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ISOMETRIC ISOMORPHISMS BETWEEN BANACH ALGEBRAS 
RELATED TO LOCALLY COMPACT GROUPS 

F. GHAHRAMANI, A. T. LAU AND V. LOSERT 

ABSTRACT. Let GI , G2 be locally compact groups. We prove in this paper 
that if T is an isometric isomorphism from the Banach algebra LUq G I) * 
(the continuous dual of the Banach space of left uniformly continuous func-
tions on GI , equipped with Arens multiplication) onto LUqG2)* ,then T 
maps M(G I ) onto M(G2 ) and LI(GI) onto L I (G2). We also prove that any 
isometric isomorphism from LI(G I )" (second conjugate algebra of LI(GI)) 

I ** I ( I ( onto L (G2 ) maps L GI) onto L G2). 

O. INTRODUCTION AND PRELIMINARIES 

Let G" G2 be locally compact groups. Let M(G j ) , i = 1, 2, be the Banach 
algebra of regular Borel measures on Gj • A well-known result of B. E. Johnson 
[10] asserts that if T is an isometric isomorphism from M(G,) onto M(G2) , 

then T maps L'(G,) onto L'(G2) (and hence G, and G2 must be isomorphic 
by Wendel's theorem [21]). 

In this paper we prove (Theorem 3.1(c)), among other things, that if T is an 
isometric isomorphism from L'(G,)** onto L'(G2)**, then T maps L'(G,) 
onto L' ( G 2)' This answers affirmatively a question raised in [4]. Theorem 
3.1(c) was proved for abelian locally compact groups by Lau and Losert in l13], 
and for compact and discrete groups by Ghahramani and Lau in [4]. 

Let G be a locally compact group. Let C( G) denote the space of bounded 
continuous complex-valued functions on G with the sup norm topology, and 
LUC( G) denote the closed subspace of bounded left uniformly continuous func-
tions on G, i.e. all IE C(G) such that the map x ~ Ixl from G into C(G) 
is continuous, where (/xl)(y) = I(xy) , x, y E G. Then LUC(G)* is a Ba-
nach algebra with the Arens multiplication defined by (nm, f) = (n, m,f) , 
n, m E LUC(G)*, IE LUC(G) , where m,/(x) = (m, Ix I) , x E G. Fur-
thermore, M(G) may be identified with a closed subspace of LUC(G)* by the 
natural embedding (/-l, f) = f I(x) d/-l(x), IE LUC(G), /-l E M(G). It was 
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shown by Grosser and Losert [7] that when G is abelian, M( G) is precisely 
the centre of LUC(G)* (see also Lau [12]). 

The organization of this paper is as follows. We prove in § 1 (Theorem 1.6) 
that if T is an isometric isomorphism from LUC(G1)* onto LUC(G2 )* , then 
T maps M(G1) onto M(G2) and LI(G1) onto L 1(G2). In §2 we study the 
set A( G) of right identities with norm one in L I (G) ** and the isometric em-
beddings rE of M(G) into LI(G)** defined by S. McKilligan [16]. Finally 
we prove in § 3 (and using results established in § § 1 and 2) that, if T is an 
isometric isomorphism from LI(G1)** onto LI(G2 )** , then T maps LI(G1) 

I to L (G2 ). 
Throughout the paper, G denotes a locally compact group with a fixed left 

Haar measure A.. Integration with respect to A. will be denoted by J ... dx . 
The spaces L I ( G) (= L I ( G , A.)) and L 00 ( G) (= L 00 ( G, A.)) are as defined in 
[S]. If f and g are measurable functions on G, then 

(f* g)(x) = [f(y)g(y-IX)dy , 

whenever this makes sense. If f is any function defined on G, then for x E G , 
the right (resp. left) translate of f by x will be denoted by rxf (resp. Ixf). 
We denote by Coo(G) the functions in C(G) with compact support and by 
Co( G) the functions in C( G) which vanish at infinity. 

We recall the definition for the (first) Arens product [1] (see also [3]) in the 
second conjugate of LI(G): for f E LOO(G) and rp E LI(G) let frp E Loo(G) 
be defined by 

(frp, 1fI) = (f, rp * 1fI) I (Ifl E L (G)). 

For mELI(G)** ,let mfELOO(G) be defined by (mf, rp) = (m, frp). Finally 
for m, n E LI(G)**, let nm E LI(G)** be defined by (nm,!) = (n, m!). 
It is easy to see that for f E L 00 (G) and rp ELI (G), f rp = rp * f, where 
rp(x) = ~(X-I)rp(X-I) and ~ denotes the modular function of the group [22]. 
Also if f E LUC(G), m E LI(G)**, then mf E LUC(G) and (mf)(x) = 
m/(f)(x) = (m, Ix!)' x E G. (See [11, Lemma 3].) 

A closed linear subspace X of C(G) is left introverted (see Day [2, p. 540]) 
if la(X) ~ X for each a E G, and for each m E X*, f EX, the function 
m/(f) on G defined by m/(f)(x) = m(/xf), x E G, is also in X. In this case 
the Arens multiplication on X* defined by (nm,!) = (n, m/(f)) for each 
f EX, n , m E X* makes sense. Furthermore, X* with this multiplication is 
a Banach algebra (see [2, §6]). Examples of left introverted subspaces of C(G) 
include Co(G), LUC(G), and the space of almost periodic (resp. weakly almost 
periodic) functions on G. In the case of Co(G)* = M(G), the multiplication 
on M( G) is precisely the convolution of measures as defined in [S, p. 266]. 
Furthermore, LUC(G) is the maximal left introverted subspace of C(G) [17 
and IS]. 
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1. ISOMETRIC ISOMORPHISMS ON LUC(G)* 

Let Co(G)1. = {m E LUC(G)*; m(f) = 0 for all f E Co(G)}. 

1.1. Lemma. LUC(G)* = Co(G)1. EBM(G). If mE LUC(G)* , and m = ml +f.J. 
where ml E Co(G)1., f.J. E M(G), then Ilmil = Ilmlli + 11f.J.11. Furthermore, 
Co(G)1. is a closed ideal in LUC(G)* . 
Proof. Clearly Co(G)1. n M(G) = {O}. If m E LUC(G)* , let f.J. denote the 
restriction of m to Co (G). Let f.J. also denote the corresponding extension of 

1. f.J. to LUC(G). Then m l = m - f.J. E Co(G) and m = ml + f.J.. To see that 
Ilmil = Ilmlll + 11f.J.11, let e > 0; choose h E Coo(G) such that Ilhll ::; 1 and 
f.J.(h) 2: 11f.J.II-e. Let F be a compact set such that h(x) = 0 for all x ~ F. Let 
V be an open set with compact closure such that V '2 F. Let 0::; g ::; 1 such 
that g == 1 on F and g(x) = 0 for all x ~ V. Let k E LUC(G) such that 
Ilkll ::; 1 and m l (k) 2: Ilmlll-e. Define k' = k- gk+h. Then m l (k') = ml (k) 
and Ilk'll ::; 1. Furthermore, Ila(k - gk) + hll ::; I for any a E C with lal = 1. 
By a proper choice of a, one gets 

11f.J.112: 1f.J.(a(k - gk) + h)1 = 1f.J.(k - gk)1 + 1f.J.(h)1 
2: 1f.J.(k - gk)1 + 11f.J.11 - e. 

Hence 1f.J.(k - gk)1 ::; e and 

Im(k')1 2: ml (k') + f.J.(h) -1f.J.(k - gk)1 2: Ilmlll + 11f.J.11- 3e. 

So IImll 2: Ilmlll + 11f.J.11· 
To see that Co(G)1. is an ideal, let hE Co(G) , rp E LI(G). Then hrp = 

rp * h E Co(G). Hence if n E Co(G)1. , it follows that (nh, rp) = (n, hrp) = 0, 
i.e. nh = O. Consequently mn E Co(G)1. for all m E LUC(G)* ,i.e. Co(G)1. 
is a left ideal in LUC(G)* . 

If f.J. E M( G) , then it is easy to see that f.J.h = h * f.J.* (where 

! f(t)df.J.*(t) = ! l1(t- l )f(t- l )df.J.(t) (fE Co(G))). 

In particular f.J.h E Co(G) for h E Co(G). Hence n E Co(G)1. implies nf.J. E 
Co(G)1. (since (nf.J., h) = (n,f.J.h)). Now if mE LUC(G)* is arbitrary, it 
can be written as m = f.J. + m l with f.J. E M(G), ml E Co(G)1.. If as above 

1. 1. 1. n E Co(G) ,then nm l E Co(G) ,so nm = nf.J. + nm l E Co(G) . Thus, 
Co( G) 1. is a right ideal. That completes the proof of the lemma. 0 

1.2. Coroilary. Let mE LUC(G)*. Then, the following are equivalent. 
(a) m is invertible and Ilmil = 11m- I II = 1. 
(b) There exists x E G, a E C with lal = 1 such that m = aox . 

Proof. That (b) => (a) is clear. To prove (a) => (b) write m =f.J. + ml ' 
m- I = /I + m2 with f.J., /I E M(G) , ml , m2 E Co(G)1.. Then 0e = f.J. * /I + 
(f.J.m2 + m l /I + m l m2) and the part in brackets belongs to Co( G)1. , by Lemma 
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1.1. Hence 1I.u * vII = 1I.u1l = IIvll = 1, m l = m2 = 0 (again by Lemma 1.1). 
If hE Co(G) satisfies 0 ~ h ~ 1 and h(e) = 1, then 1 = (Je , h) = (.u, vh) . 
Since 0 ~ Ivhl ~ 1, we conclude that Ivh(t)1 = 1 for all t E supP.u. Since 
vh(t) = J h(ts) dv(s) , it follows that h(ts) = 1 for all t E supp.u, s E supp v . 
From this it follows that (supp.u) (supp v) = {e}. In particular supp .u consists 
of a single point, i.e . .u = aJx for some x E G, a E C, lal = 1. 0 

1.3. Remark. (a) Note that Corollary 1.2 may also be obtained as a consequence 
of Lemma 2 in [14]. 

(b) Let X be a left introverted subspace of C(G) containing Co(G). Then 
M( G) may also be regarded as a closed subspace of X* by the isometric em-
bedding: p: M(G) ~ X* , where p(.u)(f) = J f(x) d.u(x) , f EX, .u E M(G). 
In this case both Lemma 1.1 and Corollary 1.2 remain valid with LUC( G) 
replaced by X. 

Let {mJ be a net in LUC(G)* . We say that ma converges to some mE 
LUC(G)* strictly if IImal/> - mI/>ll ~ 0, for all I/> E LI(G). 

1.4. Lemma. Let G1 and G2 be locally compact and let T be an isometric 
isomorphism from LUC(GY onto LUC(G2)*. Let {mal be a net in M(G) 
converging strictly to mE M(G) and IImali = IImll = 1, then T(ma) converges 
to T(m) in the weak * -topology of LUC(G2 )* . 
Proof. Let n be a weak * -cluster point of {T(man. By passing to a subnet, if 
necessary, we may assume that T(ma) ~ n in the w*-topology. Let qJ E LI(G1) 
be fixed. Since IImaqJ - mqJlI ~ 0, it follows that IIT(ma)T(qJ) - T(m)T(qJ)1I ~ 
O. Hence for each k E LUC( G2 ) , 

(T(m)T(qJ) , k) = lim(T(m )T(qJ) , k) = (n, T(qJ)k) = (nT(qJ) , k), 
a a 

i.e. T(m)T(qJ) = nT(qJ) or mqJ = T-1(n)qJ, for all qJ E L1(G1). Consequently, 
if qJ E L1(G1), f E LUC(G1), 

(mqJ, f) = (T-1(n)qJ, I). 

Hence (m, qJl) = (T-1(n), qJl). Consequently, n agrees with T-1(n) on 
Co(G). Since 1 = IImll ~ IIT-1(n)1I = IInll ~ 1, it follows that m = T-1(n) or 
n = T(m) by Lemma 1 in [14]. 0 

Let r: G1 ~ G2 be a (topological) isomorphism of G1 onto G2 and let 
a:G1 ~ T (where T = {A. E C:IA.I = I}) be a continuous character on G1 . 

Define ra: CO(G2) ~ CO(G1) by ra(f)(x) = a(x)f(r(x)) for all x E G1 , f E 
CO(G2). Then ra is an isometric isomorphism mapping CO(G2 ) onto CO(G1). 

Furthermore, T = r* is an isometric algebra isomorphism from M( G1) onto 
T,Ct' a 

M(G2 ) such that Tr,a(JJ = a(x)Jr(X) ' x E G1 • 

For each .u E M(G1), let .ur E M(G2) be defined by 

(.u r , I) = 1 f(r(x)) d.u(x) , f E CO(G2 )· 
G1 
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Also let 
{1(a) = ( a(x) dJ1,(x). iG I 

1.5. Lemma. Let T be an isometric isomorphism from LUC(G I )* onto 
LUC(G2)* such that T(tJJ = T"a(tJx) for each x E G I . Then T(J1,) = {1(a)J1,' 
foreach J1,EM(GI ). inparticular T maps M(GI ) onto M(G2) in LUC(G2)* 
and LI(GI ) onto L I (G2). 

Proof. The equation 
(1) 

clearly holds for all J1, = tJx ' x E GI ' and hence all convex combinations of all 
such measures. Let J1, ~ 0 and 1IJ1,11 = 1 . There exists a net J1,p = E;!I ;.f tJx; of 
convex combination of tJx 's, x E GI ' such that J1,p converges to J1, in the w*-
topology. Since lIJ1,p ll = 1IJ1,11 = 1 for each P, J1,p must converge to J1, strictly 
(see [5 or 15]). Hence by Lemma 1.4, T(J1,p) must converge to T(J1,) in the 
weak * -topology. Now the net {1p(a)J1,~ -+ (l(a)J1,' in the weak * -topology also. 
Hence (1) holds for all J1, ~ 0, 11J1,11 = 1. Consequently (1) must hold for all 
J1,EM(G). 

The last statement follows from [10]. However it also follows directly from 
the well-known fact that L I (G) can be identified with all J1, E M( G) such that 
the map a 1--+ tJa * J1, from G into (M(G), II·ID is continuous. 0 

We are now ready to prove the main theorem of this section. 

1.6. Theorem. Let GI and G2 be locally compact groups and T be an isomet-
ric isomorphism from LUC(G I )* onto LUC(G2)*, then T maps M(GI ) onto 
M(G2) and L\GI ) onto L I (G2 ). 

Proof. Indeed for each x E GI , T(tJx) is invertible and IIT(tJx)11 = IIT(tJx)-111 
= 1. Hence by Corollary 1.2 there exist a(x) E C, la(x)1 = 1 and y(x) E G2 
such that T(tJx) = a(x)tJy(x)' Clearly a is a character and y is an algebraic 
isomorphism of GI onto G2 • Furthermore, if Xi -+ x, Xi' x E GI , then 
tJx; -+ tJx strictly. Hence by Lemma 1.4 T(tJx) -+ T(tJx) in the weak * -topology 
of LUC(G2)* . Consequently a(x) -+ a(x) and y(xi ) -+ y(x), i.e. both a and 
yare continuous. Hence T(tJx) = T"a(tJx) for each x E GI . The theorem 
now follows from Lemma 1.5. 0 

1.7. Remark. Lemmas 1.4, 1.5 and Theorem 1.6 are valid when LUC(Gi ), 

i = 1, 2 are replaced by left introverted subspaces Xi of C( G) containing 
Co(G) (see [14, Theorem 1]). When XI = CO(G I ) and X2 = CO(G2 ), this 
provides an alternative proof to the main result in [10]. 

2. THE EMBEDDINGS r E: M (G) -+ L I ( G) ** 

Let A( G) denote the set of weak * -cluster points of the canonical images of 
the bounded approximate identities, bounded by 1, of LI(G) in LI(G)** . We 
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first observe that the set A( G) coincides with the sets K and KI cot}sidered 
in [9, Theorem 3.2] for compact groups: 

2.1. Proposition. Let EEL I (G) **. The following are equivalent: 
(a) EEA(G). 
(b) IIEII = 1 and E(f) = f(e) for all f E Co(G). 
( c ) E ~ 0, E IfI = IfI E = IfI for all IfI ELI ( G) . 
(d) IIEII = 1 and E is a right identity of LI(G)**. 

Proof. (a) ~ (b). If E E A(G) , then IIEII :5 1. Let J1. E M(G) be the 
restriction of E to Co( G) . Then J1. is the identity of M( G) (by weak * -weak * 
continuity of multiplication in M(G)). So J1. = 0e' where 0e(f) = f(e) , 
f E Co(G). Hence (b) holds. 

(b) ~ (c). Let m denote the restriction of E to LUC(G). Then m(f) = 
f(e) for all f E LUC(G) by Lemma 1.1 and its proof. Hence IIEII = E(l) = 1. 
So E ~ 0 [20, p. 9]. Now if IfI E LI(G), f E LOO(G) , then 

(EIfI, f) = (E, IfI f) = (E, f * 1jI) = (f * ljI)(e) = ! f(t)IfI(t) dt = (1fI, f), 

i.e. Elfl = IfI (where ljI(t) = 1fI(t-I) , t E G). Similarly IfIE = 1fI. 
(c) ~ (a). We first observe that IIEII = 1 (since E(l) = E(IfI·l) = EIfI(l) = 

1fI(1) = 1, when IfI E LI(G), IfI ~ 0, II ifill I = 1). Let PI(G) denote all 
IfI ELI (G), IfI ~ 0, 1I1f1111 = 1. Let {O ,J be a net in PI (G) converging to E 
in the weak * -topology. Then {O ,J is a weak approximate identity for L I (G) . 
Then an argument similar to that in the proof of [2, Theorem 1, p. 524] shows 
that we can find a net {e).} consisting of convex combinations of elements in 
{O a} such that 

(i) Ile).IfI-IfIII-O,foreach IfIELI(G). 
(ii) {e;.} is far out in {Oa}' i.e. for each no' there exists AO such that 

if A ~ AO ' and e). = L:;=I aiOa' ai > 0, L:;=I ai = 1, then each n i ~ no' 
Then {e).} is a left approximat~ identity in LI(G) converging in the weak*-
topology of L I (G)** to E . Furthermore, {e).} is also a weak right approximate 
identity in L I (G). Indeed, if IfI ELI (G) and f E L 00 (G), choose no such 
that I (f, IfIO a - 1fI) I < e for all n ~ no' Let AO be as chosen in (ii). Then for 
all A ~ AO ' 

n 

:5 L ail (f, IfIO a - 1fI) I < ellfll· 
I 

i=1 

Again, repeating the argument in the proof of [2, Theorem 1, p. 524], we can 
find a net {~} consisting of convex combinations of elements in {e).} such 
that 
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(i)' {f,J is a right approximate identity of L' (G) . 
(ii)' {f,J is far out in {eA}. 

279 

Necessarily, {fll} ~ P,(G) and is also a left approximate identity of L'(G) 

converging in the weak * -topology of L' (G)** to E by (ii)'. 
(b) => (d). If EEA(G), then E is aright identity of L'(G)** by (a). 
(d) => (b). Let f:} denote the restriction of E to Co (G). Then f:} is a 

right identity in Co(G)* . It suffices to show f:} is also a left identity. Let {ej } 

denote a bounded weak right approximate identity in L' (G) converging to E 
in the weak*-topology. Let f E Co(G). Then f = glf! for some g E Co(G) , 
If! E L'(G) (by Cohen's factorization theorem). Hence for each mE Co(G)* , 

(f:}m, f) = lim(m, fe) = lim(m, glf!e) 
] ] 

= lim(m, g(lf!e)) = (m, glf!) = (m, f), 
] 

since qJ 1-+ (m, g qJ) defines a bounded linear functional on L' (G). 0 

2.2. Remark. A( G) does not change if one uses (weak) approximate identities, 
bounded by I, in the definition. It also does not change if one uses weak * -cluster 
points of positive bounded approximate identities in L' (G) . 

Let E = w* -limej , where (e) is a bounded approximate identity bounded , , 
by 1. For /-l E M (G) ,let P Il: L (G) --+ L (G) be defined by P Il (v) = v * /-l , and 
let rE(/-l) = p;*(E) , where p;* is the second adjoint of Pll. Then 

2.3. Proposition. (i) (r E(/-l) , f) = J f d/-l (f E LUC(G) , /-l E M(G)). 
(ii) rE(/-l) = /-l, if /-l E L'(G). 
(iii) (rE(/-l)f,qJ) = (/-l,ip*f) (fELOO(G), qJEL'(G), /-lEM(G)). In 

particular, rE(/-l)f = p;f, for each f E Loo(G). 
(iv) r E(J)f = rxf (f E L 00 (G) , x E G), where Jx is the Dirac measure at 

x. 
(v) r E is an isometric embedding of the algebra M( G) into L' (G)** , which 

extends the canonical embedding of L'(G) into L'(G)**. 

Proof. (i) Let /-l E M(G) and f E LUC(G). Then by a version of Cohen's 
factorization theorem [8, 32.45(b)], there exists g E L'(G) and h E Loo(G) 
such that f = g * h. Hence, with ip(x) = Ll(X-I)qJ(x-') , we have 

(r E(/-l) , f) = lim(f, ej * /-l) = lim(ej * f, /-l) = (f, /-l); 
] ] 

since {e) is also a bounded approximate identity of L I (G) [22, Lemma 3.3], 
Ilej * f - flloo --+ 0, by another application of Cohen's factorization theorem. 

(ii) follows directly from 

(r E(/-l) , f) = lim(f, ej * /-l). 
] 
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(iii) We have 

(r E(Il)f, rp) = (f E(Il) , frp) = (f E(Il) , ip * f) = (Il, ip * f) = (rpll, f) 
= (Pp.(rp) , f) = (rp, P;(f)) 

by part (i). 
(iv) follows from (iii) with Il = r5x and a direct computation. 
(v) From the definition of f E(Il) it follows that 

II f E (Il)1I = IIp;*(E)11 ~ IIp;*IIIIEII = 111l1I· 
This together with (i) shows that Ill-+ f E(Il) is obviously linear. To prove that 
it is multiplicative we note that for Il, v E M( G) and f E L 00 (G) , 

(fE(Il)fE(v) , f) = (fE(Il) , fE(v)f) = (p;*(E) , p:(f)) 

* * * f) = (E, Pp.Pv(f)) = (E, Pp.*v 
= (f E(1l * v), f) by (iii). 0 

2.4. Proposition. (i) E2fE (Il) = fE (Il), for any E 1 , E2 E A(G) , and Il E 
I 2 

M(G). 
(ii) A measure Il belongs to L 1 (G) if and only if f E (Il) = f E (Il) , for any 

I 2 

E 1, E2 E A(G). 
Proof. (i) Suppose h E L 00 (G) . Then 

(E2fE (Il), h) = (E2' fE (Il)h) = (E2' p:(h)) = (P:*(E2) , h) = (fE (Il), h), 
I I ,.,. 2 

by (iii) of Proposition 2.4. 
(ii) The "only if" part being obvious, we assume that Il ¢ L 1 (G). We then 

may (and do) assume that Il is real and Il i- o. We will construct two bounded 
approximate identities (e i ) and Uj) both bounded by 1 such that for a w*-
cluster point EI of (ei ) and a w* -cluster point E2 of (J,)) , f E (Il) i- f E (Il)· 

I 2 
By [19, Theorem 2], there exists a continuous function f such that the function 
h: x 1-+ f f(xy) dll(y) is not (equal almost everywhere to) a function continuous 
at the identity e. We can also assume that f, and hence h, is real. We may 
further assume that for each neighbourhood V of e there are sets A, B ~ V 
of positive Haar measure with h ~ 1 on A and h ~ 0 on B. By the method 
of the proof of [9, Lemma 2.3] there exists bounded approximate identities (ei ) 

and (f) of LI(G) bounded by 1, with (ei , h) ~ 1 and (fj, h) ~ O. Now let 
E1 = w*-lime; and E2 = w*-lim.t; where (e;) is a subnet of (e) and (.t;) 
is a subnet of (fj). Then 

(f E (Il), f) = lim(f, Il * e;) = lim(e;, h) ~ 1, 
I I I 

while 
(f E (Il), f) = lim(f, Il * I) = lim(1 , h) ~ o. 0 

2 ) ))) 
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2.5. Proposition. Let m E LI(G)** and E E A(G). Then the following are 
equivalent: 

(a) m=rE(f.l),forsome f.lEM(G). 
(b) As afunctional m is an extension of f.l E Co(G)* with IImll = 11f.l11 and 

Em=m. 
Proof. (a) ~ (b) follows from parts (i) and (v) of Proposition 2.3 together 
with part (i) of Proposition 2.4. To prove (b) ~ (a) let m be an extension 
of f.l with IImll = 1If.l1l. Then the norm of the restriction of m to LUC(G) 
will also be equal to IImli. Then from [14, Lemma 1] it follows that for f E 
LUC(G) , (m, f) = f fdf.l. Hence by Proposition 2.3(i) (m, f) = (rE(f.l) , f) 
for every f E LUC(G). Now if E is the w* ~limit of (e), then from Em = m 
we have 

(m, f) = (Em, f) = (E, mf) = lim(ej , mf) 
J 

= lim(mf, e) = lim(m, fe) = lim(f.l, fe) (since fe j E LUC(G)) 
] ] ] 

= lim(f.l, ej * f) = lim(f, ej * f.l) = (r E(f.l) ,f). 0 
J J 

In the following propositions the canonical image of L I (G) in L I (G) ** will 
be denoted by the same symbol. 
2.6. Proposition. Let L\(G) = nELI(G)**, where E ranges in A(G). Then 
L\(G) is a closed right ideal of LI(G)** containing LI(G). Furthermore, LI(G) 
is an ideal in L\( G) if and only if G is compact, in which case L\( G) = L I (G) . 
Proof. Since for each E E A(G), E2 = E (by Proposition 2.1(d)), each 
ELI(G)** is a closed right ideal, whence L\(G) is a closed right ideal. If G 
is a compact group, then an argument similar to the one of [9, 3.3, v] shows 
that L\( G) = L I (G). Suppose conversely that L I (G) is an ideal in L\( G). Let 
mE LI(G)** and IfI E LI(G). Then IfIm E L\(G). Let (qJa) be a bounded ap~ 
proximate identity of LI(G). Then qJalflm ----> IfIm, in norm. So IfIm E LI(G). 
Therefore, L I (G) is a right ideal in L I (G) **. Hence G is a compact group 
[6]. 0 

2.7. Proposition. The intersection of all rE(M(G)) when E ranges in A(G) 
is equal to L I (G) . 
Proof. Let Q denote the intersection of all rE(M(G)) , where E ranges in 
A( G). Suppose m E Q, and let EI and E2 belong to A( G). Then for some 
f.l, v E M(G), m = r E (f.l) = r E (v). Hence r E (f.l) = EirE (f.l) = EirE (v) = 

, I 2 I I 2 r E (v), by Proposition 2.4(i). Hence f.l = v, and we have r E (f.l) = r E (f.l) 
I I 2 

for every EI and E2 in A(G). From Proposition 2.4(ii), it now follows that 
f.l E LI(G). 0 

Let E E A( G) and let 'It E be the map which associates to any functional in 
ELI(G)** its restriction to LUC(G). Then 'ltE is an isometric isomorphism 
from EL\G)** onto LUC(G)* (see [4]). 
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2.8. Proposition. Let E E A(G). For each /1 E M(G), we have 11:;1(/1) = 
rE (/1)· 
Proof. Let mEL 1 (G) ** be an extension of /1. Let {ej } be an approximate 
identity in L 1 (G) bounded by 1 converging to E in the weak * -topology (see 
the proof of Proposition 2.1). Then for each / E L 00 (G) , 

(r E(/1) , J) = lim (/1 , ej * J) = lil:n(m , / e) 
J J 

= lim(m/, e) = (E, mJ) = (Em, J), 
J 

i.e. r E(/1) E ELI(G)**. Since r E(/1) extends /1 by Proposition 2.3(i), 
11: E (r E (/1)) = /1 , i.e. r E (/1) = 11: ~ 1 (/1) . 0 

1 ** 3. ISOMETRIC ISOMORPHISMS ON L (G) 

We are now ready to prove our next main result. 
3.1. Theorem. Let G1 and G2 be locally compact groups and let T be an 
isometric isomorphism from L 1 ( G I) ** onto L 1 ( G 2) **. Then 

(a) T(A(G1)) = A(G2). 

(b) For each E E A( G I)' there exists a continuous character a: G 1 -> T and 
a bicontinuous isomorphism r: G1 -> G2 such that for each /1 E M(G1) 

T(r E(/1)) = ,U(a)r T(E)(/1!)· 

(c) T maps LI(G1) onto L 1(G2 ). 

Proof. (a) follows immediately from Proposition 2.1(d). 
(b) Let E E A(G1). Let t = 1I:T(E) 0 T 0 1I:~1. Then t is an isometric 

isomorphism from LUC(G1)* onto LUC(G2)* (see [4]). So by the proof of 
Lemma 1.5, there exist a continuous character a on G1 and a bicontinuous 
isomorphism r: G1 -> G2 such that t(/1) = fJ-(a)/1! , for each /1 E M(G). In 
particular, 

T 0 11:~\/1) = ,U(a)1I:;(~)(/1!). 

So T(r E(/1)) = ,U(a)r T(E//1!) by Proposition 2.8. 
(c) follows from (b) and Proposition 2.3(ii). 0 

For each mEL 1 (G)** , let Qm denote the map from L 1 (G)** -> L 1 (G)** 
fi 1 )** de ned by Qm(n) = mn, n E L (G . 

3.2. Corollary. Let G1 and G2 be locally compact groups and let T be an iso-
metric isomorphism/rom LI(G)** onto LI(G2 )**. Let mE LI(G1)**. Then 
Qm is weak * -weak * continuous i/ and only if QT(m) is weak * -weak * continu-
ous. 
Proof. This follows from Theorem 1 in [13] and Theorem 3.1 above. 0 

3.3. Remark. Note that if G1 and G2 are abelian, then Qm is weak * -weak * 
continuous if and only if m is in the centre of LI (G)** (see [13, Lemma 7]). 
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Hence in this case Corollary 3.2 holds even when T is an algebraic isomor-
phism. 
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