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ISOMETRIC IMMERSIONS OF COMPLETE RIEMANNIAN

MANIFOLDS INTO EUCLIDEAN SPACE

CHRISTOS BAIKOUSIS AND THEMIS KOUFOGIORGOS

Abstract. Let AY be a complete Riemannian manifold of dimension n, with scalar

curvature bounded from below. If the isometric immersion of M into euclidean

space of dimension n + q, q < n — 1, is included in a ball of radius X, then the

sectional curvature K of M satisfies lim supw K > X-2. The special case where M

is compact is due to Jacobowitz.

Generalizing results by Tompkins, Chern and Kuiper, and Otsuki, Jacobowitz

proved that a compact n-dimensional Riemannian manifold whose sectional curva-

tures are everywhere less than constant X-2 cannot be isometrically immersed into

euclidean space of dimension 2n - 1 so as to be contained in a ball of radius X (see

[1] and the references therein). In this note we shall prove a quantitative result

concerning isometric immersions, which includes Jacobowitz's theorem as a special

case.

The proof of our result will consist in a simple application of a theorem by

Omori [3], which we now formulate.

Let M be a complete Riemannian manifold with sectional curvature bounded

from below; consider a smooth function/: M -» R with sup/ < oo. For any e > 0

there exists a point p E M where ||grad/|| < e and V2/^, X) < e for all unit

vectors X E TpM. By V2/we mean the Hessian form off, defined by V2f(X, Y) =

<V^ grad/, y>.

Theorem 1. Let M be a complete n-dimensional Riemannian manifold with scalar

curvature R bounded from below. Assume that there exists an isometric immersion tp

of M into euclidean space of dimension n + q, q <n— I, so that <p(M) is included in

a ball of radius X. Then lim supM K > X~2, where K is the sectional curvature of M.

Corollary. A complete two-dimensional Riemannian manifold, immersed isometri-

cally into euclidean three-space, and whose Gaussian curvature Ksatisfies -oo < -a2

< K < 0, is extrinsically unbounded.

Proof of the Theorem. If n = 2 then R = 2K and we have inf K > -oo. If

n > 2 and inf K = -oo, then inf R > -oo easily implies sup K = + oo and the

theorem follows. We may therefore assume inf K > -oo.

We shall apply Omori's theorem to the "distance" function F = <<p, <p)/2; m is

considered here as tangent vector in euclidean space En+q. By assumption, we have
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||(p|| < X and/ < A2/2, taking the origin to be the center of the ball wherein <p(M)

lies. Therefore, to any natural number m, there exists a point pm E M where

V2/(A, X) < \/m for all X E TpmM with \\X\\ = 1. In order to compute the

Hessian off, we identify every tangent vector X with <pm(X) and obtain Vx<p = X,

where V denotes the connection of E"+q. Now using this and the Gauss formula,

we compute easily V2f(X, Y) = (X, Y) + (L(X, Y), <p>, where L stands for the

second fundamental form of the immersion. Thus at pm and for every nonzero

X E TPmM we have 1 + {L(X, X), <p> • ||A|r2 <m~\ hence

X-x(\-m-x)<\\L(X,X)\\-\\X\\-2. (•)

From (*) we conclude that, at pm E M, we have L(X, X) =£ 0 for X =£ 0. Now we

use, as in [1], a well-known algebraic lemma [2, p. 28]. Let L: R" X R" -» Rq be

symmetric, bilinear and satisfy L(X, X) ¥= 0 for X =£ 0; if q < « — 1, there exist

linearly independent X, Y so that L(X, Y) = 0 and L(X, X) = L(Y, Y). We pick

two such vectors X, Y in TpmM, apply (*) and obtain

A-2(l - m~xf < \\L(X,X)\\ ■ WHY, r)|| • ||A||-2- ||r|r2

< ((L(X,X),L(Y, Y)} - \\L(X, Y)\\2)- (||*||2|| F||2 - <X, Y}2)'1.

By the Gauss equation, the rightmost term in these inequalities is the sectional

curvature of M at pm for the plane spanned by X and Y. Now letting m go to

infinity, we deduce X~2 < lim supm K(X /\ Y) and thus prove the theorem.

It is noteworthy that the above proof includes a generalization of the following

well-known result. If a compact hypersurface M in EN is contained in a ball of

radius X, then there exists a point on M where all the normal curvatures are in

absolute value not less than X-1. For a submanifold M of EN, of arbitrary

codimension, we define the absolute normal curvature at a point p E M and in the

direction X E TpM, \\X\\ = 1, to be \\L(X, X)\\. Let

C(p) - min{||L(A, X)\\/X E TpM and \\X\\ = 1}.

Theorem 2. Let M be a complete submanifold of EN with sectional curvature

bounded from below. If M is contained in a ball of radius X, then lim suppeM C(p) >

A"1.

Proof. Apply Omori's theorem as in Theorem 1 to <<p, rp)/2. From inequality

(*) we immediately obtain the conclusion.
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