Isometric Shift Operators on the Disc Algebra

Takuma TAKAYAMA and Junzo WADA

Hosei 1st. High School and Waseda University

Introduction.

The purpose of this note is to study linear isometries on function algebras, especially isometric shift operators on the disc algebra. For a compact Hausdorff space X, we denote by $C(X)$ the Banach space of all complex-valued continuous functions on X. Recently, A. Gutek, D. Hart, J. Jamison and M. Rajagopalan [5] and F. O. Farid and K. Varadarajan [3] have obtained many significant results concerning isometric shift operators on Banach spaces, especially on $C(X)$. Here we investigate linear isometries on function algebras and isometric shift operators on the disc algebra.

In section 1, we give a representation of a codimension 1 linear isometry on a function algebra and in section 2 , on the disc algebra A, we establish the form of a codimension 1 linear isometry φ and give equivalent conditions under which φ is a shift operator.

1. Codimension 1 linear isometries on function algebras.

Let E be a Banach space and φ a linear isometry from E into E. Then we call φ a codimension 1 linear isometry on E if the range of φ has codimension 1. A bounded linear operator φ on E is called a shift operator on E if the following conditions are satisfied: (i) φ is injective; (ii) the range of φ has codimension 1 ; and (iii) $\bigcap_{n=1}^{\infty} \varphi^{n}(E)=\{0\}$. A linear isometry on E which is a shift operator is an isometric shift operator on E.

Let X be a compact Hausdorff space. We say that A is a function algebra on X if it is a closed subalgebra of $C(X)$, the Banach algebra of all complex-valued continuous functions on X with the supremum norm, which separates points in X and contains the constants. After now, we consider codimension 1 linear isometries on function algebras and isometric shift operators on the disc algebra.

The following extends a theorem of Gutek, Hart, Jamison and Rajagopalan [5, Theorem 2.1] to the case of the function algebras (cf. [9]).

Theorem 1.1. Let A be a function algebra on a compact Hausdorff space X. Suppose
the Choquet boundary $\operatorname{Ch}(A)$ for A is X. Let φ be a codimension 1 linear isometry on A. Then there is a closed subset F of X, where either,
(i) $F=X \backslash\{p\}$, where p is an isolated point of X or
(ii) $F=X$
such that there is a continuous map τ from F onto X and a unimodular function $u \in C(F)$ such that $(\varphi f)(x)=u(x) f(\tau(x))$ for any $f \in A$ and $x \in F$.

Proof. Let $B=\varphi(A)$. Then by Novinger [7], there are a continuous map τ from $\operatorname{Ch}(B)$ onto $\operatorname{Ch}(A)$ and a unimodular continuous function u on $\operatorname{Ch}(B)$ such that $(\varphi f)(x)=u(x) f(\tau(x))$ for $f \in A$ and $x \in \operatorname{Ch}(B)$. Since $\operatorname{Ch}(A)$ is closed in X by the hypothesis, $\mathrm{Ch}(B)$ is also closed in X [7, Corollary 2]. We here assert that $X \backslash F$ consists of at most one point if we put $F=\operatorname{Ch}(B)$. Otherwise, $X \backslash F$ contains two distinct points p, q. Since $p, q \in X=\operatorname{Ch}(A)$ and A is a function algebra, there are $f, g \in A$ such that $\|f\|=\|g\|=1$, $f(p)=1,|f(x)| \leq 1 / 4(x \in F \cup\{q\})$ and $g(q)=1,|g(x)| \leq 1 / 4(x \in F \cup\{p\})$ (see [1]). We here show that if $a f+b g \in B=\varphi(A)(a, b \in \mathbf{C})$ then $a=b=0$. Since $h=a f+b g \in B$, there is a $k \in A$ such that $h=\varphi k$. So $a f(x)+b g(x)=(\varphi k)(x)=u(x) k(\tau(x))(x \in F)$. Hence

$$
|k(\tau(x))| \leq|a||f(x)|+|b||g(x)| \leq \frac{1}{4}(|a|+|b|) \quad x \in F .
$$

Since τ is surjective, we have

$$
\begin{equation*}
\|h\|=\|\varphi k\|=\|k\| \leq \frac{1}{4}(|a|+|b|) . \tag{1}
\end{equation*}
$$

It implies the following since $h(p)=a+b g(p)$ and $h(q)=a f(q)+b$.

$$
\begin{equation*}
|a+b g(p)| \leq \frac{1}{4}(|a|+|b|), \quad|a f(q)+b| \leq \frac{1}{4}(|a|+|b|) . \tag{2}
\end{equation*}
$$

Since $|g(p)| \leq 1 / 4$, by the first part of (2) we have $3|a| \leq 2|b|$. Similarly, by the latter of (2) we have $3|b| \leq 2|a|$ and $a=b=0$. Thus, the codimension of φ is at least two. This contradiction tells us that $X \backslash F$ has at most one point.

The following lemma was shown in the case of $C(X)$ in [5, Lemma 2.2], but we observe that this holds true in the case of function algebras.

Lemma 1.2. Let A be a function algebra on a compact Hausdorff space X and suppose that $\operatorname{Ch}(A)=X$. Let φ be a codimension 1 linear isometry on A and let F, τ and u be as in Theorem 1.1. Then $\tau^{-1}(x)$ has at most two elements for any $x \in X$. Furthermore, if $\tau^{-1}\left(x_{0}\right)$ has two elements for some $x_{0} \in X$, then $\tau^{-1}(x)$ is a singleton for any $x \in X \backslash\left\{x_{0}\right\}$.

Let $\Gamma=\{z \in \mathbf{C}:|z|=1\}$. If \boldsymbol{A} is a function algebra on Γ, we can have the following
Theorem 1.3. Let A be a function algebra on Γ with $\operatorname{Ch}(A)=\Gamma$ and φ a codimension 1 linear isometry on A. Then τ is a homeomorphism from Γ onto Γ.

Proof. Since Γ is connected, F in Theorem 1.1 is equal to Γ. From Lemma 1.2, it suffices to show that there is no element $x_{0} \in \Gamma$ such that $\tau^{-1}\left(x_{0}\right)$ has two elements. Suppose $\tau(a)=\tau(b)=x_{0}$ for some distinct points $a, b \in \Gamma$. Let L_{1} be a closed arc on Γ having a, b as the end points. If $t_{1} \in L_{1}, t_{1} \neq a, t_{1} \neq b$, then $\tau\left(t_{1}\right) \neq x_{0}$. Since τ is a continuous map from Γ onto $\Gamma, \tau\left(L_{1}\right)$ is a closed arc on Γ containing x_{0} and $\tau\left(t_{1}\right)$. The fact that $\tau^{-1}(x)$ is a singleton for any $x \in \Gamma \backslash\left\{x_{0}\right\}$ follows that $\tau\left(L_{1}\right)=\Gamma$. If L_{2} is another closed arc on Γ having a, b as the end points, a similar argument as above implies that $\tau\left(L_{2}\right)=\Gamma$. This is a contradiction since $\tau^{-1}(x)$ is a singleton for any $x \in \Gamma \backslash\left\{x_{0}\right\}$.

2. Isometric shift operators on the disc algebra.

Let $\Gamma=\{z \in \mathbf{C}:|z|=1\}, D=\{z \in \mathbf{C}:|z|<1\}$ and $\bar{D}=\Gamma \cup D$. We put $A_{0}=\{f \in$ $C(\bar{D}): f$ is analytic on $D\}$ and $A=A_{0} \mid \Gamma . A$ is called the disc algebra. We here consider isometric shift operators on the disc algebra A. We set $M_{a}(z)=(z-a) /(1-\bar{a} z)$ for $a \in D$.

We begin with the following theorem.
Theorem 2.1. Let A be the disc algebra and φ a codimension 1 linear isometry on A. Then there are $\alpha, \beta \in \mathbf{C}(|\alpha|=|\beta|=1)$ and $a, b \in D$ such that $(\varphi f)(z)=\alpha M_{a}(z) f\left(\beta M_{b}(z)\right)$ $(f \in A, z \in \Gamma)$.

Proof. Since A is a function algebra on Γ with $\operatorname{Ch}(\mathrm{A})=\Gamma$, by Theorem 1.1 and Theorem 1.3, there are a continuous map u from Γ into Γ and a homeomorphism τ from Γ onto Γ such that $(\varphi f)(z)=u(z) f(\tau(z))(f \in A, z \in \Gamma)$. By putting $f=1$, we see that $u \in A$. For every $f \in A$, there is a unique function $f_{0} \in A_{0}$ such that $f_{0} \mid \Gamma=f$. In the rest we also write f instead of f_{0}.
(i) We first assume that u does not have zeros in D. Since $|u|=1$, u is a constant function α. By putting $f=z$ (the coordinate function), we have $u \tau \in A$ and so $\tau \in A$. If τ does not have zeros in D, τ is constant since $|\tau|=1$. Hence τ has (not necessarily distinct) zeros $b_{1}, b_{2}, \cdots, b_{n}$ in D and so $\tau(z)$ is of form $\beta \prod_{i=1}^{n} M_{b_{i}}(z)(|\beta|=1)$. We here assert that $n=1$. Suppose $n \geq 2$. When z turns arround on Γ one time, it is not hard to see that $\tau(z)$ rotates on Γn-times. This contradicts that τ is a homeomorphism of Γ onto Γ. Thus, φf is of form $\alpha f\left(\beta M_{b}\right)$, and so φ does not have 1 codimension.
(ii) We next assume that u has zeros $a_{1}, a_{2}, \cdots, a_{m}$ in D. Then $u(z)$ is of form $\alpha \prod_{j=1}^{m} M_{a_{j}}(z)(|\alpha|=1)$. By putting $f=z^{k}, u \tau^{k} \in A(k=1,2,3, \cdots)$. Since $u\left(u \tau^{2}\right)=(u \tau)^{2}$, $u \tau \in A$ and $u \tau^{2} \in A, u \tau$ has zeros in D. From that $|u \tau|=1$, it follows that $(u \tau)(z)$ is of form $\beta \prod_{i=1}^{n} M_{b_{i}}(z)\left(|\beta|=1, b_{i} \in D\right)$. We first consider a_{1}. Since $u\left(u \tau^{2}\right)=(u \tau)^{2}$ again, there is some b_{j} with $b_{j}=a_{1}$. Let m_{1} be the number of a_{i} such that $a_{i}=a_{1}$ and $a_{i} \in\left\{a_{j}\right\}_{j=1}^{m}$. From that $u^{k-1}\left(u \tau^{k}\right)=(u \tau)^{k}(k=1,2,3, \cdots)$, if n_{1} is the number of b_{j} such that $b_{j}=a_{1}$ and $b_{j} \in\left\{b_{i}\right\}_{i=1}^{n}$, we get $(k-1) m_{1} \leq k n_{1}$. By tending k to $\infty, m_{1} \leq n_{1}$. A similar argument for any a_{j} implies that $\tau \in A$. Since $\tau \in A$, as we saw in (i), τ is of form βM_{b}. Finally we show that $m=1$. For otherwise, $m \geq 2$. Suppose first that $\left\{a_{j}\right\}_{j=1}^{m}$ contains two distinct elements; call them a_{1} and a_{2}. If $p M_{a_{1}}+q M_{a_{2}} \in \varphi(A)(p, q \in \mathbf{C})$, there is an $f \in A$ such
that $p M_{a_{1}}(z)+q M_{a_{2}}(z)=\alpha \prod_{j=1}^{m} M_{a_{j}}(z) f\left(\beta M_{b}(z)\right)$. By putting $z=a_{1}$ and $z=a_{2}, q M_{a_{2}}\left(a_{1}\right)=$ $0, p M_{a_{1}}\left(a_{2}\right)=0$, and so $p=q=0$. Suppose next that $a_{1}=a_{2}=\cdots=a_{m}=a$. If $p+q M_{a}(z) \in \varphi(A), p+q M_{a}(z)=\alpha\left(M_{a}(z)\right)^{m} f\left(\beta M_{b}(z)\right)$ for an $f \in A$. By setting $z=a$, we have $p=0$. So $q=\alpha\left(M_{a}(z)\right)^{m-1} f\left(\beta M_{b}(z)\right)$. By putting $z=a$ again, $q=0$. This means φ has at least 2 codimension either way. This contradiction shows $m=1$ and φf is of form $\alpha M_{a} f\left(\beta M_{b}\right)$.

We next discuss when a codimension 1 linear isometry on the disc algebra A becomes an isometric shift operator. To do this, we describe the form of φ^{n} as follows:

Let φ be a codimension 1 linear isometry on the disc algebra A. By Theorem 2.1, there are $\alpha, \beta \in \mathbf{C}(|a|=|b|=1)$ and $a, b \in D$ such that

$$
(\varphi f)(z)=\alpha M_{a}(z) f\left(\beta M_{b}(z)\right) \quad(f \in A, z \in \Gamma) .
$$

Hence,

$$
\begin{equation*}
\left(\varphi^{n} f\right)(z)=\alpha^{n} M_{a}(z) M_{a}\left(\beta M_{b}(z)\right) \cdots M_{a}\left[\left(\beta M_{b}\right)^{n-1}(z)\right] f\left[\left(\beta M_{b}\right)^{n}(z)\right] \tag{*}
\end{equation*}
$$

for every positive integer $n, f \in A$ and $z \in \Gamma$, where $\left(\beta M_{b}\right)^{k}$ denotes the k-times composition of βM_{b}.

Now, for $n=0,1,2, \cdots$, we take $d_{n} \in D$ such that $a=\left(\beta M_{b}\right)^{n}\left(d_{n}\right)$. We call $\left\{d_{n}\right\}$ the backward orbit of a by βM_{b}.

Our final aim is to give equivalent conditions under which a codimension 1 linear isometry φ on the disc algebra A is a shift operator.

We start with the following lemmas.
Lemma 2.2 (cf. [8], [2]). Let $D=\{z \in \mathbf{C} ;|z|<1\}$ and $\Gamma=\{z \in \mathbf{C} ;|z|=1\}$ and let m be an analytic automorphism of D. Then it occurs either of the following four cases.
(i) m is the identity, that is, $m(z)=z(z \in D)$.
(ii) m has only one fixed point in D. Then m is said to be elliptic.
(iii) m has distinct two fixed points on Γ. Then m is said to be hyperbolic.
(iv) m has only one fixed point on Γ. Then m is called parabolic.

We fix a point $z_{0} \in D$ and set $z_{n}=m^{n}\left(z_{0}\right)$, where m^{n} denotes the n-times composition of m. Then we obtain the following.

Lemma 2.3. (a) If m satisfies (i) or (ii) of Lemma 2.2, then $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$. (b) If m satisfies (iii) or (iv) of Lemma 2.2, then $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$.

Proof. (a) It is clear if m has (i). Suppose that m satisfies (ii). Let p be the fixed point of m in D. By putting $k(z)=(z-p) /(1-\bar{p} z), h=k \circ m \circ k^{-1}$ is an analytic automorphism of D and $h(0)=0$. Hence $h(z)=\lambda z$ for a $\lambda \in \mathbf{C}(|\lambda|=1)$. If we set $w_{n}=k\left(z_{n}\right)$ $(n=0,1,2, \cdots)$, then $w_{n}=k \circ m^{n} \circ k^{-1}\left(w_{0}\right)=\lambda^{n} w_{0}$. Hence $\left\{w_{n}\right\}$ is a relatively compact subset in D, and so is $\left\{z_{n}\right\}$ since k^{-1} is an analytic automorphism on D and $z_{n}=k^{-1}\left(w_{n}\right)$ $(n=0,1,2, \cdots)$. It follows that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)=\infty$.
(b) Suppose that m satisfies (iii). Let p be the Denjoy-Wolff point of m and q be another fixed point of m on Γ (cf. [2, p. 59]). Let l be a bi-holomorphic map of D onto the upper half plane H of \mathbf{C} such that $l(p)=\infty$ and $l(q)=0$. Then $l \circ m \circ l^{-1}(w)=\alpha w(w \in H)$ for some $\alpha>0(\alpha \neq 1)$ since it is an analytic automorphism on H which fixes 0 and ∞ only [2, p. 59]. Since p is the Denjoy-Wolff point of m, z_{n} converges to p and so $l\left(z_{n}\right)$ converges to $l(p)=\infty$. If we set $w_{n}=l\left(z_{n}\right)(n=0,1,2, \cdots)$, then $w_{n}=\alpha^{n} w_{0}$. Since $w_{n}=l\left(z_{n}\right)$ converges to ∞, it follows $\alpha>1$. Therefore,

$$
\sum_{n=0}^{\infty} \frac{\operatorname{Im} w_{n}}{1+\left|w_{n}\right|^{2}} \leq \sum_{n=0}^{\infty} \frac{1}{\left|w_{n}\right|}=\frac{1}{\left|w_{0}\right|} \sum_{n=0}^{\infty} \frac{1}{\alpha^{n}}<\infty .
$$

It follows that $\left\{w_{n}\right\}$ is the zeros of a Blaschke product defined on H [4, p. 55]. Since $z_{n}=l^{-1}\left(w_{n}\right)(n=0,1,2, \cdots)$ and l is a bi-holomorphic map of D onto H, it guarantees that $\left\{z_{n}\right\}$ is the zeros of a non-zero bounded analytic function on D, and so $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$ (cf. [6]).

Next suppose that m has (iv). Let p be the unique fixed point of m on Γ. Let l be the bi-holomorphic map of D onto H such that $l(p)=\infty$ and $l(-p)=0$. Then $l \circ m \circ l^{-1}(w)=w+\gamma(w \in H)$ for some non-zero real number γ, since it is an analytic automorphism on H which fixes ∞ only [2, p. 59]. If we set $w_{n}=l\left(z_{n}\right)$, then $w_{n}=w_{0}+n \gamma$ $(n=0,1,2, \cdots)$. Since $\sum_{n=0}^{\infty} \operatorname{Im} w_{n} /\left(1+\left|w_{n}\right|^{2}\right) \leq \alpha \sum_{n=1}^{\infty} 1 / n^{2}<\infty$ for some $\alpha>0,\left\{w_{n}\right\}$ is the zeros of a Blaschke product defined on H and so $\left\{z_{n}\right\}$ is the zeros of a non-zero bounded analytic function on D. It follows that $\sum_{n=0}^{\infty}\left(1-\left|z_{n}\right|\right)<\infty$.

Let β be a complex number with $|\beta|=1$. Then $(1+\beta) / \sqrt{\beta}$ is real. Since the trace of βM_{b} is $(1+\beta) / \sqrt{\beta\left(1-|b|^{2}\right)}$, we have the following by [8, Theorem, p. 5].

Lemma 2.4. Let β be a complex number with $|\beta|=1$ and $b \in D$. Then βM_{b} is elliptic if and only if $(1+\beta) / \sqrt{\beta\left(1-|b|^{2}\right)}<2$, where a branch of $\sqrt{\beta\left(1-|b|^{2}\right)}$ is chosen so that $(1+\beta) / \sqrt{\beta\left(1-|b|^{2}\right)}$ is non-negative.

We are now in a position to discuss conditions under which a codimention 1 linear isometry on the disc algebra is a shift operator.

Theorem 2.5. Let φ be a codimension 1 linear isometry on the disc algebra A and $\varphi f=\alpha M_{a} f\left(\beta M_{b}\right)$ for $f \in A$. Let $\left\{d_{n}\right\}$ be the backward orbit of a by βM_{b}. Then the following four conditions are mutually equivalent.
(a) φ is a shift operator.
(b) βM_{b} is the identity or elliptic.
(c) $\sum_{n=0}^{\infty}\left(1-\left|d_{n}\right|\right)=\infty$.
(d) $\beta=1$ and $b=0$, or $(1+\beta) / \sqrt{\beta\left(1-|b|^{2}\right)}<2$, where a branch of $\sqrt{\beta\left(1-|b|^{2}\right)}$ is chosen so that $(1+\beta) / \sqrt{\beta\left(1-|b|^{2}\right)}$ is non-negative.

Proof. The equivalence of (b) and (d) follows from Lemma 2.4. By Lemma 2.2 and 2.3, (b) and (c) are equivalent.
(c) \rightarrow (a). If $f \in \bigcap_{n=1}^{\infty} \varphi^{n}(A)$, by (*), we get $f\left(d_{n}\right)=0 \quad(n=0,1,2, \cdots)$. Since $\sum_{n=0}^{\infty}\left(1-\left|d_{n}\right|\right)=\infty$ and f is bounded and analytic on D, it follows $f=0$.

To prove the theorem, it remains only to show that (a) \rightarrow (b). Suppose that βM_{b} is hyperbolic or parabolic. Then $m=\left(\beta M_{b}\right)^{-1}$ is also hyperbolic or parabolic and $d_{n}=$ $m^{n}\left(d_{0}\right)(n=0,1,2, \cdots)$. Hence d_{n} converges to the Denjoy-Wolff point d of m and $\sum_{n=0}^{\infty}\left(1-\left|d_{n}\right|\right)<\infty$ by (b) of Lemma 2.3.

Let B be the Blaschke product having $\left\{d_{n}\right\}$ as its zeros. If we put $f(z)=(z-d) B(z)$, then $f \in A, f \neq 0$ and $f\left(d_{n}\right)=0(n=0,1,2, \cdots)$. Hence by $(*)$, for any positive integer n we can find a $g \in A$ such that $f=\varphi^{n} g$. Thus $\bigcap_{n=1}^{\infty} \varphi^{n}(A) \neq\{0\}$ and φ is not a shift operator. The proof is completed.

Examples. Let φ be a codimension 1 linear isometry on the disc algebra A and $\varphi f=\alpha M_{a} f\left(\beta M_{b}\right)$ for $f \in A$. From Theorem 2.5, the following are immediate.
(a) If $\beta=1$, then φ is a shift operator on A if and only if $b=0$.
(b) If $\beta=-1$, then φ is always a shift operator on A.
(c) If $\beta= \pm i$, then φ is a shift operator on A if and only if $|b|^{2}<1 / 2$.

Acknowledgements. The authors would like to express their thanks to Professor O. Hatori for helping them with valuable suggestions in the latter half of section 2.

References

[1] A. Browder, Introduction to Function Algebras, Benjamin (1968).
[2] C. Cowen and B. Maccluer, Composition Operators on Spaces of Analytic Functions, CRC Press (1995).
[3] F. O. Farid and K. Varadarajan, Isometric shift operators on $C(X)$, Canad. J. Math. 46 (1994), 532-542.
[4] J. B. Garnett, Bounded Analytic Functions, Academic Press (1981).
[5] A. Gutek, D. Hart, J. Jamison and M. Rajagopalan, Shift operators on Banach spaces, J. Funct. Anal. 101 (1991), 97-119.
[6] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall (1962).
[7] W. P. Novinger, Linear isometries of subspaces of spaces of continuous functions, Studia Math. 53 (1975), 273-276.
[8] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer (1993).
[9] J. WADA, Linear isometries on a function algebras (in Japanese), Gakujutsu Kenkyu 43 (1995), Waseda Univ., 29-33.

Present Addresses:

Takuma Takayama
Hosei 1st. High School,
Kichijoil-higashicho Musashino-shi, Tokyo, 180-0002, Japan.
Junzo Wada
Department of Mathematics, School of Education, Waseda University, Nishi-Waseda, Shinjuku-ku, Tokyo, 169-8050 Japan.

