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ISOMETRIC IMMERSIONS OF RIEMANNIAN PRODUCTS

JOHN DOUGLAS MOORE

Introduction

For each integer i, l<i<p, let Mt be a compact connectedriemannian mani-
fold of dimension nt > 2, and M the riemannian product M1 x M2 x x Mp.
In this paper we will prove that any codimension p isometric immersion of M
in euclidean space is a product of hypersurface immersions. This means that if
/: M —> EN is an isometric immersion into euclidean space EN of dimension

N — ( Σ nί] + V > ώen there exist isometric immersions ft: Mt —• Eni+1 (1 <i

< p) and a decomposition of EN into a riemannian product

E N _ Enι + l x . . . x EnP + 1

so that f(m19m2, ,mp) = (Mm^/ 2 (m 2 ), , fp(mp)) when m4€M* for
1 < i < P This generalizes a result of S. B. Alexander [1] which dealt with
codimension two isometric immersions.

As an application, we mention that if S2 is the two-dimensional sphere of
constant curvature one, then it follows from Liebmann's theorem that the
riemannian product S2 x S2 X X S2 (p times) is globally rigid in 3p-dimen-
sional euclidean space E3p it is clearly not locally rigid. Very few global rigidity
theorems in codimensions higher than one are known, and this example is per-
haps the simplest.

Unless otherwise stated all riemannian manifolds are C°° and connected, and
we use [5] as a reference for the basic theorems of riemannian geometry. The
author sincerely thanks Professors M. P. do Carmo and S. Kobayashi for their
encouragement, and the referee for several valuable suggestions. The main re-
sults in this paper were included in the author's thesis written under the direc-
tion of Professor Kobayashi at the University of California, Berkeley.

1. Statement of results

If M is a riemannian manifold, let F(M) denote the interior of the set of
points of M at which all sectional curvatures vanish. Our first result is proven
by local methods:
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Theorem 1. For 1 <i <p, let Mt be a connected riemannian manifold of
dimension nt such that F(Mt) = 0, and let Mo be a connected flat riemannian
manifold of dimension nQ. Let Mo x Mλ x x Mp be the riemannian product,

( V \

Σ ni\ + P' Then any isometric
ί = Q I

immersion
f:MoχMιχ . . . χMp->EN

is a product immersion.
In the terminology of O'Neill [6], / is no-cylindrical if n0=0, / is the product

of hypersurf ace immersions. Theorem 1 allows us to construct examples of com-
plete noncompact riemannian manifolds which can be locally but not globally
isometrically immersed in a euclidean space of a given dimension. For example,
the following corollary follows from Theorem 1 and a theorem of Efimov [3]:

Corollary 1. For 1 <i<p, let Mt be a complete two-dimensional riemann-
ian manifold whose curvature is bounded above by a negative constant, and
let N = 3p. Then the riemannian product Mx x M2 X X Mp cannot be
globally isometrically immersed in EN.

On the other hand, it follows from [4] that M can be locally isometrically
immersed in EN.

Our second result (with no assumptiom on the curvature) is proven by global
methods:

Theorem 2. For 1 < i < p, let Mt be a complete connected riemannian
manifold of dimension ni>2,M = MιχM2χ X Mp the riemannian

product, and EN a euclidean space of dimension N = Ij] nη + P* Then any

isometric immersion f: M—*EN satisfies at least one of the following conditions:
(a) // is a product of hypersurface immersions, (b) It carries a complete geode-
sic onto a straight line in EN.

In particular, if M is compact, then any isometric immersion of M in E* is
a product immersion, which proves the assertion we made in the introduction.
A direct consequence of Theorem 2 and the rigidity theorems of Cohn-Vossen
and Sacksteder [7] is the following corollary:

Corollary 2. For \<i<p, let Mtbe a compact connected riemannian mani-
fold of nonnegatίve curvature and dimension nt > 2, M — Mx X M2 x x Mp

the riemannian product, and EN a euclidean space of dimension N = ί 2 nλ

+ p. Then any isometric immersion of M in EN is rigid.

2. The main lemma

Consider two riemannian manifolds M1 and M2 of dimensions nx and n2 re-
spectively, and suppose that the riemannian product M = Mx x M2 is iso-
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metrically immersed in an N-dimensional euclidean space EN. Let n — nx + n2

and adopt the following conventions on ranges of indices:

1 < A,B,C < N

1 < U 7, k < n n + 1 < λ, μ,v < N

1 < a, b, c < nx nx + 1 < r, s, t < n .

In an open neighborhood U in EN of a point in M choose a moving orthonormal
frame e19 e2, , eN so that at every point (m19 m2) in MΠU = (Mι x M2) Π C/,
the first nx frame vectors e19 e29 , eni are tangent to Mx x {m2} and the next
n2 vectors eni+19 , en are tangent to {mj X M2. It follows that the remaining
N—n vectors are normal to Mx x M2. Let θ\θ2, - - ,ΘN be the dual coframe,
and 0 | the corresponding connection forms defined by the equations

(1) deA = Σs eBθ
B

A .

Then θi= —ΘB

A, and one can easily derive the following structure equations of
Cartan:

dθA = - Σ QAB Λ ΘB ,

We restrict all the differential forms to the submanifold M i l C/, and denote
the restrictions by the same letters, so that θλ = 0. From the structure equations
it follows in the usual fashion that

where fe^ is a differentiable function on MΓϊU for each /, /, λ, and ^^ =-bλji-
The symmetric bilinear forms

Φ1 = Σ b\jθι (8) # j

are called the second fundamental forms.
We will say that a moving orthonormal frame constructed as above is

compatible with the product structure of M, if θl = 0 when restricted to
({raj x M2) f] U and if θr

s = 0 when restricted to (Mλ x {ra2}) Π U for all
(ran ra2) e C/. Such a moving frame can always be constructed if U is a sufficient-
ly small open neighborhood of any point in Mλ x M2.

We will now prove the following assertion: If any moving frame choosen in
the above manner satisfies the equations bλ

ar = 0, then the isometric immersion
of M = Mx X M2 in EN is a product immersion.
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The first step in the proof of the assertion goes as follows: we take a vector
X tangent to Mι X {raj at (ra1? m2) € M and a vector Y tangent to {raj X M2

at (m[, m'2) e M, and show that they are perpendicular in EN. Let a be a mini-
mizing geodesic in {raj x M2 connecting (ra1? ra2) to (ml9 mζ), and τ a minimiz-
ing geodesic in M1 X {râ } connecting (ra^ra^) to (ra1? ra0. We can then con-
struct a moving frame e15 e2, , eN compatible with the product structure of
M and defined on an open set in EN

9 which contains both σ and τ. We claim
that e19 e2, ., eni are constant along σ, and eni+1, , en are constant along
T. Indeed equation (1) implies that

dea = Σ ebθ
b

a + Σ
b λ

because 0£ = 0 for a product manifold. But θ\ vanishes when restricted to
{raj x M2, and our assumption that bλ

ar = 0 implies that 0£ = 2 bλ

abθ
b so that

δ

^α also vanishes on {raj x M2. It follows that dea vanishes on {raj x M2 and
consequently ea is constant along σ in a similar fashion one shows that er is
constant along τ. Now choose constants xa, yr so that Z — Σ xaea(™i, m2)

 a n d
α

y = 2 jr^r(raί, ra0. Then Z = Σ *α£<ιO*i> ̂ 5) and Y = Σ / Φ i , ™D which
r α r

proves that X and Y are perpendicular in EN.
If we choose an origin in EN we can regard EN as a vector space. Let Ex be

the subspace generated by all vectors tangent to Mλ x {ra2} for all ra2 e M2, and
E2. the subspace generated by all vectors tangent to {raj x M2 for all mι e Mx.
The preceding paragraph proves that Eλ and E2 are orthogonal, and consequently
we can choose a subspace EQ of E^ so that

EN = EQ@E1® E2

is an orthogonal direct sum decomposition. If E0,E19 E2 are regarded as riemann-
ian manifolds, then EN is their riemannian product. Let p0, p19 and p2 be the
natural projections of EN on EQ9El9 and E2 respectively.

If ra2eM2, then the isometric immersion f:MλχM2->EN defines an isometric
immersion fm% : M1-^ EN by fm%(m^ = f(ml9m2). Let jλ be the composition
Pi ° /m2- We now show that fx is independent of the choice of m2eM2. Let mx

be an arbitrary fixed point of Ml9 let ra2, raζ be two points of M2, and let σ be
a path in {raj x M2 joining (ra1? ra2) to (m19 ra0. The tangent vector of a always
lies in E29 and therefore its endpoints have the same projection on Eγ. This
proves that fλ is well-defined. Define f2: M2 —> E2 in a similar fashion. Since
p0 o / is constant, /(ra^ ra2) = (constant, f^m^, /2(ra2)) and hence / is a product
immersion, which proves our assertion. In all our applications, Eo will be the
zero subspace.

By a straightforward induction on the number of manifolds considered, the
above argument yields the following lemma:
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Lemma. Suppose that M19 M2, , Mp are connected riemannian manifolds
and that

f: M1χ M2χ . . . x MP^EN

is an isometric immersion of the riemannian product. If the second fundamental
forms Φλ have the property that

Φλ(X, Y) = 0 , when X is tangent to Mt ,

Y is tangent to Mj9 and i Φ j ,

then f is a product immersion.

3. Proof of Theorem 1

For reference, we state an algebraic theorem due to E. Cartan, a proof of
which can be found in [2]. If B\ B2, , Bn are n symmetric bilinear forms on
a real vector space V, they are said to be exteriorly orthogonal if

Σ [BKX, Y)Bl(Z9 W) - B%X, W)B%Z, Γ)] = 0

for all vectors X, Y,Z,Wε V. Cartan's theorem states that if B\ B2

9.,B
n

are n exteriorly orthogonal symmetric bilinear forms and the codimension of
the subspace {X e V | Bι(X, Y) = 0 for all Y e V91 < i < ή\ is at least n, then
B\B2, - - , Bn can be diagonalized simultaneously. The theorem implies that
n exteriorly orthogonal symmetric bilinear forms depend upon at most n vari-
ables.

To prove Theorem 1, it clearly suffices to establish (2) on a dense subset of
M = Mo X M1χ ••• X Mp, and we will establish it at every point m in M at
which no Mi9 i > 0, is flat. The point m will be fixed throughout the proof.

We first consider the special case where Mo is a point, and each Mt is two-
dimensional for / > 0. Then we can choose an orthonormal basis {e19 e2, , e2p)
for the tangent space of M at m so that e19 e2 are tangent to Ml9 ez and e4 are
tangent to M2, . , and e2p_19 e2p are tangent to Mp. Let {θ\ θ2, , θ2p} be the
dual basis for the cotangent space, and kt the curvature of Mt. In addition to
the second fundamental forms Φ\ 2p + 1 < λ < 3p, we will need to consider
the symmetric bilinear forms Ψ\ 1 < / < p, defined as follows:

U-k, {Θ2i~ι

i /ON θu)

if

if

ki

k-

<

>

0 ,

0 .

Then the 2p symmetric bilinear forms {Φ\ Ψ1} are exteriorly orthogonal. There-
fore Cartan's theorem implies that there exists a vector space basis
{Vx, v2, , v2p} for the tangent space of M at m, which diagonalizes all of these
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symmetric bilinear forms simultaneously. It follows that the null space of any
of these symmetric bilinear forms is the vector space spanned by a subset of
{̂ u v2, , v2p}. Since the space of vectors tangent to Mt is the intersection of
the null spaces of Ψj

9 j Φ /, it is also spanned by a subset of this basis. Hence
the basis [v19 v29 , v2p} is consistent with the product structure of M, and
after a permutation if necessary, we can arrange that vl9 v2 are tangent to M19

v3 and vA are tangent to M2, etc. If X is a vector tangent to Mt at m and Y is
a vector tangent to Mj9 i Φ j , then X is a linear combination of v2ί_λ and v2i9

and Y is a linear combination of v2j_ι and v2j. Since the basis {v19 v29 , ΐ ^ }
diagonalizes the second fundamental forms Φ\ it follows that Φλ(X, Y) = 0,
which proves that (2) holds at m in this special case.

Now we can consider the general case, and choose a set of orthonormal
vectors [el9 e29 , e2p} at m so that e2l_λ and e2l form a basis for a two-plane
of nonzero sectional curvature tangent to Ml91 < / < p. We can assume with-
out loss of generality that Σ OK^m ^dex *s nonzero for 1 < / < p. If we restrict

the second fundamental forms Φλ to the vector space generated by {e15 e2, , e2p)
and apply the algebraic argument of the preceding paragraph, we find that
Φλ(e2i, e2j) — 0, for i Φ j . Since the sectional curvature of the two-plane span-
ned by e2ί and e2j is zero when / Φ j , it follows that

(3) Σ Φ K e 2 i , e 2 ί W ( e 2 j , e 2 j ) = 0 , i φ j .

Hence the normal vectors {Σ Φλ(e2ί, e2ί)eλ = Φ(e2ί, e2i) \ 1 < i < p] are orthog-

onal to each other and form a basis for the normal space. Similarly we can

conclude that

Σ ΦX^-i* e2ίW(e2j, e2j) = 0 , Σ Φ'fe-i, e2i_λW(e2j, e2j) = 0
>l X

for iφj, from which it follows that the normal vectors Φ(e2ί_1,e2ί) and
Φ(e2i_ι, e2i_ι) are scalar multiples of Φ(e2ί,e2ί). After a rotation of e2i_λ and
e2i9 we can arrange that Φ(e2i_λ,e2ϊ) — 0, so that the normal vectors
{Φ(e2ί_1? e2«-i) 11 < ί < p} also form a basis for the normal space.

Suppose that X is a vector tangent to Mi9 where 0 < / < p. If j Φ i, the
curvature relations imply that

Σ Φλ(X, e23)Φλ(e2k_x, e2k_x) = 0 , for 1 < k < p ,

so that Φ\X, e2j) = 0. Since the two-plane splanned by X and e2j has zero
curvature, it follows that

, XW(e2j, e2j) = Σ Φλ(X, e y ) W e2j) = 0, for / Φ i ,
λ
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so that the normal vector Φ(X, X) is zero if i = 0, or a multiple of Φ(e2i, e2ί) if
i > 0. Similarly, if Y is a vector tangent to Mά at ra, where / Φ i and / > 0,
then Φ(Y, Y) is a multiple of Φ(e2j, e2j). Using equation (3), we see that

Σ Φλ(X, Y)Φλ(X, Y)= Σ Φλ(X,XW(Y, Y) = 0 ,

so that Φλ(X, Y) = 0. This proves that (2) holds at m and concludes the proof
of Theorem 1.

4. Proof of Theorem 2

We begin by mentioning some facts about the index of relative nullity which
will be needed in the proof. Let M be an n-dimensional riemannian manifold,
and f:M—>EN an isometric immersion, which defines N — n second funda-
mental forms Φλ,λ = n+1,'-',N. A vector X tangent to M at a point meM
is said to be a relative nullity vector for / or a vector in the relative nullity
space N(f, m) if Φλ(X, Y) — 0, n + 1 < λ < N, for every vector Y tangent to
M at ra. The dimension of the vector space N(f,m) is called the index of
relative nullity of / at ra. We will need to use the following two lemmas:

Lemma 1. // U is an open subset of M on which the index of relative nullity
is constant, then the distribution N(j) of relative nullity spaces is completely
integrable on U, and its integral submanifolds are totally geodesic.

Lemma 2. Suppose that the U is an open subset of M on which the index
of relative nullity is equal to the constant p, σ: [a, b] —>M is a geodesic segment
such that σ(s) e U for s 6 (α, b), and the tangent vector σ\s) lies in the relative
nullity space N(f, σ(s)) for s e (a, b). Then the index of relative nullity of f at
σ(a) and σ(b) is equal to p, and the distribution of relative nullity spaces is
parallel along σ\ [a, b].

These lemmas are proven in [11 as Lemma 5.1 and Theorem 6.2 respec-
tively. The second lemma states that the index of relative nullity cannot in-
crease as one moves along a geodesic whose tangent vector is a relative nullity
vector.

To prove Theorem 2, we assume that (b) does not hold, i.e., that M does
not contain a complete geodesic which / takes onto a straight line in EN, and
we prove that (a) holds by means of an induction. Let Λa(M) denote the set of
points in M at which the index of relative nullity is a. The proof of Theorem 1
shows that (2) holds on the closure of AQ(M), and we will prove the following
inductive step: if (2) holds on the closure of U {Aβ(M)\β < a}, then (2) holds
on the closure of U {Aβ(M)\β < a + 1}.

Let a > 1 and let U be the open set

Aa{M) - C 1 [ U {Aβ(M)\β <a}] ,
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where Cl denotes closure, a set on which the index of relative nullity is equal
to the constant a. Let m be a point of U, and σ: (a,b) —> U a unit speed
geodesic passing through m whose tangent vector σ'(s) is a relative nullity vector
for each s e (α, b). Assume that σ cannot be extended beyond the interval (a, b)
without leaving U. Either α > - o o o r f e < + cx) because otherwise / would
take the complete geodesic σ onto a straight line in EN, and we assume with-
out loss of generality that b < + oo. We notice that by Lemma 2, σ(b) lies in
the closure of U {Aβ(M) \β <a}, a set on which (2) holds by inductive hypoth-
esis. At σ(b) the relative nullity space is the direct sum of its projections on the
Λf4's, and Lemma 2 implies that this also holds at ra. Since m is an arbitrary
point of U, the distribution of relative nullity spaces on U is consistent with
the product structure of M.

Again we choose a point m in U and let σ: (a, b) —> U be a unit speed geod-
esic passing through ra such that σ'(s) is a relative nullity vector for each
s € (a, b). This time, however, we require that σ be tangent to some Mi (say Mj).
As before we can assume that σ cannot be extended beyond (a, b) without leav-
ing U and that b < + oo. We can choose a moving orthonormal frame e19e29

• , eN in a neighborhood V of a \ (a, b) in M so that e19e29 , eni are tangent
to M1 (where nγ = dim Mλ), eni+19 , en are tangent t o M 2 χ M 3 χ x Mp

(where n = dimM), and en+19 ,eN are normal to M. Moreover, we can
assume that e19 e2, , en are parallel along σ with respect to the connection in
the tangent bundle, that en+1, , eN are parallel along σ with respect to the
connection in the normal bundle, and that at points of σ, eι is the tangent vector
of σ. Finally by the argument of the preceding paragraph we can arrange that
ex be a relative nullity vector at every point in V. We adopt the following index
conventions:

1 <i,j,k <n n + 1 < λ,μ,v < N

1 < a,b,c < Hi nx + 1 < r, s, t < n .

As usual, we can construct a dual coframe θ\ , θn, connection forms #}, θλ

μ9

and components b\ά of the second fundamental forms. We notice that θr

a = 0
and blj = 0.

The covariant derivatives b\jk of the second fundamental forms are denned
by the equation

(4) dblj + Σ bift - Σ bλ

kjθ« - Σ Muff} = Σ blJkθ* ,
μ k k k

and we recall that the bλ

ijJc's are symmetric in their lower indices. Since b{j = 0
on V,

- Σ Krθ\(ea) = blra = b*arl = etfir)
b
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at points of σ, so that we have the following system of ordinary differential
equations along σ \ (a, b):

eMr) + Σ b\rθ\{ea) = 0 .
b

Since bλ

ar = 0 at σ(b), it follows that bλ

ar = 0 at m. Therefore, if X is a vector
tangent to Mx at m and Y is a vector tangent to Mt at ra, for some z Φ 1, then
Φa(jjf, Y) = 0 for all J, n + 1 < λ < N.

The argument of the preceding paragraph can be used to show that bλ

ar = 0
on all of V so that equation (4) implies that bλ

ark = 0. Hence at points of σ,

eMs) = Ksl = 0 ,

so that bλ

rs is constant along σ | (a, b). Therefore, if X is a vector tangent to Mt

at m and Y is a vector tangent to Mό at m, where z, /, 1 are distinct, and if X,
Ϋ are the parallel translates of X, Y along σ to σ(b), then Φ'(X Y) = φ\X, ? ) ,
^ + 1 < ^ < N . Since (2) holds at σ(fe), it follows that Φλ(X, Y) = 0 , n + 1 <λ<N.
Together with the result of the preceding paragraph, this shows that (2) holds
at m. Since m was an arbitrary point of U it follows that (2) holds on the
closure of U and hence on the closure of U {Aβ(M) \ β < a + 1}. The inductive
step is completed and Theorem 2 is proven.

5. Concluding remarks

As a first step toward generalizations in higher codimensions, we mention the
following result:

Proposition. For 1 < i < p, let Mt be a connected riemannian manifold of
dimension nt>2 and constant negative curvature ku and EN a euclidean space

I v \

of dimension N = 2 2 nί\ — P Then any isometric immersion of the

riemannian product

f: M1χ M2 x . . . χMp->EN

is a product immersion.

The dimension N is the lowest such that local isometric immersions of M =
Mλ x M2 x x Mp in EN exist.

3 P

The proof proceeds along the following lines: Let s(j) = Σ n% a n d n — Σ nw

and choose a moving orthonormal frame e19 e2, , eN so that the first nx frame
vectors are tangent to M15 the next n2 frame vectors are tangent to M2, , and
the last N — n frame vectors are normal to M. Let θ\ θ2, , ΘN be the dual
coframe. Then the second fundamental forms Φλ and the symmetric bilinear
forms
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ψi = <J— ki (θs(ί-ί) + l <g) Θ8U~1) + 1 + + θs{ί) 0 θs{ί)) ,

i <i < P, are exteriorly orthogonal in the tangent space of M at any point
ra e M. Therefore we can apply Cartan's theorem on exteriorly orthogonal forms
to conclude that there is a vector space basis {v19 v2, , vn} for the tangent
space of M at ra, which diagonalizes the symmetric bilinear forms [Φ\ Ψ1}
simultaneously. A straightforward algebraic argument shows that the basis is
orthonormal and consistent with the product structure of M. In other words,
after a permutation if necessary, v19 v2, , vni are tangent to M1 ? vni+ι, ,
vs{2) are tangent to M2, etc. One can then verify in the usual fashion that (2)
holds at every point of M.

Theorem 1 and the above proposition suggest the following conjecture: If
Mx (resp. M2) is a riemannian manifold which can be locally isometrically im-
mersed in a euclidean space of dimension nx (resp. n2) but in no lower-dimen-
sional euclidean space, then every isometric immersion of M1 X M2 in an
(nx + n2)-dimensional euclidean space is a product immersion.
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