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ISOMETRIC IMMERSIONS OF THE HYPERBOLIC PLANE
INTO THE HYPERBOLIC SPACE
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Abstract. In this paper, we parametrize the space of isometric immersions of the hy-
perbolic plane into the hyperbolic 3-space in terms of null-causal curves in the space of ori-
ented geodesics. Moreover, we characterize “ideal cones” (i.e., cones whose vertices are on
the ideal boundary) by behavior of their mean curvature.

Introduction. Consider isometric immersions of Σ̃n(c) into Σ̃n+1(c), where Σ̃m(c)

denotes the simply connected m-dimensional space form of constant sectional curvature c.
Such immersions are only cylinders [HN] in the Euclidean case (c = 0). In the spherical case
(c > 0), such immersions are only totally geodesic embeddings [OS]. On the other hand,
in the hyperbolic case (c < 0), it is well-known that there are nontrivial examples of such
isometric immersions [N, F, AH] (see Figure 1 for the case of n = 2).

We denote by H n = Σ̃n(−1) the n-dimensional hyperbolic space, that is, the complete
simply connected and connected Riemannian manifold of constant curvature −1. Nomizu
[N] and Ferus [F] showed that, for a given C∞ totally geodesic foliation of codimension 1 in
H n, there is a family of isometric immersions of H n into H n+1 without umbilic points such
that, for each immersion, the foliation defined by its asymptotic distribution coincides with
the given foliation. Furthermore, Abe, Mori and Takahashi [AMT] parametrized the space
of isometric immersions of H n into H n+1 by a family of properly chosen countably many
Rn-valued functions.

FIGURE 1. Examples constructed by Nomizu [N] (see Section 3).
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In this paper, we shall give another parametrization in the case of n = 2: we represent
isometric immersions of H 2 into H 3 by curves in the space LH 3 of oriented geodesics in
H 3. Moreover, we characterize certain asymptotic behavior of such immersions in terms of
their mean curvature.

More precisely, an isometric immersion of H 2 into H 3 is known to be a complete extrin-
sically flat surface in H 3, that is, a complete surface whose extrinsic curvature vanishes. It is
known that a complete extrinsically flat surface is ruled, i.e., a locus of a 1-parameter family
of geodesics in H 3 [P] (see Proposition 3.2). Hence, we shall deal with extrinsically flat ruled
surfaces, which we call developable surfaces in H 3. On the other hand, it is well-known that
the space of oriented geodesics LH 3 has two significant geometric structures, i.e., the natural
complex structure J [Hi, GG] and the para-complex structure P [KK, Ka, Ki]. Recently, Sal-
vai [S] determined the family of metrics {Gθ }θ∈S1 each of which is invariant under the action
of the identity component of the isometry group of H 3. Each metric Gθ is of neutral signature,
Kähler with respect to J and para-Kähler with respect to P . In this paper, we especially focus
on two neutral metrics Gr = G0 and Gi = Gπ/2 in {Gθ }θ∈S1 . In Section 2, we shall investigate
the relationships among J , P , {Gθ }θ∈S1 and the canonical symplectic form on LH 3, and give
a characterization of Gi and Gr (Proposition 2.1). In Section 3, we introduce a representation
formula for developable surfaces in H 3 in terms of null-causal curves (Proposition 3.6):

THEOREM I. A curve in LH 3 which is null with respect to Gi and causal with respect
to Gr generates a developable surface in H 3. Conversely, any developable surface generated
by complete geodesics in H 3 is given in this manner.

Here, a regular curve in a pseudo-Riemannian manifold is called null (resp. causal) if
every tangent vector is a null (resp. timelike or null) direction. In Section 4, we shall inves-
tigate curves in LH 3 which are null with respect to both Gr and Gi. Such curves generate
cones whose vertices are on the ideal boundary, which we call ideal cones (Proposition 4.2).
On the other hand, on each asymptotic curve γ in the non-umbilic point set of a complete de-
velopable surface, the mean curvature is proportional to e±t or 1/ cosh t for some arc length
parameter t of γ (Lemma 3.3). Based on this fact, a complete developable surface is said to
be of exponential type, if the mean curvature is proportional to e±t on each asymptotic curve
in the non-umbilic point set (see Definition 4.5). Then we have the following.

THEOREM II. A real-analytic developable surface of exponential type is an ideal cone.

The “real-analyticity” assumption cannot be removed (see Example 4.7).
As mentioned before, complete flat surfaces in the Euclidean 3-space R3 are only cylin-

ders. However, if we admit singularities, there are a lot of interesting examples. Murata and
Umehara [MU] investigated the global geometric properties of a class of flat surfaces with
singularities in R3, so-called flat fronts. On the other hand, there is another generalization of
ruled (resp. developable) surfaces in R3, i.e., horocyclic (resp. horospherical flat horocyclic)
surfaces in H 3 (for more details, see [IST, TT]).
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1. Preliminaries.
1.1. Hyperbolic 3-space. We denote by L4 the Lorentz-Minkowski 4-space with the

Lorentz metric

〈(x0, x1, x2, x3), (y0, y1, y2, y3)〉 = −x0y0 + x1y1 + x2y2 + x3y3 .

Then the hyperbolic 3-space is given by

(1.1) H 3 = {x = (x0, x1, x2, x3) ∈ L4 ; 〈x, x〉 = −1, x0 > 0}
with the induced metric from L4, which is a complete simply connected and connected Rie-
mannian 3-manifold with constant sectional curvature −1. We identify L4 with the set of
2× 2 Hermitian matrices Herm(2) = {X∗ = X} (X∗ := tX̄) by

L4 � (x0, x1, x2, x3)←→
(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
∈ Herm(2)

with the metric

〈X,Y 〉 = −1

2
trace(XỸ ) , 〈X,X〉 = − detX ,

where Ỹ is the cofactor matrix of Y . Under this identification, the hyperbolic 3-space H 3 is
represented as

(1.2) H 3 = {p ∈ Herm(2) ; detp = 1, tracep > 0} .
We call this realization of H 3 the Hermitian model. We fix the basis {σ0, σ1, σ2, σ3} of
Herm(2) as

(1.3) σ0 = id, σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

In the Hermitian model, the cross product at TpH 3 is given by

(1.4) X × Y = i

2
(Xp−1Y − Yp−1X) ,

forX,Y ∈ TpH 3 (cf. [KRSUY, (3 - 1)]). The special linear group SL(2,C) acts isometrically
and transitively on H 3 by

(1.5) H 3 � p 	−→ apa∗ ∈ H 3 ,

where a ∈ SL(2,C). The isotropy subgroup of SL(2,C) at σ0 is the special unitary group
SU(2). Therefore we can identify

H 3 = SL(2,C)/ SU(2) = {aa∗ ; a ∈ SL(2,C)}
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in the usual way. Moreover, the identity component of the isometry group Isom0(H
3) is

isomorphic to PSL(2,C) := SL(2,C)/{±id}.
1.2. The unit tangent bundle. We denote by UH 3 the unit tangent bundle of H 3,

which can be identified with

UH 3 =
{
(p, v) ∈ Herm(2)× Herm(2) ; detp = − det v = 1,

tracep > 0, 〈p, v〉 = 0

}
.

The projection

(1.6) π : UH 3 � (p, v) 	−→ p ∈ H 3

gives a sphere bundle. The tangent space at (p, v) ∈ UH 3 can be written as

(1.7) T(p,v)UH 3 =
{
(X, V ) ∈ Herm(2)×Herm(2) ; 〈p,X〉 = 〈v, V 〉 = 0 ,

〈p, V 〉 = −〈X, v〉
}
.

The canonical contact form Θ on UH 3 is given by

(1.8) Θ(p,v)(X, V ) = 〈X, v〉 = −〈p, V 〉 , (X, V ) ∈ T(p,v)UH 3 .

The isometric action of SL(2,C) on H 3 given in (1.5) induces a transitive action on UH 3 as

UH 3 � (p, v) 	−→ (apa∗, ava∗) ∈ UH 3 ,

where a ∈ SL(2,C). The isotropy subgroup of SL(2,C) at (σ0, σ3) ∈ UH 3 is{(
eiθ 0
0 e−iθ

)
; θ ∈ R/2πZ

}
,

which is isomorphic to the unitary group U(1), where σ0 and σ3 are as in (1.3). Hence we
have

(1.9) UH 3 = SL(2,C)/U(1) = {(aa∗, aσ3a
∗) ; a ∈ SL(2,C)} .

1.3. The space of oriented geodesics. The space LH 3 of oriented geodesics in H 3

is defined as the set of equivalence classes of unit speed geodesics in H 3. Here, two unit
speed geodesics γ1(t), γ2(t) in H 3 are said to be equivalent if there exists t0 ∈ R such that
γ1(t + t0) = γ2(t). We denote by [γ ] the equivalence class represented by γ (t). The set LH 3

has a structure of a smooth 4-manifold. Moreover, if we denote by SO+(1, 1) the restricted
Lorentz group, the projection

(1.10) π̂ : UH 3 � (p, v) 	−→ [γp,v] ∈ LH 3

defines an SO+(1, 1)-bundle, where γp,v is the geodesic starting at p ∈ H 3 with the initial
velocity v ∈ TpH 3.
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1.3.1. The natural complex structure and a holomorphic coordinate system. Hitchin
[Hi] constructed the natural complex structure J on LH 3 (minitwistor construction). Here,
we introduce a local holomorphic coordinate system of the complex surface (LH 3, J ) [GG].

DEFINITION 1.1 (Asymptotics of geodesics). Two unit speed geodesics γ1, γ2 in H 3

are said to be asymptotic if {d (γ1(t), γ2(t)) ; t > 0} is bounded from above, where d denotes
the hyperbolic distance.

We denote by ∂H 3 the ideal boundary of H 3, that is, the set of asymptotic classes of
oriented geodesics. For an oriented geodesic γ = γ (t), let γ+ ∈ ∂H 3 be the asymptotic class
determined by γ (t), and γ− ∈ ∂H 3 be the class defined by γ (−t). Evidently, γ+ and γ− are
independent of the choice of a representative of [γ ], and (γ+, γ−) ∈ (∂H 3×∂H 3)\∆, where
∆ is the diagonal set of ∂H 3 × ∂H 3. Conversely, for any pair of distinct points a, b ∈ ∂H 3,
there exists a unique equivalence class [γ ] ∈ LH 3 such that γ+ = a, γ− = b. Thus, we can
identify LH 3 = (∂H 3 × ∂H 3) \ ∆ as a set. Now we recall the upper-half space model of
H 3:

(1.11) R3+ =
(
{(w, r) ∈ C × R ; r > 0} , dwdw̄ + dr

2

r2

)
.

The map

(1.12) Ψ : H 3 �
(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
	−→

(
x1 + ix2

x0 − x3
,

1

x0 − x3

)
∈ R3+

gives an isometry. The geodesics of R3+ are divided into two types: straight lines parallel to
the r-axis and semicircles perpendicular to the w-plane.

Identifying ∂H 3 with the Riemann sphere Ĉ := C ∪ {∞}, we may consider γ+ and γ−
as points in Ĉ. Then we set an open subset U of LH 3 by

(1.13) U := {[γ ] ∈ LH 3 ; γ+ �= 0 , γ− �= ∞} ,
and complex numbers µ1 = µ1([γ ]) and µ2 = µ2([γ ]) by

(1.14) µ1 := −γ− , µ2 := 1

γ̄+
for [γ ] ∈ U (see Figure 2). Georgiou and Guilfoyle [GG] proved that (U; (µ1, µ2)) defines a
local holomorphic coordinate system of LH 3 compatible to the complex structure J , and the
map [γ ] 	−→ (µ1, µ2) extends to a biholomorphic map

(LH 3, J )
∼−→ (Ĉ × Ĉ) \ ∆̂ ,

where ∆̂ = {(µ1, µ2) ∈ C2 ; 1 + µ1µ̄2 = 0} ∪ {(0,∞), (∞, 0)}, the so-called reflected
diagonal.

REMARK 1.2. Over the complex projective line P 1, the map

Π : LH 3 � [γ ] 	−→ γ− ∈ P 1
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FIGURE 2. The holomorphic coordinate system (µ1, µ2).

gives a complex line bundle. Each fiber of γ− is P 1 \ {γ−}, which is identified with C. It is
easy to see that Π is a trivial bundle OP 1(0). On the other hand, the space LR3 of oriented
geodesics in the Euclidean 3-space is biholomorphic to the holomorphic tangent bundle TP 1

of P 1 [GK], that is, LR3 ∼= OP 1(2). This implies that LH 3 is not isomorphic to LR3 as a
line bundle over P 1.

1.3.2. The invariant metrics, Kähler and para-Kähler structures. The isometric ac-
tion of SL(2,C) on H 3 as in (1.5) induces an action on ∂H 3 = Ĉ such that

Ĉ � z 	−→ a11z+ a12

a21z+ a22
∈ Ĉ ,

where a = (aij ) ∈ SL(2,C). This action induces a holomorphic and transitive action of
Isom0(H

3) = PSL(2,C) on LH 3 = (Ĉ × Ĉ) \ ∆̂ with

(1.15) (Ĉ × Ĉ) \ ∆̂ � (µ1, µ2) 	−→
(−a11µ1 + a12

a21µ1 − a22
,
ā22µ2 + ā21

ā12µ2 + ā11

)
∈ (Ĉ × Ĉ) \ ∆̂ ,

for a = (aij ) ∈ PSL(2,C). If we set a C-valued symmetric 2-tensor on LH 3 by

(1.16) G := 4 dµ1dµ̄2

(1+ µ1µ̄2)2
,

then

(1.17) Gθ := Re(e−iθG) = (cos θ)Gr + (sin θ)Gi

defines a pseudo-Riemannian metric onLH 3 of neutral signature for each θ ∈ R/2πZ, which
is invariant under the action given in (1.15), where Gr and Gi are the neutral metrics given by
the real and imaginary part of G, respectively, that is,
(1.18)

Gr := 1

2

{
4 dµ1dµ̄2

(1+ µ1µ̄2)2
+ 4 dµ2dµ̄1

(1+ µ2µ̄1)2

}
, Gi := 1

2i

{
4 dµ1dµ̄2

(1+ µ1µ̄2)2
− 4 dµ2dµ̄1

(1+ µ2µ̄1)2

}
.

Conversely, Salvai [S] proved that any pseudo-Riemannian metric on LH 3 invariant under
the action of (1.15) is a constant multiple of Gθ for some θ ∈ R/2πZ. Thus we call Gθ
(θ ∈ R/2πZ) invariant metrics. Any invariant metric Gθ is Kähler with respect to the natural
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complex structure

(1.19) J

(
∂

∂µ1

)
= i ∂

∂µ1
, J

(
∂

∂µ2

)
= i ∂

∂µ2
.

On the other hand, an involutive (1, 1)-tensor P on LH 3 given as

(1.20) P

(
∂

∂µ1

)
= − ∂

∂µ1
, P

(
∂

∂µ2

)
= ∂

∂µ2

is a para-Kähler structure on LH 3 for any Gθ . That is, for [γ ] in LH 3, we have

dimR{X ∈ T[γ ]LH 3 ; P(X) = ±X} = 2 , Gθ (P ·, P ·) = −Gθ (·, ·) , ∇LP = 0 ,

where ∇L is the common Levi-Civita connection of (LH 3,Gθ ) for all θ .

2. The invariant metrics and the canonical symplectic form. In this section, we
shall characterize the two neutral metrics Gr and Gi given in (1.18): both the para-Kähler
form of (LH 3,Gr, P ) and the Kähler form of (LH 3,Gi, J ) coincide with the double of
the canonical symplectic form on LH 3 up to sign (Proposition 2.1). Moreover, identifying
LH 3 = SL(2,C)/GL(1,C), we prove that G in (1.16) coincides with the C-valued sym-
metric 2-tensor induced from the Killing form of the Lie algebra sl(2,C) of SL(2,C) up to a
homothety (Proposition 2.3).

The canonical symplectic form. Let ω be the canonical symplectic form on LH 3, that
is, ω is the symplectic form on LH 3 satisfying

(2.1) π̂∗ω = dΘ ,
where Θ is the canonical contact form given in (1.8) on the unit tangent bundle UH 3, and
π̂ : UH 3 → LH 3 is the projection in (1.10).

We denote by ωJ the Kähler form of (LH 3,Gi, J ), and by ωP the para-Kähler form of
(LH 3,Gr, P ), that is,

(2.2) ωJ = Gi(·, J ·) , ωP = Gr(·, P ·) .
Then we have the following proposition.

PROPOSITION 2.1. In above notation, we have

ωJ = −ωP = 2ω .

To prove this, we introduce metrics on UH 3 and LH 3 induced from the Killing form of
sl(2,C) considering UH 3 and LH 3 as homogeneous spaces of SL(2,C).

The Killing form of sl(2,C). Let B be one half of the Killing form of the Lie algebra
sl(2,C) of SL(2,C), i.e.,

(2.3) B(X, Y ) = 2 trace(XY ) , X, Y ∈ sl(2,C) .

Then we set Br and Bi to be the real and imaginary part of B, respectively:

(2.4) Br := ReB , Bi := ImB .
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REMARK 2.2. The special linear group SL(2,C) is the double cover of the restricted
Lorentz group SO+(1, 3). The Killing form of the real Lie algebra so(1, 3) of SO+(1, 3)
coincides with a constant multiple of Br.

The unit tangent bundle. For σ0, σ3 in (1.3), the tangent space at (σ0, σ3) ∈ UH 3

of the unit tangent bundle UH 3 = SL(2,C)/U(1) described in (1.9) is identified with the
orthogonal complement of the Lie algebra u(1) of U(1) with respect to Br, that is,

T(σ0,σ3)UH 3 = u(1)⊥ = {iεσ3 + hξ + vη ; ε ∈ R, ξ, η ∈ C
}
,

where hξ , vη are matrices defined by

(2.5) hξ =
(

0 ξ

ξ̄ 0

)
, vη =

(
0 −η
η̄ 0

)
.

Note that hξ , vη are horizontal and vertical tangent vectors of the sphere bundle π : UH 3 →
H 3 given in (1.6), respectively. The restriction of Br to T(σ0,σ3)UH 3 can be written as

(2.6) Br(X,X) = 4(ε2 + |ξ |2 − |η|2) ,
for X = iεσ3 + hξ + vη ∈ T(σ0,σ3)UH 3. Thus Br defines a pseudo-Riemannian metric BU
on UH 3 of signature (+,+,+,−,−). Moreover, the projection

(2.7) π : (UH 3, BU ) −→ (H 3, 〈 , 〉)
defined as (1.6) is a pseudo-Riemannian submersion.

The space of oriented geodesics. Consider the smooth and transitive action of SL(2,C)
given by

LH 3 � [γ ] 	−→ [aγ a∗] ∈ LH 3

for a ∈ SL(2,C), where [aγ a∗] is the equivalence class of the geodesic aγ (t)a∗ for some
representative γ of [γ ]. Note that this action coincides with the action given in (1.15). If we
denote by γσ0,σ3 the geodesic in H 3 starting at σ0 with initial velocity σ3, then the isotropy
subgroup of SL(2,C) at [γ0] := [γσ0,σ3] ∈ LH 3 is given by{(

λ 0
0 λ−1

)
; λ ∈ C \ {0}

}
,

which is identified with the general linear group GL(1,C). Hence we have

(2.8) LH 3 = SL(2,C)/GL(1,C) = {[aγ0a
∗] ; a ∈ SL(2,C)

}
.

Then the tangent space of LH 3 at [γ0] is identified with the orthogonal complement of the
Lie algebra gl(1,C) of GL(1,C) with respect to Br, that is,

T[γ0]LH 3 = gl(1,C)⊥ = {hξ + vη ; ξ, η ∈ C
}
,

where hξ and vη are horizontal and vertical vectors of T(σ0,σ3)UH 3 defined in (2.5). The
restrictions to T[γ0]LH 3 of Br and Bi defined in (2.4) can be written as

Br (X,X) = 4(|ξ |2 − |η|2) , Bi (X,X) = 8 Im(ξ η̄) ,
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respectively, for X = hξ + vη ∈ T[γ0]LH 3. Thus Br and Bi define pseudo-Riemannian
metrics Br

L and Bi
L on LH 3 of neutral signature, respectively. Of course, the projection

(2.9) π̂ : (UH 3, BU ) −→ (LH 3, Br
L)

defined in (1.10) is a pseudo-Riemannian submersion.
Let BL := Br

L + iBi
L be the C-valued 2-tensor on LH 3 = SL(2,C)/GL(1,C) induced

from B in (2.3). Then we have the following proposition.

PROPOSITION 2.3. For the the C-valued symmetric 2-tensor G on LH 3 defined in
(1.16), we have

G = −BL .
PROOF. It is enough to check the equality at [γ0] = [γσ0,σ3] ∈ LH 3. For a sufficiently

small neighborhood R of the origin o ∈ R4, consider a map ψ : R→ SL(2,C) given by

(2.10) ψ(u1, u2, v1, v2) =
(

1 u1 − iv2 + iu2 − v1

u1 − iv2 − iu2 + v1 1+ (u1 − iv2)
2 + (u2 + iv1)

2

)
.

This map ψ may be considered as a parametrization of LH 3 = SL(2,C)/GL(1,C) around
ψ(o) = [γ0]. For ξ, η ∈ C, set

(2.11) −→
x ξ,η := (Re ξ)

∂

∂u1

∣∣∣∣
o

+ (Im ξ) ∂

∂u2

∣∣∣∣
o

+ (Re η)
∂

∂v1

∣∣∣∣
o

+ (Im η) ∂

∂v2

∣∣∣∣
o

∈ ToR ,

and X := ψ∗(−→x ξ,η) ∈ T[γ0]LH 3. Then we have X = hξ + vη, and

(2.12) Br
L (X,X) = Br (X,X) = 4(|ξ |2 − |η|2) , Bi

L (X,X) = Bi (X,X) = 8 Im(ξ η̄)

at [γ0] ∈ LH 3, where hξ , vη are given in (2.5).
On the other hand, set ψ̂ := π1 ◦ψ : R→ LH 3, where π1 is the map SL(2,C) � a 	→

[aγ0a
∗] ∈ LH 3. The coordinates (µ1, µ2) (see (1.14)) of ψ̂(u1, u2, v1, v2) can be calculated

as

µ1(u1, u2, v1, v2)=− (u1 + iu2)− (v1 + iv2)

1+ (u1 − iv2)2 + (u2 + iv1)2
,

µ2(u1, u2, v1, v2)= (u1 + iu2)+ (v1 + iv2) .

Then X̂ := ψ̂∗(−→x ξ,η) ∈ T[γ0]LH 3 is given by

X̂ = (−ξ + η) ∂
∂µ1
+ (ξ + η) ∂

∂µ2
+ (−ξ̄ + η̄) ∂

∂µ̄1
+ (ξ̄ + η̄) ∂

∂µ̄2
.

By (2.12), we have

Gr(X̂, X̂) = −4(|ξ |2 − |η|2) = −Br
L (X,X) , Gi(X̂, X̂) = −8 Im(ξ η̄) = −Bi

L (X,X)

at [γ0] ∈ LH 3, where Gr and Gi are as in (1.18). �

PROOF OF PROPOSITION 2.1. By a similar calculation as in the proof of Proposition
2.3, we know that the complex structure J in (1.19) and the para-complex structure P in
(1.20) satisfy

J (hξ + vη) = hiξ + viη , P (hξ + vη) = hη + vξ ,
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for a tangent vector hξ + vη ∈ T[γ0]LH 3. Thus by Proposition 2.3, the Kähler form ωJ and
the para-Kähler form ωP defined in (2.2) can be calculated as

(2.13) ωP (X, Y ) = −ωJ (X, Y ) = −2 Re(ξ δ̄ − ηβ̄) ,
where X = hξ + vη, Y = hβ + vδ ∈ T[γ0]LH 3.

To calculate the canonical symplectic form ω in (2.1), set ψ̃ := π2 ◦ ψ : R → UH 3,
where ψ is the map in (2.10) and π2 is defined by SL(2,C) � a 	→ (aa∗, aσ3a

∗) ∈ UH 3.
Then the horizontal lifts of X = hξ + vη and Y = hβ + vδ ∈ T[γ0]LH 3 are given by
X̃ := ψ̃∗(−→x ξ,η) = (hξ , hη) and Ỹ := ψ̃∗(−→x β,δ) = (hβ, hδ) ∈ T(σ0,σ3)UH 3, where hξ , hβ ,
. . . are as in (1.7) and −→x ξ,η, −→x β,δ are given in (2.11). By (2.13), we have

2ω[γ0](X̃, Ỹ )= 2dΘ(σ0,σ3)(X̃, Ỹ ) = 〈hξ , hδ〉 − 〈hβ, hη〉
= 2 Re(ξ δ̄ − ηβ̄) = −ωP (X, Y ) = ωJ (X, Y )

at [γ0] ∈ LH 3, whereΘ denotes the canonical contact form in (1.8). �

REMARK 2.4. The metric Gi = ImG in (1.18) is the double of the Kähler metric
defined in [GG, Definition 12]. In fact, we defined G in (1.16) so that the two fibrations

(LH 3 = SL(2,C)/GL(1,C), Br
L = −Gr)

(UH 3 = SL(2,C)/U(1), BU)

(H 3 = SL(2,C)/ SU(2), 〈 , 〉)

π π̂

are compatible, that is, both π in (2.7) and π̂ in (2.9) are pseudo-Riemannian submersions.

REMARK 2.5 (A relationship with the Fubini-Study metric). Consider a holomorphic
curve F : P 1 = Ĉ → LH 3 given by F |C : C � µ 	−→ (µ,µ) ∈ LH 3. The image of F in
LH 3 can be considered as

LoH
3 = {[γ ] ∈ LH 3 ; γ goes through the origin o = (0, 0, 0) ∈ B3} ,

FIGURE 3. An oriented geodesic through the origin.
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where B3 denotes the Poincaré ball model of H 3:

B3 =
(
{(x, y, z) ∈ R3 ; x2 + y2 + z2 < 1} , 4

dx2 + dy2 + dz2

(1− x2 − y2 − z2)2

)
.

We call F or LoH 3 the standard embedding of P 1. Moreover, if we equip P 1 with the
Fubini-Study metric gFS of constant curvature 1, then the standard embedding

F : (P 1, gFS) −→ (LH 3,Gr)

is an isometric embedding. In fact, we defined G as the opposite sign of BL (Proposition 2.3)
because of this fact.

3. A representation formula for developable surfaces. In this section, we shall
prove Theorem I in the introduction. First, we review fundamental facts on isometric im-
mersions of H 2 into H 3 as surfaces in H 3, and prove that isometric immersions of H 2 into
H 3 are developable (Proposition 3.2). Then we shall prove Theorem I (Proposition 3.6).

3.1. Isometric immersions and developable surfaces. In this paper, a surface in H 3

is defined to be an immersion f of a differentiable 2-manifoldΣ into H 3 (cf. (1.2)):

f : Σ −→ H 3 ⊂ L4 = Herm(2) .

We denote by g = f ∗〈 , 〉 the first fundamental form of f . For the unit normal vector field
ν of f , we denote by A and II the shape operator and the second fundamental form of f ,
respectively, that is, A = −(f∗)−1 ◦ ν∗, II (V,W) = −〈ν∗(V ), f∗(W)〉, where V and W are
vector fields on Σ . Let k1, k2 be the principal curvatures of f . Then the extrinsic curvature
Kext and the mean curvature H can be written as

Kext = k1k2 , H = k1 + k2

2
,

respectively. If we denote byK and ∇ the Gaussian curvature and the Levi-Civita connection
of the Riemannian 2-manifold (Σ, g), respectively, then we have

(3.1) K = −1+Kext ,

(3.2) ∇V A(W) = ∇WA(V ) ,
for vector fields V, W onΣ . We call (3.1) the Gauss equation, and (3.2) the Codazzi equation.
A surface in H 3 is said to be extrinsically flat if its extrinsic curvature is identically zero.
By the Gauss equation, we have that an isometric immersion of H 2 into H 3 is a complete
extrinsically flat surface.

On the other hand, any unit speed geodesic in H 3 can be expressed as

γp,v(t) = p cosh t + v sinh t , (p, v) ∈ UH 3 .

DEFINITION 3.1 (Ruled surfaces and developable surfaces). A ruled surface in H 3 is
a locus of 1-parameter family of geodesics in H 3. For a ruled surface f : Σ → H 3, there
exists a local coordinate system ϕ = (s, t) of Σ such that

(f ◦ ϕ−1)(s, t) = c(s) cosh t + v(s) sinh t ,
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where c is a curve in H 3 and v is a unit vector field along c. A ruled surface is said to be
developable if it is extrinsically flat .

Now we have the following

PROPOSITION 3.2 ([P, Theorem 4]). A complete extrinsically flat surface in H 3 is de-
velopable.

To show this, we first prove an analogue of Massey’s lemma [Mas, Lemma 2] (cf. Remark
3.4). For a surface f : Σ → H 3, a curve in Σ is said to be asymptotic if each tangent space
of the curve is included in the kernel of the second fundamental form of f .

LEMMA 3.3 (Hyperbolic Massey’s lemma). For an extrinsically flat surface f : Σ →
H 3, let W be the set of umbilic points of f and γ an asymptotic curve in the non-umbilic point
set Wc = Σ \W . Then the mean curvature H of f satisfies

∂2

∂t2

(
1

H

)
= 1

H

on γ , where t denotes the arc length parameter of γ .

PROOF. Take a non-umbilic point p ∈ Wc, and a curvature line coordinate system
(s, v) around p such that the v-curves are asymptotic. Then the first and second fundamental
forms g and II are expressed as g = g11ds

2 + g22dv
2 and II = h11ds

2 (h11 �= 0), and hence
the Codazzi equation (3.2) is equivalent to

(3.3)
∂h11

∂v
= h11

2g11

∂g11

∂v
, 0 = h11

2g11

∂g22

∂s
.

By (3.3), g22 depends only on v. Reparametrizing with dt = √g22(v) dv, we obtain g =
g11ds

2 + dt2, II = h11ds
2 (h11 �= 0). Choosing the orientation of Σ suitably, we may

assume that h11 > 0 holds. In this coordinate system, each t-curve is an asymptotic curve
parametrized by arc length and the Gaussian curvatureK of f is written as

K = − 1√
g11

∂2√g11

∂t2
.

Since f is extrinsically flat, the Gauss equation (3.1) yields

(3.4)
∂2√g11

∂t2
= √g11 .

On the other hand, by (3.3), we have

∂

∂t
log

h11√
g11
= 1

h11

∂h11

∂t
− 1

2g11

∂g11

∂t
= 0 ,

and hence there exists a function a = a(s) such that

h11(s, t) = a(s)
√

g11(s, t) (a(s) > 0) .
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Then the mean curvature H of f can be written as H = a(s)/(2
√

g11). Besides (3.4), we
have

∂2

∂t2

(
1

H

)
= ∂2

∂t2

2
√

g11

a(s)
= 2

a(s)

∂2

∂t2
√

g11 = 2

a(s)

√
g11 = 1

H
.

�

REMARK 3.4. Although original Massey’s lemma [Mas, Lemma 2] is for flat surfaces
in R3, we can generalize it for extrinsically flat surfaces in the three-sphere S3 in the same
way. On the other hand, Murata and Umehara generalized Massey’s lemma for a class of flat
surfaces with singlarities (flat fronts) in R3 [MU, Lemma 1.15].

PROOF OF PROPOSITION 3.2 Most part of the proof is a modification of the proof
of Hartman-Nirenberg theorem given by Massey [Mas]. However, some part of the original
Massey’s proof is not valid for hyperbolic case, thus the final part of the following proof is
written carefully (see Claim below).

Let f : Σ → H 3 be a complete extrinsically flat surface and W the set of umbilic
points of f . Since the restriction of f to W is a totally geodesic embedding, f |W is ruled.
By the proof of Lemma 3.3, for any non-umbilic point in Wc = Σ \W , there exists a local
coordinate neighborhood (U ; (s, t)) around the point such that

g = g11ds
2 + dt2 , II = h11ds

2 (h11 �= 0) .

Then it can be shown that the geodesic curvature of each t-curve vanishes everywhere. This
means that any asymptotic curve in Wc is a part of a geodesic in H 3. For a fixed point
q ∈ Wc, let G(q) be the unique asymptotic curve in Wc passing through q . By Lemma 3.3,
it follows that the mean curvatureH is given by

(3.5) H = 1

a cosh t + b sinh t

on G(q), where a, b are constants and t denotes the distance induced from the first funda-
mental form of f measured from q . If G(q) intersects the boundary ∂W , the mean curvature
H vanishes at Q ∈ ∂W ∩G(q), which is a contradiction. Thus any asymptotic curve in Wc

does not intersect the boundary of Wc, and hence we have f |Wc is ruled. It is sufficient to
show the following claim.

CLAIM. ∂W is a disjoint union of geodesics in H 3.

PROOF. For a point p ∈ ∂W , there exists a sequence {pn}n∈N in Wc such that limn→∞
pn = p. Let G(pn) be the unique asymptotic curve through pn ∈ Wc. Since G(pn) is a
geodesic in H 3, we can express as G(pn)(t) = pn cosh t + vn sinh t , with a unit tangent
vector vn ∈ TpnH 3. We shall prove that a subsequence of {vn}n∈N converges to some v. Set
pn = (an,pn), vn = (un, vn) ∈ L4 = R ×R3. Then we have

−a2
n + |pn|2E = −1 , −u2

n + |vn|2E = 1 , −anun + 〈pn, vn〉E = 0 ,
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for all n ∈ N , where 〈·, ·〉E is the Euclidean inner product of R3 and | · |E is the associated
Euclidean norm. By the Cauchy-Schwartz inequality,

|un| = 1

an
|〈pn, vn〉E | ≤

1

an
|pn|E |vn|E =

√
a2
n − 1

a2
n

√
u2
n + 1 ,

and we have

(3.6)
|un|√
u2
n + 1

≤
√

1− 1

a2
n

≤ 1 ,

for n ∈ N . If |un| → ∞, then
|un|√
u2
n + 1

−→ 1

holds and we have an →∞ by (3.6). But it contradicts the condition limn→∞ pn = p. Thus
there exists R > 0 such that {vn}n∈N ⊂ B(R), where B(R) = {(x0, x1, x2, x3) ∈ L4 ; x2

0 +
x2

1+x2
2+x2

3 ≤ R}. If we set S3
1 := {x ∈ L4 ; 〈x, x〉 = 1}, we also have {vn}n∈N ⊂ S3

1∩B(R).
Since S3

1 ∩ B(R) is compact, there exists a subsequence {vnk } ⊂ {vn} such that the limit
limk→∞ vnk = v exists. Therefore we can define G(p) = limn→∞G(pn) ⊂ Wc ∪ ∂W . If
G(p) ∩Wc is non empty, take q ∈ G(p) ∩Wc. Then G(q) = G(p) and hence G(q) goes
through p ∈ ∂W , which is a contradiction. ThusG(p) ⊂ ∂W . �

As a corollary, we have the following

COROLLARY 3.5. An isometric immersion of H 2 into H 3 is a complete developable
surface in H 3.

3.2. Proof of Theorem I. Since a ruled surface in H 3 is a locus of one-parameter
family of geodesics, it gives a curve in the space of oriented geodesics LH 3. Conversely, a
curve in LH 3 generates a ruled surface (which may have singularities) in H 3. Here, we shall
investigate the curves given by developable surfaces in H 3. Let (µ1, µ2) be a point in LH 3

as in (1.14). Then it corresponds to a equivalence class [γ ], where γ (t) is expressed as

(3.7) γ (t) = 1

|1+ µ1µ̄2|
(
et + e−t |µ1|2 etµ2 − e−tµ1

et µ̄2 − e−t µ̄1 et |µ2|2 + e−t
)
∈ Herm(2) .

A regular curve in a pseudo-Riemannian manifold is called null (resp. causal) if every
tangent vector is a null (resp. timelike or null) direction. Recall that the neutral metrics Gr

and Gi are defined in (1.18). Theorem I is a direct conclusion of the following proposition.

PROPOSITION 3.6. For a regular curve α(s) = (µ1(s), µ2(s)) : R ⊃ I → U ⊂ LH 3

which is null with respect to Gi and causal with respect to Gr, the map f : I × R → H 3

defined by

(3.8) f (s, t) = 1

|1+ µ1(s)µ̄2(s)|
(

et + e−t |µ1(s)|2 etµ2(s)− e−tµ1(s)

et µ̄2(s)− e−t µ̄1(s) et |µ2(s)|2 + e−t
)

is a developable surface. Conversely, any developable surface generated by complete
geodesics in H 3 can be written locally in this manner.
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PROOF. By (3.7), a parametrization of the locus of α can be written by f as in (3.8).
First we shall prove that if α is null with respect to Gi and causal with respect to Gr, then f is
an immersion. Set

(3.9) Λ(s, t) := |fs × ft |2 = e2t |µ′2|2 + e−2t |µ′1|2
|1+ µ1µ̄2|2

− 1

2
Gr(α′, α′) ,

where the prime denotes d/ds, fs = ∂f/∂s, ft = ∂f/∂t and × denotes the cross product
of H 3 as in (1.4). Thus we have that Λ(s, t) is positive if Gr(α′, α′) is negative. Consider
the case Gr(α′, α′) = 0 at s ∈ I . Since α is null with respect to Gi, we have |µ′1||µ′2| = 0.
The regularity of α shows that either µ′1 = 0 or µ′2 = 0 occurs. Without loss of generality,
we may assume µ′1 = 0. Then the regularity of α means µ′2 �= 0, and then Λ(s, t) =
e2t |µ′2|2/ |1+ µ1µ̄2|2 is positive. Thus f is an immersion.

Next we shall show that f is extrinsically flat. The unit normal vector field ν of f is
given by

(3.10) ν(s, t) = fs × ft
|fs × ft | =

i

|1+ µ1µ̄2|3√Λ(s, t)
(

a(s, t) z(s, t)

−z̄(s, t) b(s, t)

)
,

where

a(s, t) = 2i Im{et (1+ µ1µ̄2)µ̄1µ
′
2 − e−t (1+ µ2µ̄1)µ̄1µ

′
1} ,

b(s, t) = −2i Im{et (1+ µ1µ̄2)µ̄2µ
′
2 − e−t (1+ µ2µ̄1)µ̄2µ

′
1} ,

z(s, t) = −et {(1+µ1µ̄2)µ
′
2+(1+µ2µ̄1)µ1µ2µ̄

′
2}+e−t {(1+µ2µ̄1)µ

′
1+(1+µ1µ̄2)µ1µ2µ̄

′
1} .

Since

Kext = 〈fs , νs〉〈ft , ν t 〉 − 〈fs , ν t 〉〈ft , νs〉〈fs , fs〉〈ft , ft 〉 − 〈fs , ft 〉2 and Gi(α′, α′) = Im
4µ′1µ̄′2

(1+ µ1µ̄2)2
,

we have

(3.11) Kext = i
√
Λ(s, t)

3

{
µ′1µ̄′2

(1+ µ1µ̄2)2
− µ′2µ̄′1
(1+ µ2µ̄1)2

}
= −1

2
√
Λ(s, t)

3Gi(α′, α′) .

Therefore Gi(α′, α′) = 0 if and only if Kext = 0.
Conversely, for a ruled surface f̂ : Σ → H 3, there exists a one-parameter family

α = α(s) of geodesics such that its locus coincides with the given surface f̂ . Using a suitable
isometry, we may assume that the image of α is included in U in (1.13), that is,

α : R ⊃ I � s 	−→ (µ1(s), µ2(s)) ∈ U ⊂ LH 3 .

Thus f̂ is given by f as in (3.8) locally. We shall prove that, if the ruled surface f̂ is devel-
opable, α is a regular curve which is null with respect to Gi and causal with respect to Gr.
If there exists a point such that α′ = 0, f̂ is not an immersion because of (3.9). Thus α is a
regular curve. Moreover α is a null with respect to Gi by (3.11). Then we shall prove that α
is causal with respect to Gr. If Gr(α′, α′) > 0, then

Gr(α′, α′) = Re
4µ′1µ̄′2

(1+ µ1µ̄2)2
= 4|µ′1||µ′2|
|1+ µ1µ̄2|2 ,



186 A. HONDA

holds since Gi(α′, α′) = 0. Then we have

Λ(s, t) = 4|µ′1||µ′2|
|1+ µ1µ̄2|2

sinh2
(
t + 1

2
log
|µ′2|
|µ′1|

)
,

and hence f̂ has a singular point at t = (log |µ′1| − log |µ′2|)/2, which is a contradiction. �

3.3. Examples. Nomizu [N] constructed fundamental examples of complete devel-
opable surfaces in H 3 (cf. Figure 1 in the introduction).

EXAMPLE 3.7 (Hyperbolic 2-cylinders [N, Example 1]). Let D be the unit disc in C.
For a regular curve ζ(s) : R→ D, set

α1(s) = (−ζ(s), ζ(s)) .
Then α1 determines a regular curve in LH 3 = (Ĉ × Ĉ) \ ∆̂, which is null with respect to Gi

and causal with respect to Gr. Thus by Theorem I, the locus of α1 is a developable surface,
called hyperbolic 2-cylinder. Figure 1 (B) shows the example of ζ(s) = eis/3.

EXAMPLE 3.8 (Ideal cones [N, Example 2]). For a regular curve µ(s) : R→ C, set

α2(s) = (µ(s), 0) .

Then α2 determines a regular curve in LH 3 = (Ĉ× Ĉ)\ ∆̂, which is null with respect to both
Gi and Gr. Thus by Theorem I, the locus of α2 is a developable surface. Figure 1 (C) shows
the example of µ(s) = eis/2. We will see this example more precisely in Section 4.

EXAMPLE 3.9 (Rectifying developables of helices [N, Example 3]). For constants κ,
τ ∈ R \{0}, set a± :=

√
(κ ± 1)2 + τ 2, A± :=

√±(1− κ2 − τ 2)+ a+a− and α3 : R→ C2

by

α3(s) =
(
κ

4
√

2
√
κ2 + τ 2i + 4τA−

(
√

2
√
κ2 + τ 2i + 4τA+)(a+ + a−)2 + 4κA−

exp

(
A+ + iA−√

2
s

)
,

1

κ

(
√

2
√
κ2 + τ 2 − τA+)(a+ + a−)2 − 4κA−

4
√

2
√
κ2 + τ 2i + 4τA− − (a+ + a−)2A+

exp

(−A+ + iA−√
2

s

))
.

Then α3 determines a regular curve in LH 3 = (Ĉ × Ĉ) \ ∆̂, which is null with respect to Gi

and causal with respect to Gr. Thus by Theorem I, the locus of α3 is a developable surface. In
fact, this is a rectifying developable [N] of the helix of constant curvature κ and torsion τ in
H 3. Figure 1 (D) shows the example of κ = τ = 1.

4. Ideal cones and behavior of the mean curvature. In this section, we shall prove
Theorem II in the introduction. First, we define “ideal cones”, determine the corresponding
curves inLH 3 and investigate behavior of their mean curvature. Next, we introduce the notion
of developable surfaces of exponential type in H 3. Finally, we prove Theorem II.
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4.1. Null curves and ideal cones.

DEFINITION 4.1 (Ideal cones). We call a complete developable surface in H 3 an ideal
cone, if it is a locus of a one-parameter family of geodesics sharing a common one side end
in the ideal boundary. The shared point is called vertex.

PROPOSITION 4.2. An ideal cone gives a curve in LH 3 which is null with respect to
both Gi and Gr. Conversely, if the locus of a curve in LH 3 which is null with respect to both
Gi and Gr is complete, then the locus is an ideal cone.

PROOF. Without loss of generality, we may assume the vertex of the ideal cone is∞ ∈
∂H 3. Then the curve α(s) = (µ1(s), µ2(s)) ∈ (Ĉ × Ĉ) \ ∆̂ = LH 3 given by the ideal
cone satisfies µ2(s) = 0. Hence Gr(α′, α′) = Gi(α′, α′) = 0 holds. Conversely, a curve
α(s) = (µ1(s), µ2(s)) in LH 3 is null with respect to Gi if and only if G(α′, α′) is always
real. Moreover if α is null with respect to Gr, we have

(4.1) G(α′, α′) = µ′1(s)µ̄′2(s)
(1+ µ1(s)µ̄2(s))2

= 0

for all s. By the regularity of α, (4.1) holds if and only if either µ′1(s) vanishes identically or
µ′2(s) does so. This means the locus of α is a ruled surface which is asymptotic to a point in
the ideal boundary. �

REMARK 4.3. By Proposition 4.2, it follows that a complete ruled surface which is
a locus of a one-parameter family of geodesics sharing a common one side end in the ideal
boundary is necessarily developable, that is, an ideal cone. If the vertex is ∞ ∈ ∂H 3, the
shape of ideal cone is a cylinder over a plane curve in the upper half space R3+ (cf. Figure 4).

Now we shall investigate behavior of the mean curvature of ideal cones.

PROPOSITION 4.4. For an ideal cone f , let γ be an asymptotic curve in the non-
umbilic point set of f such that γ+ is the vertex of f , and let t be the arc length parameter of
γ . Then the mean curvature H of f is proportional to et on γ .

PROOF. Without loss of generality, we may assume the vertex of f is∞ ∈ ∂H 3. Then
the curve α in LH 3 corresponding to f is given by α(s) = (µ(s), 0) on U ⊂ LH 3. By the

FIGURE 4. An ideal cone whose vertex at∞.
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representation formula (3.8), f can be written as

(4.2) f (s, t) =
(
et + e−t |µ(s)|2 −e−tµ(s)
−e−t µ̄(s) e−t

)
.

Then the induced metric g = f ∗〈 , 〉 is

(4.3) g = e−2t |µ′|2ds2 + dt2 .
Now we shall see that µ(s) can be considered as a Euclidean plane curve as follows. By

the isometry Ψ : H 3 → R3+ given in (1.12), f is transferred to (Ψ ◦ f )(s, t) = (µ(s), et ) ∈
R3+, that is, the cylinder over the plane curve µ(s) ∈ C. If we set Ω := {(w, 1) ; w ∈ C} ⊂
R3+ (the horosphere through (0, 1) and ∞), the intersection of f and Ω is parametrized by
(Ψ ◦ f )(s, 0) = (µ(s), 1). Since Ω is flat and complete with the induced metric, and hence
isometric to the Euclidean plane, we may consider µ as a curve in the Euclidean planeΩ .

If we take the arc length parameter s of the curve µ inΩ , the induced metric g in (4.3) is
written as g = e−2tds2 + dt2. Since the unit normal vector field ν of f can be expressed by

ν(s, t) =
(

2 Im(µ̄µ′) iµ′
−iµ̄′ 0

)
,

the second fundamental form II of f is written as II = e−t Im(µ′µ̄′′)ds2 = −e−t κE(s)ds2,

where κE is the curvature of µ in the Euclidean planeΩ . Therefore the mean curvature H of
f is given by H(s, t) = −etκE(s)/2. �

4.2. Developable surfaces of exponential type. Here we shall investigate the behav-
ior of the mean curvature of complete developable surfaces. For a complete developable sur-
face f : Σ → H 3, let p ∈ Σ be a non-umbilic point. Then there exists a unique asymptotic
curve γ through p which is a geodesic in H 3. By hyperbolic Massey’s lemma (Lemma 3.3),
we have that

1

H
= P cosh t +Q sinh t

on γ (see (3.5)), where P andQ are constants and t is the arc length parameter of γ . Without
loss of generality, we may assume that P is positive. Then

1

H
=




√
P 2 −Q2 cosh

(
t + 1

2
log

P +Q
P −Q

)
(if P > |Q|) ,

Pe±t (if P = |Q|) ,√
Q2 − P 2 sinh

(
t + 1

2
log

Q+ P
Q− P

)
(if P < |Q|) .

Completeness of f implies that t varies from −∞ to ∞. But in the third case, the mean
curvature diverges at some t ∈ R, which is a contradiction. Hence only the first and the
second cases can happen, that is, the mean curvature H of a complete developable surface is
proportional to the exponential function or the hyperbolic secant function on each asymptotic
curves with respect to the arc length parameter.
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DEFINITION 4.5 (Developable surfaces of exponential type). A complete develop-
able surface is said to be of exponential type if it is not totally umbilic and the mean cur-
vature is proportional to e±t on each asymptotic curve in the set of non-umbilic points, where
t is the arc length parameter of the asymptotic curve.

Proposition 4.4 says that an ideal cone is a developable surface of exponential type, if it
is not totally umbilic.

4.3. Proof of Theorem II. For (p, v), (q,w) ∈ UH 3, it is known that the geodesics

γp,v(t) = p cosh t + v sinh t , γq,w(t) = q cosh t +w sinh t

are asymptotic (cf. Definition 1.1) if and only if 〈p + v, q +w〉 = 0.
Theorem II in the introduction is proved directly by the following proposition.

PROPOSITION 4.6. A developable surface of exponential type whose umbilic point set
has no interior is an ideal cone. That is, asymptotic curves of such a surface are asymptotic
to each other.

Let f : Σ → H 3 be a developable surface of exponential type whose umbilic point set
has no interior. We may assume thatΣ is simply connected, by taking the universal cover H 2,
if necessary. Here, we consider H 2 as the hyperboloid in the Lorentz-Minkowski 3-space L3.
The proof is divided into three steps (Claims 1 through 3).

CLAIM 1. There exists a global coordinate system ϕ = (s, t) : Σ = H 2 → R2 such
that

(4.4) (f ◦ ϕ−1)(s, t) = c(s) cosh t + v(s) sinh t

holds, the induced metric g and the second fundamental form II of f are given by

g = g11(s, t)ds
2 + dt2 , II = et δ(s)g11(s, t)ds

2 ,

respectively, where δ is a smooth function of s.

PROOF. Since the umbilic point set of f has no interior, the proof of Proposition 3.2
implies that each connected component of the umbilic point set is a geodesic in H 3. Thus by
the proof of Lemma 3.3, we can find a coordinate neighborhood (U ; (s, t)) ⊂ H 2 such that
U is open dense in H 2 and g = g11(s, t)ds

2 + dt2 hold on U . By replacing t by t + constant,
if necessary, each coordinate system (s, t) can be joined smoothly over the umbilic point
set. �

CLAIM 2. The vector field v(s) in (4.4) is expressed as

(4.5) v(s) = n(s)+ δ(s)b(s)√
1+ {δ(s)}2 ,
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where n and b denote the principal and binormal normal vector field of the curve c in H 3,
respectively. Furthermore, the curvature κ and the torsion τ of c satisfy

(4.6) κ(s) =
√

1+ {δ(s)}2 , τ (s) = δ′(s)
1+ {δ(s)}2 .

PROOF. We may assume the curve c in H 3 is parametrized by the arc length s. Let β be
the curve in H 2 which is the inverse image of the curve c by f . By changing the orientation
of β, if necessary, we may assume that the unit normal vector N of β in H 2 satisfies

(4.7) f∗(N) = v .
Then the map Y : R2 → H 2 ⊂ L3 defined by

Y (s, t) = β(s) cosh t +N(s) sinh t

gives a parametrization of H 2. Let ν be the unit normal vector field of f . Then the shape
operator A of f satisfies A(Ys) = δ(s)etYs , A(Yt ) = 0. Let κβ be the geodesic curvature of
β and ∇ the Levi-Civita connection of H 2. By the Frenet formula for the curve β in H 2,

(4.8) ∇sN = N ′(s) = −κβ(s)β ′(s)
holds, where we consider N is the L3-valued function and N ′ = dN/ds, etc. Thus we have
Ys := ∂Y/∂s = (cosh t − κβ(s) sinh t)β ′(s), and hence

∇t Ys = sinh t − κβ(s) cosh t

cosh t − κβ(s) sinh t
Ys

holds. Since the shape operator A of f satisfies the Codazzi equation (3.2), it follows that

0 = (∇tA)(Ys)− (∇sA)(Yt ) = ∇t (δ(s)etYs) =
(

1+ sinh t − κβ(s) cosh t

cosh t − κβ(s) sinh t

)
δ(s)etYs ,

where Yt = ∂Y/∂t . Substituting t = 0 into this, we have that

(4.9) κβ(s) = 1

for s in R, that is, β is congruent to the horocycle.
Next, we shall calculate the principal normal vector field n, the binormal vector field b,

curvature κ and torsion τ of the curve c in H 3. Let D be the Levi-Civita connection of H 3.
By (4.8) and (4.9), ∇sβ ′(s) = N(s) holds. Moreover, by (4.7), it holds that

Dsc
′(s)= f∗(∇sβ ′(s))+ II (β ′(s), β ′(s))ν(s, 0)

= f∗(N(s))+ δ(s)ν(s, 0) = v(s) + δ(s)ν(s, 0) ,

and hence we have

κ(s) = ∣∣Dsc′(s)∣∣ = √1+ {δ(s)}2 , n(s) = Dsc
′(s)

κ(s)
= v(s)+ δ(s)ν(s, 0)√

1+ {δ(s)}2 .
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If we denote by e(s) = c′(s) the unit tangent vector field of c, b(s) is obtained as

b(s) = e(s)× n(s) = ν(s, 0)− δ(s)v(s)√
1+ {δ(s)}2 ,

where e(s)× n(s) is the cross product in H 3 (cf. (1.4)). Since{
Dsν(s, 0) = −f∗(A(Ys)(s, 0)) = −f∗(δ(s)Ys(s, 0)) = −δ(s)e(s)
Dsv(s) = −f∗(∇sN)− 〈A(N), β ′〉ν(s, 0) = f∗(−β ′(s)) = −e(s) ,

we have

Dsb(s) = b′(s) = − δ′(s)
1+ {δ(s)}2

v(s) + δ(s)ν(s, 0)√
1+ {δ(s)}2 = − δ′(s)

1+ {δ(s)}2 n(s) .

Thus the torsion τ of c is given as in (4.6). Since the unit vector field v(s) is included in the
normal plane of c and satisfies

〈v(s),n(s)〉 = 1√
1+ {δ(s)}2 , 〈v(s), b(s)〉 = − δ(s)√

1+ {δ(s)}2 ,

we have that v(s) is given by (4.5). �

CLAIM 3. Any two asymptotic curves are asymptotic to each other in the sense of
Definition 1.1.

PROOF. Under the notations in Claims 1 and 2, we have

(f ◦ ϕ−1)(s, t) = c(s) cosh t + n(s)+ δ(s)b(s)
κ(s)

sinh t .

For s ∈ R, set γs(t) := (f ◦ X)(s, t). It is sufficient to prove that, for fixed s0 ∈ R, the
function

ρ : R � s 	−→
〈
c(s)+ n(s)+ δ(s)b(s)

κ(s)
, c(s0)+ n(s0)+ δ(s0)b(s0)

κ(s0)

〉
∈ R ,

is identically zero. Using the Frenet-Serret formula

e′(s) = c(s)+ κ(s)n(s) , n′(s) = −κ(s)e(s)+ τ (s)b(s) , b′(s) = −τ (s)n(s)
for the curve c in H 3, we have

d

ds

(
c(s)+ n(s)+ δ(s)b(s)

κ(s)

)
= κ(s)τ (s)δ(s)− κ ′(s)

κ2(s)
n(s)

+ κ(s)τ (s)− κ(s)δ
′(s)+ κ ′(s)δ(s)

κ2(s)
b(s) .

(4.10)

On the other hand, we have

κ(s)τ (s)δ(s)− κ ′(s) = κ(s)τ (s)− κ(s)δ′(s)+ κ ′(s)δ(s) = 0 ,

by (4.6) in Claim 2. Substituting this into (4.10), we have ρ′(s) = 0 for all s. Besides
ρ(s0) = 0, we obtain ρ(s) = 0 for all s. �
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FIGURE 5. A non-real-analytic developable surface of exponential type asymptotic to 0 and∞.

4.4. A non-real-analytic example.

EXAMPLE 4.7. The assumption of analyticity in Theorem II cannot be removed since
non-real-analytic developable surfaces of exponential type might have more than one asymp-
totic point. Figure 5 shows an example having open subsets which are asymptotic to distinct
points in the ideal boundary.

The corresponding curveα(s) inLH 3 is given by α(s) = (x(s)+iy(s), x(−s)+iy(−s)),
where

x(s) =




0 (s ≤ −1)

Θ1/Θ2 (−1 < s < 0)

Θ1 (0 ≤ s),
y(s) =

{
0 (s ≤ √2)

2 expΘ3 (
√

2 < s),

Θ1 = (
√

2− 1)(1+ s), Θ2 = 1+ exp[1/s + 1/(1+ s)] and Θ3 = (
√

2+ 1)/(
√

2− s).
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