remark 4.4. Corollary 4.3 applies, in particular, to Banach spaces X
which are reflexive. However in this case, the assertions of Theorem 4.1
are equivalent to the metric compact approximation property of X and
also to the fact that K(X,X) is an ideal in W(X,X) (cf. [23, Theorem
14]).

Corollary 4.4. Let X be a Banach space and let the number a be fixed
so that f(a) = 1. The following assertions are equivalent and they hold
whenever X∗ has the compact approximation property.

(a) K(X,Y ) is an ideal in W(X,Y ) for all Banach spaces Y .
(b) K(X,Y ) is an ideal in W(X,Y ) for all separable reflexive Banach

spaces Y .
(c) For every Banach space Y and every T ∈ W(X,Y ), there is a net

(Tα) in K(X,Y ) with supα ‖Tα‖ ≤ ‖T‖ such that T ∗
αy∗ −→

α
T ∗y∗

for all y∗ ∈ Y ∗.
(d) For every separable reflexive Banach space Y and every T ∈

W(X,Y ), there is a sequence (Tn) in K(X,Y ) with supn ‖Tn‖ ≤
‖T‖ such that T ∗

ny∗ −→
n

T ∗y∗ for all y∗ ∈ Y ∗.

Proof. We shall use the natural isometry T → T ∗|X between W(Z∗,X∗)
and W(X,Z) for reflexive Banach spaces Z. By this isometry, K(X,Y )
is an ideal in W(X,Y ) for all reflexive Banach spaces Y if and only if
K(Y,X∗) is an ideal in W(Y,X∗) for all reflexive Banach spaces Y . Ap-
plying Theorems 3.5 and 3.1, this yields the equivalence of (a) to condition
(a) of Theorem 4.1 for X∗. Furthermore, by the same isometry, (b) and
(d) are respectively equivalent to conditions (b) and (e) of Theorem 4.1 for
X∗, (c) implies condition (d) of Theorem 4.1 for X∗ which, in its turn, im-
plies the particular case of (c) where Y is assumed to be reflexive. Hence,
by Theorem 4.1, (c)⇒(a)⇔ (b)⇔ (d), the last equivalent conditions hold
whenever X∗ has the compact approximation property, and they imply the
particular case of (c) with reflexive Y . To finish the proof, we have to show
that this particular case of (c) actually implies (c). Let Y be a Banach
space and let T ∈ W(X,Y ). Let K, YK , TK , and JK be as in Theorem 2.2.
Since K is weakly compact, YK is reflexive. Hence, for TK ∈ W(X,YK),
there is a net (Sα) in K(X,YK) with supα ‖Sα‖ ≤ ‖TK‖ = ‖T‖ such that
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S∗
αz∗ −→

α
T ∗

Kz∗ for all z∗ ∈ Y ∗
K . Since ‖JK‖ = 1, the net Tα = JK ◦ Sα

clearly satisfies what is needed.

5. From approximation properties to metric approximation

properties

We would like to demonstrate how the method of proof of Theorem 1.2
can be further developed to give alternative proofs for known results
about cases when the (compact) approximation property implies the met-
ric (compact) approximation property. (Note that the following results
could have been obtained already in Section 1, but by their nature, they
fit more properly to conclude this paper.)

The dual space X∗ of a Banach space X is said to have the compact
approximation property with conjugate operators if IX∗ belongs
to the closure of {K∗ : K ∈ K(X,X)} with respect to the topology of
uniform convergence on compact subsets of X∗. By an example due to
Grønbæk and Willis [17], the compact approximation property of X∗ does
not imply the compact approximation property with conjugate operators.
Moreover, Casazza and Jarchow [3] have shown that there is a Banach
space X failing the metric compact approximation property such that all
its duals X∗, X∗∗, . . . have the metric compact approximation property.
Let us recall that if X∗ has the approximation property, then X∗ has the
approximation property with conjugate operators (this is clear from the
local reflexivity principle).

The following two results will explain surprisingly well why, in certain
important cases, the (compact) approximation property implies the metric
(compact) approximation property.

Theorem 5.1. Let X and Y be Banach spaces such that X∗ or Y ∗∗ has
the Radon-Nikodým property. If X∗ has the compact approximation prop-
erty with conjugate operators, then K(Y,X) is an ideal in L(Y,X) with
an ideal projection P such that

P (y∗∗ ⊗ x∗) = y∗∗ ⊗ x∗ for all x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗.

Proof. We assume that (K∗
α) with Kα ∈ K(X,X) converges to IX∗ uni-

formly on compact subsets of X∗. Similarly to the proof of Theorem 4.1,
we can define an ideal projection P by

(Pf)(T ) = lim
α

f(TKα), f ∈ L(Y,X)∗, T ∈ L(Y,X).(∗)
In particular, for f = y∗∗ ⊗ x∗ and T ∈ L(Y,X), this implies

(P (y∗∗ ⊗ x∗))(T ) = lim
α

y∗∗(K∗
αT ∗x∗) = y∗∗(T ∗x∗) = (y∗∗ ⊗ x∗)(T ).
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Theorem 5.2. Let X be a Banach space. The following statements are
equivalent.

(a) X∗ has the metric compact approximation property with conjugate
operators.

(b) For all Banach spaces Y , K(Y,X) is an ideal in L(Y,X) with an
ideal projection P such that

P (y∗∗ ⊗ x∗) = y∗∗ ⊗ x∗ for all x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗.

(c) K(X,X) is an ideal in span (K(X,X)∪{I}) with an ideal projec-
tion P such that

P (x∗∗ ⊗ x∗) = x∗∗ ⊗ x∗ for all x∗ ∈ X∗ and x∗∗ ∈ X∗∗.

Proof. (a)⇒ (b). Let (Kα) be a net in BK(X,X) such that K∗
αx∗ → x∗

for all x∗ ∈ X∗. Applying a well-known result due to J. Johnson [20], by
passing to a subnet of (Kα), one can define an ideal projection P by (∗).
As in the proof of Theorem 5.1, we have P (y∗∗ ⊗ x∗) = y∗∗ ⊗ x∗ for all
x∗ ∈ X∗ and y∗∗ ∈ Y ∗∗.

(b)⇒ (c). This is obvious.
(c)⇒ (a). By Lemma 1.3, there exists a net (Kα) in BK(X,X) such that

x∗∗(K∗
αx∗) −→

α
P (x∗∗ ⊗ x∗)(IX) = (x∗∗ ⊗ x∗)(IX) = x∗∗(x∗)

for all x∗ ∈ X∗ and x∗∗ ∈ X∗∗. Thus K∗
α → IX∗ in the weak operator

topology of L(X∗,X∗). Since the weak and strong operator topologies
yield the same dual space, after passing to convex combinations, we may
assume that K∗

α → IX∗ in the strong operator topology.

As an immediate corollary of Theorems 5.1 and 5.2, we obtain the fol-
lowing result due to Godefroy and Saphar [15].

Corollary 5.3 (cf. [15, Corollary 1.6]). Let X be a Banach space such
that X∗ or X∗∗ has the Radon-Nikodým property. If X∗ has the compact
approximation property with conjugate operators, then X∗ has the metric
compact approximation property with conjugate operators.

Remark 5.1. The original proof of Corollary 5.3 due to Godefroy and
Saphar [15] was also based, like ours, on Lemma 4.2, but by using the
local reflexivity principle, it was modeled after Grothendieck’s classical
proof in [16]. Another proof of Corollary 5.3 (under the assumption that
X∗ has the Radon-Nikodým property) is given by Cho and Johnson [4]
by an adaption of the alternative proof due to Lindenstrauss and Tzafriri
[26, pp. 39-40].
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The similar argument as in Theorem 5.2 yields the next result.

Theorem 5.4. Let X be a Banach space. The following statements are
equivalent.

(a) X has the metric compact approximation property.
(b) For all Banach spaces Y , K(Y,X) is an ideal in L(Y,X) with an

ideal projection P such that

P (y ⊗ x∗) = y ⊗ x∗ for all x∗ ∈ X∗ and y ∈ Y.

(c) K(X,X) is an ideal in span (K(X,X) ∪{I}) with ideal projection
P such that

P (x ⊗ x∗) = x ⊗ x∗ for all x∗ ∈ X∗ and x ∈ X.

The equivalence (a)⇔ (c) of Theorem 5.4 is contained in [10, Proposi-
tion 4].

An immediate corollary of Theorem 5.4 and Lemma 1.3 is the following
result due to Lima [23].

Corollary 5.5 (cf. [23, Theorem 14]). Let X be a Banach space with the
Radon-Nikodým property. X has the metric compact approximation prop-
erty if and only if K(X,X) is an ideal in span (K(X,X) ∪ {I}).

Theorems 5.2 and 5.4 remain valid for the metric approximation prop-
erty if one replaces K(Y,X) by F(Y,X) and K(X,X) by F(X,X) (this is
clear from the proofs). Therefore we have the following modifications of
Corollaries 5.3 and 5.5.

Corollary 5.6 (cf. [8, p. 246]). Let X be a Banach space such that X∗
or X∗∗ has the Radon-Nikodým property. If X∗ has the approximation
property, then X∗ has the metric approximation property.

Corollary 5.7 (cf. [23, Theorem 13]). Let X be a Banach space with the
Radon-Nikodým property. X has the metric approximation property if and
only if F(X,X) is an ideal in span (F(X,X) ∪ {I}).

There are several important results on the (metric) approximation prop-
erty for which it is not known whether or not they hold in the case of the
(metric) compact approximation property. For instance, it is known, as
we already mentioned above, that the (metric) approximation property
for X∗ implies the same for X. Casazza and Jarchow [3] have shown that
this is not true for the metric compact approximation property, but it
seems to be an open question whether or not this is true for the compact
approximation property. It is not known whether Corollary 5.3 remains
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true if X∗ has the compact approximation property (and not necessar-
ily the compact approximation property with conjugate operators) (this
question was posed by Godefroy and Saphar in [15]). It is known that the
metric approximation property is separably determined: X has the metric
approximation property whenever every separable subspace is contained
in a separable subspace of X with the metric approximation property. In
[28] (see also [29]), similar results were shown for the metric approximation
property having some special geometric features (like unconditionality).
We do not know whether these results hold for the metric compact ap-
proximation property.
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