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Isometric immersions into spheres
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Recently ([1], [2]) new quantitative results concerning isometric immersions
of complete Riemannian manifolds into euclidean space were obtained using a
powerful theorem of Omori’s [6]. Here we shall prove analogous results (theo-

rem 1 and 2 below) concerning immersions into spheres. We begin with some
auxiliary formulae for the sphere.

Let $S_{\lambda}^{n+q}$ be the $(n+q)$-sphere of radius $\lambda$ with the standard Riemannian
metric induced by inclusion in $R^{n+q+1}$ . For a point $P_{0}$ of $S_{\lambda}^{n+q}$ say the north
pole, and a nonnegative number $h$ , let $C(P_{0}, h)$ be the $(n+q-1)$-hypersphere of
$S_{\lambda}^{n+q}$ with constant mean curvature $h$ centered at $P_{0}$ and lying in the northern
hemisphere. Note that $C(P_{0},0)$ is a great $(n+q-1)$-hypersphere in $S_{\lambda}^{n+q}$ , the
“equator”. Let $D(P_{0}, h)$ be the closed geodesic ball around $P_{0}$ with $\partial D(P_{0}, h)=$

$C(P_{0}, h)$ . We take as origin of $R^{n+q+1}$ the point $P_{0}$ and let $\varphi$ be the position
vector of a point in $D(P_{0}, h)$ . If $0$ is the center of the sphere $S_{\lambda}^{n+q}$ , we set
$ e_{0}=\lambda^{-1}P_{0}O\rightarrow$. If we denote by $N$ the outer unit normal of $S_{\lambda}^{n+q}$ in $R^{n+q+1}$ , then
by easy computations we obtain

(1) $d^{2}(P_{0}, C(P_{0}, h))=2\lambda^{2}[1-h\lambda(1+h^{2}\lambda^{2})^{-1/2}]$ ,

where $d(P_{0}, C(P_{0}, h))$ is the distance in $R^{n+q+1}$ , and

(2) $\lambda^{-1}\langle N, \varphi\rangle=\frac{1}{2}\lambda^{-2}\langle\varphi, \varphi\rangle\leqq\frac{1}{2}\lambda^{-2}d^{2}(P_{0}, C(P_{0}, h))=1-h\lambda(1+h^{2}\lambda^{2})^{-1/2}$ ,

where $\langle, \rangle$ is the standard inner product in $R^{n+q+1}$ .
Also, for all unit vectors $e$ which are tangent to $S_{\lambda}^{n+q}$ at any point of $D(P_{0}, h)$

we have

(3) $|\langle e, e_{0}\rangle|\leqq(1+h^{2}\lambda^{2})^{-1/2}$

The proofs of the results in this paper will consist in simple applications of
by Omori’s theorem A in [6] which we now formulate.

THEOREM A. Let $M$ be a complete Riemannian manifold with sectional cur-
vature bounded from below, consider a smooth function $f:M\rightarrow R$ with $\sup f<\infty$ ;
then for any $\epsilon>0$ there exists a Point $p\in M$, which depends on $\epsilon$ , where lgrad $ f\Vert$

$<\epsilon$ and $\nabla^{2}f(X, X)<\epsilon$ , for all unit vectors $X$ of $T_{p}M$ (by $\nabla^{2}f$ we denote the
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Hessian form of $f$).

A useful modified form of Theorem A is the following [2]

THEOREM B. Let $M$ be a complete Riemannian manifold satisfying, for some
constant $a$ the condition $-\infty<-a^{2}\leqq Ric(X, X)$ for all unit vectors $X$ ; if the
smooth function $f:M\rightarrow R$ is bounded from above, then for any $\epsilon>0$, there exists
a Point on $M$ where $\Vert gradf\Vert<\epsilon$ and $\Delta f<\epsilon$ (By $\Delta f$ we denote the Laplacian
of $f$ ).

Now, we come to the main results of this paper.
THEOREM 1. Let $M$ be a complete n-dimensional Riemannian manifold with

scalar curvature $R$ bounded from below; assume that there exists an isometric
immersion $\varphi$ of $M$ into the euclidean sphere $S_{\lambda}^{n+q}$ with $q\leqq n-1$ , so that $\varphi(M)$ is
included in $D(P_{0}, h)$ with $h>0$ ; then the sectional curvature $K$ of $M$ satisfies:

$\lim\sup_{M}K\geqq\lambda^{-2}+\frac{1}{2}h^{2}[1+h\lambda(1+h^{2}\lambda^{2})^{-1/2}]$ .

PROOF. $lf$ $infK=-\infty$ , then $infR>-\infty$ easily implies $supK=\infty$ and the
theorem follows. We may therefore assume $infK>-\infty$ . We take as origin the
point $P_{0}$ and we consider the function $f=\langle\varphi, \varphi\rangle/2$ on $M$. Identifying $\varphi$ with a
tangent vector to $R^{n+q+1}$ , we compute easily

(4) $\nabla^{2}f(X, X)=\langle X, X\rangle+\langle L(X, X), \varphi\rangle$ ,

where $L$ stands for the second fundamental form of $M$ in $R^{n+q+1}$ . The function
$f$ is bounded and thus by Theorem A for any natural number $m$ there exists a
point $P_{m}\in M$ so that

$\nabla^{2}f(X, X)<\frac{1}{m}$ ,

for all unit vectors $X$ tangent to $M$ at $P_{m}$ . Now, we have

(5) $L(X, Y)=L_{1}(X, Y)-\frac{1}{\lambda}\langle X, Y\rangle N$ ,

where $L_{1}$ is the second fundamental form of $M$ in $S_{\lambda}^{n+q}$ . Thus, for a nonzero
vector $X\in T_{p_{m}}M$ we must have

$1+\langle L_{1}(X, X), \varphi\rangle\Vert X\Vert^{-2}-\frac{1}{\lambda}\langle N, (0\rangle<\frac{1}{m}$

or, using (2)

$h\lambda(1+h^{2}\lambda^{2})^{-1/2}-\frac{1}{m}<-\langle L_{1}(X, X), \varphi\rangle\Vert X\Vert^{-2}$ .
Thus for all nonzero vectors $X$ of $T_{p_{m}}M$ we have

(6) $\Vert\varphi\Vert^{-1}[h\lambda(1+h^{2}\lambda^{2})^{-1/2}-\frac{1}{m}]<\Vert L_{1}(X, X)\Vert\Vert X\Vert^{-2}$ .
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From (6) and $h>0$ we conclude that, for a nonzero $X$ at $P_{m}\in M$ and $m$ suffi-
ciently large, we have $L_{1}(X, X)\neq 0$ and therefore we can use as in [3] the fol-
lowing well-known algebraic lemma ([4], p. 28): let $L_{1}$ : $R^{n}\times R^{n}\rightarrow R^{q}$ be a sym-
metric bilinear mapping satisfying $L_{1}(X, X)\neq 0$ for $X\neq 0$ ; if $q\leqq n-1$ , there exist
linearly independent $X,$ $Y$ so that $L_{1}(X, Y)=0$ and $L_{1}(X, X)=L_{1}(Y, Y)$ . Apply-
ing (6) for two such vectors $X,$ $Y$ in $T_{p_{m}}M$ we get:

$\Vert\varphi\Vert^{-2}[h\lambda(1+h^{2}\lambda^{2})^{-1/2}-\frac{1}{m}]^{2}<\Vert L_{1}(X, X)\Vert\cdot\Vert L_{1}(Y, Y)\Vert\Vert X\Vert^{-2}\Vert Y\Vert^{-2}$

$\leqq(\langle L_{1}(X, X), L_{1}(Y, Y)\rangle-\Vert L_{1}(X, Y)\Vert^{2})(\Vert X\Vert^{2}\Vert Y\Vert^{2}-\langle X, Y\rangle^{2})^{-1}$

or

(7) $\Vert\varphi\Vert^{-2}[h\lambda(1+h^{2}\lambda^{2})^{-1/2}-\frac{1}{m}]^{2}<K_{M}(X\wedge Y)-\lambda^{-2}$

since by the Gauss equation we have

$K_{M}(X\wedge Y)=\lambda^{-2}+(\langle L_{1}(X, X), L_{1}(Y, Y)\rangle-\Vert L_{1}(X, Y)\Vert^{2})(\Vert X\Vert^{2}\Vert Y\Vert^{2}-\langle X, Y\rangle^{2})^{-1}$

where $X\Lambda Y$ is the plane spanned by $X$ and $Y$.
Now, $\Vert\varphi\Vert^{2}\leqq 2\lambda^{2}[1-h\lambda(1+h^{2}\lambda^{2})^{-1/2}]$ and using (7) we get

$\frac{1}{2}\lambda^{-2}[1-h\lambda(1+h^{2}\lambda^{2})^{-1/2}]^{-1}[h\lambda(1+h^{2}\lambda^{2})^{-1/2}-\frac{1}{m}]^{2}<K_{m}(X\wedge Y)-\lambda^{-2}$ .

Then, letting $m$ go to infinity, we deduce

lim $supK\geqq\lambda^{-2}+\frac{1}{2}h^{2}(1+h^{2}\lambda^{2})^{-1}[1-h\lambda(1+h^{2}\lambda^{2})^{-1/2}]^{-1}$

or

lim $supK\geqq\lambda^{-2}+\frac{1}{2}h^{2}[1+\lambda h(1+h^{2}\lambda^{2})^{-1/2}]$ .
The following corollary is an easy consequence of Theorem 1.
COROLLARY 1. If $M$ is a complete n-dimensional submanifold of $S_{\lambda}^{n+q}$ where

$q\leqq n-1$ , with $-\infty<-a^{2}\leqq sectionalcurvature\leqq\lambda^{-2}$ , then $M$ has accumulation
points in every great $(n+q-1)$-hyPersphere of $S_{\lambda}^{n+q}$ . If, in addition, $M$ is com-
pact, then it has Points in common with every great $(n+q-1)$-hyPersphere of
$S_{\lambda}^{n+q}$ .

THEOREM 2. Let $M$ be a complete n-dimensional Riemannian manifold with
Ricci curvature bounded from below; assume that there exists an isometric im-
mersion $\varphi$ of $M$ into the euclidean sphere $S_{\lambda}^{n+q}$ , so that $\varphi(M)$ is included in
$D(P_{0}, h)(h\geqq 0)$ ; if the mean curvature vector $H_{1}$ of the immersion $\varphi$ satisfies
$|H_{1}|\leqq l$ , then $l\geqq h$ .

PROOF. We consider $S_{\lambda}^{n+q}$ as included in $R^{n+q+1}$ . If $H,$ $H_{1}$ are respectively
the mean curvature vectors of $M$ in $R^{n+q+1}$ and in $S_{\lambda}^{n+q}$ , then by formula (5)
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above we get easily

$H=H_{1}-\frac{1}{\lambda}N$ .

Consider again the bounded function $f=\langle\varphi, \varphi\rangle/2$ on $M$. Taking the trace of (4)

we have
$\Delta f=n(1+\langle H, \varphi\rangle)$

or

$[\Delta f=n(1+\langle H_{1}, \varphi\rangle-\frac{1}{\lambda}\langle N, \varphi\rangle)$ .

Now, using inequality (3) and the assumption, we get

$|\langle H_{1}, \varphi\rangle|\leqq l\lambda(1+h^{2}\lambda^{2})^{-1/2}$ and thus $\langle H_{1}, \varphi\rangle\geqq-l\lambda(1+h^{2}\lambda^{2})^{-1/2}$ .

Finally, by using the last inequality and the inequality (2) we deduce

$\Delta f\geqq n(h-l)\lambda(1+h^{2}\lambda^{2})^{-1/2}$ .

If, we had $h>l$, then $h-l=\epsilon>0$ and so

$\Delta f\geqq n\epsilon\lambda(1+h^{2}\lambda^{2})^{-1/2}=const$ . $>0_{l}$

which contradicts Theorem B. So $l\geqq h$ and the proof is complete.
Note that if $\varphi:M\rightarrow S_{\lambda}^{n+q}$ with $\varphi(M)\subset D(P_{0}, h)$ is a minimal isometric immer-

sion, we may take $l=0$ and thus $\Delta f\geqq nh\lambda(1+h^{2}\lambda^{2})^{-1/2}\geqq 0$ . Now, using the maxi-
mum principle, we obtain the following corollaries.

COROLLARY 2. A compact connected minimal submanifold $M$ of $S_{1}^{n}$ intersects
every great $(n-1)$-sPhere of $S_{1}^{n}$ . $Mo$ reover, if $M$ is contained in a closed hemi-
sphere of $S_{1}^{n}$ then $M$ must be contained in the boundary of this hemisPhere.

COROLLARY 3. A complete connected non-compact minimal submanifold of
$S_{1}^{n}$ with Ricci $cu$ rvature bounded below, has accumulation Points on every great
$(n-1)$-sPhere of $S_{1}^{n}$ . $Mo$ reover, if $M$ is contained in a closed hemisPhere and
has at least one Point on the boundary of this hemisphere, then $M$ must be con-
tained in this boundary.

REMARK. Theorem 2 and Corollary 2 generalize the results in [7] concern-
ing hypersurfaces to submanifolds. Corollaries 2 and 3 give partial answers to
a question posed by Nakagawa and Shiohama [5; p. 415], manely whether a
complete minimal submanifold of a euclidean sphere is contained in an open or
closed hemisphere.

I wish to thank D. Koutroufiotis for his aid in this $work^{-}\backslash $
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Added in proof (May, 1981). Theorem 1 has been generalized recently by
L. Jorge and D. Koutroufiotis, “An estimate for the curvature of bounded
submanifolds”, to appear in the Amer. J. Math. Theorem 2 has been generalized
recently by L. Jorge and F. Xavier, “An inequality between the exterior diameter
and the mean curvature of bounded immersions”, to appear.
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