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ISOMETRIC IMMERSION OF A COMPACT RIEMANNIAN
MANIFOLD INTO A EUCLIDEAN SPACE

SHARIEF DESHMUKH

We show that an isometric immersion of an n-dimensional compact Riemannian
manifold of non-negative Ricci curvature with scalar curvature always less than
n(n — 1)A~* into a Euclidean space of dimension n + 1 can never be contained in
a ball of radius A.

Jacobowitz [2] proved that an isometric immersion of an n-dimensional compact
Riemannian manifold with sectional curvature always less than some constant A~2

into Euclidean space of dimension 2n — 1 can never be contained in a ball of radius
A. This result generalised the results of Tompkins [4], Chern and Kuiper [1] and
Otsuki [3]. However it is not known whether such a nonimmersibih'ty theorem holds
with the condition on sectional curvature replaced by a suitable condition on Ricci
curvature or the scalar curvature. In this note we prove the following co-dimension one
nonimmersibility theorem.

THEOREM. Let E be Euclidean space of dimension n + 1 and M be a compact

n-dimensional Riemannian manifold of non-negative Ricci curvature whose scalar cur-

vature is less than some constant n[n — 1)A~2. Then no isometric immersion of M

into E is contained in a ball of radius A.

PROOF: Assume that rf>: M —* E is the isometric immersion such that ij>(M) is
contained in a ball of radius A. Thus we can assume that ||^|| ^ A, where | | , || is the
norm on E with respect to the Euclidean metric (, ). Let N be the unit normal vector
field to M. Then the support function p: M —» R is defined by p = {if), N), and we
have the Minkowski's formula

(1) / (l+pa)dv = 0,
JM

where a is the mean curvature of M.

Denote by g, V and A the Riemannian metric, the Riemannian connection and
the Weingarten map on M respectively. The position vector field rf> can be expressed
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as ij> = t + pN, where t is a vector field on M. Then using Gauss and Weingarten

formulae we immediately get

(2) Vxt = X + PAX,

for any vector field X on M.

If rj is a 1-form dual to t, then using equation (2), we obtain

(3) drj = 0, Sij = n(l + pa).

Also, we obtain
|| Vi||2 = n + 2pna + p2 tr A2.

Now using ||f || +p2 = \\tl>\\ and the expression for the scalar curvature 5, S = n2a2 —

tr A2 , we get

(4) || Vt||2 - (Sr,)2 = \\t\\2 S + »(» - 1) - HV-II2 S - 2n(n - 1)(1 + pa).

For a compact Riemannian manifold the following integral formula is known (see

[5], p.41)

J^ JRic(<, t) - 1 ||^||2 + ||Vf||2 - {Sr,)2 J dv = 0,

where Ric is the Ricci tensor of M.

Using (1), (3) and (4) in the above integral formula we get

(5) J {mc(t, t) + \\tf S + (n(n - 1) - ||V>||2 s) } dv = 0.

From the hypothesis of the Theorem it follows that Ric(f, t) ^ 0, ||<||2 5 ^ 0 and
||V>||2 5 ^ X2S < n{n - 1) which contradicts (5). This proves the Theorem. D
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