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1. Introduction. Let X be a Banach space and let B�X� denote the space of
bounded operators on X. Two elements S;T 2 B�X� are isometrically equivalent if
there exists an invertible isometry V such that TV � VS. If X is a Hilbert space, then
V is a unitary operator and S and T are said to be unitarily equivalent.

The unitary equivalence of operators on Hilbert spaces has a rich history.
However, necessary and su�cient conditions for the unitary equivalence of two
operators are known only for a relatively small class of operators. Only recently has
this problem been considered for operators in Banach spaces which are not Hilbert
spaces. The equivalence of certain integral operators on Lp ([0,1]) was investigated
by G. Kalisch [9] while Campbell and Jamison [4] considered the isometric equiva-
lence of weighted composition operators acting on Lp��� spaces. Randall Campbell-
Wright [5] was the ®rst to investigate the isometric equivalence of composition
operators on the Hardy spaces Hp on the unit disc.

In [8] the authors extended R. Campbell-Wright's results to various classical
Banach spaces of analytic functions in the unit disk or ball. In this paper we consider
the isometric equivalence of composition operators on two spaces of analytic vector-
valued functions. Let K denote a separable complex Hilbert space and let H

p
K; p 6� 2,

be the associated Hardy space of analytic functions with values in K. The isometric
equivalence problem is solved for composition operators in this setting using the
results of P. K. Lin [11] on surjective isometries of these spaces. We also consider the
spaces S

p
K of functions analytic on the disk with derivatives in the Hardy space H

p
K.

We characterize the isometries of this space, extending results of the scalar case due
to Novinger-Oberlin [13] and solve the isometric equivalence problem for composi-
tion operators on this space.

2. Composition operators onH
p
B. Suppose that B is a complex Banach space, and

denote by H0
B the space of all holomorphic B-valued functions de®ned on D, the unit

disk. A function F 2 H0
B is said to belong to H

p
B if

Fk kHp
B
:� sup

0<r<1

�2�
0

F reit
ÿ � p

B
dt

2�

� �1
p
<1:

For F 2 H
p
B, membership in H

p
B is equivalent to the existence of a harmonic major-

ant for F�z� p
B. (See [14] for a proof.) With the norm �k kp;B de®ned above, H

p
B is a

Banach space. The characterization of H
p
B in terms of the existence of harmonic
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majorants is particularly useful in establishing the following analogue of the Little-
wood Subordination Theorem for H

p
B.

Suppose F 2 H
p
B and that ' is an analytic self-mapping of D. Whenever G�z� is a

harmonic majorant of F�z� p
B, it is clear that G � '�z� is a harmonic majorant of

F � '�z� p
B. Thus every analytic self-mapping ' of the disk induces a composition

operator C' : H
p
B ! H

p
B by �C'F��z� � F '�z�� �. Note that for each � in the unit ball

of B� we have

�Fk kpp� sup
0<r<1

�2�
0

�F�reit��� ��p dt
2�
� sup

0<r<1

�2�
0

F�reit� p
B
dt

2�
� Fk kp

H
p

B
;

and for rei� 2 D we have

�F rei�
ÿ ��� �� � �2�

0

��F���eit�Pr�� ÿ t� dt
2�

���� ���� � 1� r

1ÿ r
��F� 

p
;

where ��F�� is the representation of �F as a function on ÿ � @D, and Pr��� is the
Poisson kernel. Thus we obtain the inequality

max
0<�<2�

F�rei�� 
B� sup � F�rei��ÿ ��� �� : 0 � � < 2�; �k kB�� 1

� 	 � 1� r

1ÿ r
Fk kHp

B
:

We observe that convergence of a sequence Fnf g in H
p
B implies convergence in the

compact-open topology of H0
B.

Suppose that ' is as above and Fnf g is a sequence in H
p
B converging to 0 for

which the sequence C'Fn

� 	 � Fn � '
� 	

converges to some G 2 H
p
B. Now for each

r 2 �0; 1�, we have�2�
0

G reit
ÿ � p

B
dt

2�
� lim

n!1

�2�
0

Fn ' reit
ÿ �ÿ � p

B
dt

2�
� 0

since Fnf g converges uniformly to 0 on the compact set @ �rD�. It follows that G is the
zero function, and continuity of C' follows from the Closed Graph Theorem. We
formalize the above as a theorem.

Theorem 1. For each analytic self-map ' of the unit disk, the composition opera-
tor C' : H

p
B ! H

p
B is bounded.

3. Composition operators on S
p
B. For p � 1, we denote by Sp the space of anayltic

functions on D with ®rst derivative in the classical Hardy space Hp. We de®ne a
norm �k kSp on Sp by

f
 

Sp� f�0��� ��� f 0
 

p
;

where �k kp denotes the usual norm on Hp. Equipped with this norm, Sp is a Banach
space. Functions of class Sp extend continuously to the closed disk, and the bound-
ary-value function f�ei�� is absolutely continuous for each f 2 Sp. (See, for example,
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[7].) For a Banach space B, we de®ne the Banach space S
p
B as the linear space of all

F 2 H0
B for which F0 2 H

p
B with norm

Fk kSp

B
� F�0� 

B� F0
 

H
p

B
:

In this section we characterize those analytic self-maps of D that give rise to boun-
ded composition operators on S

p
B for a broad class of Banach spaces B. We reduce

the problem to that of characterizing those ' for which C' is bounded on Sp. This
problem has been solved by MacCluer [12] who gives a Carleson measure criterion
for the boundedness of C' in the scalar-valued setting. Our method requires that we
restrict our attention to Banach spaces B having the analytic Radon-Nikodym
property.

Definition 2. A Banach space B is said to have the analytic Radon-Nikodym
property (aRNP) if for every F 2 H1B the strong radial limits lim

r!1ÿ
F�rei�� exist for

almost all � 2 0; 2��� .

If a Banach space B has the aRNP, then it possesses the (formally) stronger
property that for any f 2 H

p
B; 1 � p � 1, strong nontangential limits F�ei�� exist for

almost every � 2 0; 2��� , and F 2 H
p
B can be recovered from its boundary values via

the Poisson representation

F�z� � 1

2�

�2�
0

F�eit�Pr�� ÿ t�dt:

Setting Fr�ei�� � F�rei��, we have Fr ! F in L
p
B�ÿ� as r! 1ÿ, where L

p
B�ÿ� denotes

the Lebesgue space of Bochner p-integrable B-valued functions on the unit circle ÿ.
As in the scalar setting, the identi®cation of each element F of H

p
B with its boundary

value function is an isometric isomorphism between H
p
B and the closed subspace of

L
p
B�ÿ� consisting of those functions whose negative Fourier coe�cients vanish. It

now follows that the polynomials with B-valued coe�cients are dense in H
p
B for

1 � p <1. Jensen's inequality is valid in this setting and, in particular,
log F�ei�� 

B2 L1
B�ÿ�. A good reference for the above is [2]. See also [3] and [15].

When B has the aRNP, members of S
p
B extend smoothly to �D just as in the

scalar case. Our proof makes use of the following result of Barbee [2].

Theorem 3. Suppose that B is a Banach space and F is an analytic B-valued
function with F0 2 H1

B. Then F has strong radial limits at every point of the unit circle.

The proof of Barbee's result relies on the classical FejeÂ r-Riesz inequality and
basic properties of the Bochner integral.

Theorem 4. Suppose that B is a Banach space with the aRNP and F is a B-valued
analytic function in the unit disc with F0 2 H1

B. Then F extends continuously to the
closed unit disk and the boundary function is strongly absolutely continuous.

Proof. Let " > 0 be given, and choose r so that F0 ÿ F0R
 

L1
B�ÿ�
< "

2 whenever
r � R < 1. Now there exists a � > 0 such that
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Xn
k�1

F�rei�k � ÿ F�rei�k� 
B<

"

2

for any collection of disjoint line segments ��1; �2�; . . . ; ��n; �n� satisfyingXn
k�1
��k ÿ �k� < �:

With r and � as above, by employing Cauchy's Integral Theorem we obtain for
each k

F�ei�k� ÿ F�ei�k� 
B��1

r

F0�sei�k�ei�kdsÿ
�1
r

F0�sei�k�ei�kds
 

B
�
F�rei�k � ÿ F�rei�k�


B
�

lim
R!1ÿ

�R
r

F0�sei�k �ei�kdsÿ
�R
r

F0�sei�k�ei�kds

B
�
F�rei�k� ÿ F�rei�k �

 
B
�

lim
R!1ÿ

��k
�k

F0�Rei��Rei�d� ÿ
��k
�k

F0�rei��rei�d�

B
�
F�rei�k� ÿ F�rei�k �

 
B
�

lim
R!1ÿ

��k
�k

�RF0R ÿ F0��ei�� 
Bd� �

��k
�k

�F0r ÿ F0��ei�� 
Bd� � F�rei�k� ÿ F�rei�k � 

B���k
�k

�F0r ÿ F0��ei�� 
Bd� � F�rei�k � ÿ F�rei�k� 

B

and the strong absolute continuity of the boundary function follows.
The next result, due to MacCluer [12], classi®es the self-maps of D that induce

bounded composition operators on Sp, where p � 1. For � 2 @D and � > 0, set

S��; �� � z 2 �D : zÿ �j j < �
� 	

:

If ' : ÿ! �D is absolutely continuous with '0 2 Lp, we de®ne a Borel measure
� � �';p on ÿ by

��E� �
�
E

'0
�� ��pd�;

where � denotes normalized Lebesgue measure on ÿ. We consider as well the image
measure

� � 'ÿ1�B� � ��'ÿ1B�;
a Borel measure on �D.

Theorem 5. Suppose that ' is an analytic self-map of D. Then the composition
operator C' is bounded on S

p if and only if ' 2 Sp and there exists a constant C such that

� � 'ÿ1 S��; ��� � � C�;

for all � 2 @D and � > 0.
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We note that the polynomials with coe�cients in B are dense in S
p
B for

1 � p <1 when B has the aRNP and, by Theorem 4, we can identify each member
F of S

p
B with its boundary function, a strongly absolutely continuous function which

we also denote by F. We denote by S
p
B�ÿ� the Banach space of boundary value

functions of elements of S
p
B where Fk kSp

B�ÿ�� Fk kSp

B
. We combine this observation

with MacCluer's theorem to obtain the following result.

Theorem 6. Suppose that B has the aRNP. Then the composition operator
induced by a self-map ' of the unit disk is continuous on S

p
B if and only if the compo-

sition operator induced by ' is continuous on Sp. Consequently C' is continuous on S
p
�

if and only if the conditions in Theorem 5 hold.

Proof. By considering functions of the form F�z� � f�z�e, where f 2 Sp and e is a
unit vector in B, we see that the conditions from Theorem 5 are necessary for the
boundedness of C' on S

p
�.

Next, suppose that the conditions from Theorem 5 hold. By the Carleson mea-
sure theorem, there exists a constant C such that�

�D

f
�� ��pd� � 'ÿ1 � C

�
@D

f�ei���� ��pd�;
for every f 2 Hp. We suppose that F is a polynomial S

p
B and use F;F 0; ', and '0 to

denote the respective continuous extensions of these functions to �D. Now
log F 0�ei�� 

B2 L1�ÿ� and F 0�ei�� 2 L
p
B�ÿ�; also the outer function

g�z� � exp
1

2�

�2�
0

ei� � z

ei� ÿ z
log F 0�ei�� 

Bd�
� �

satis®es g�ei���� �� � F 0�ei�� 
B, for almost every ei� 2 ÿ. We also have g�z��� ��� F 0�z� 

B,
for all z 2 D. (See [1].) Since F 0 is a polynomial, g�ei���� �� is continuous on ÿ. Now
setting � � �';p, we have

F � ' p
S
p

B
ÿ2pÿ1 F � '�0� p

B � 2pÿ1 �F � '�0 p
B

� 2pÿ1
�
@D

F 0 � '�ei�� p
Bd�

� 2pÿ1
�

�D

F 0
 p

Bd� � 'ÿ1

� 2pÿ1
�

�D

g
�� ��pd� � 'ÿ1

� 2pÿ1C
�
@D

g�ei���� ��pd�
� 2pÿ1C

�
@D

F 0�ei�� p
Bd�

� 2pÿ1C Fk kSp

B
;

and it follows that

SPACES OF ANALYTIC VECTOR-VALUED FUNCTIONS 445

https://doi.org/10.1017/S0017089599000038 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089599000038


F � ' p
S
p

B
� 2pÿ1 C Fk kSp

B
� F � '�0� p

B
� �

:

Since the mapping F 7!ÿ F '�0�� � is continuous on S
p
B, it follows that C' is bounded

on S
p
B.

4. Isometric equivalence of composition operators. For the remainder of the paper
we assume that B � K, a separable complex Hilbert space with inner product h�; �i�.
As they are re¯exive, complex Hilbert spaces have the Radon-Nikodym Property,
hence the (weaker) aRNP, and the boundedness of composition operators on H

p
K

and S
p
K is described by Theorems 1 and 6. We assume in this section that 1 � p <1.

Our ®rst result, a characterization of isometric equivalence of composition operators
on H

p
K, is a generalization of a result of R. Campbell-Wright for the classical Hardy

space. The following result of P. Lin [11] allows us to apply Campbell-Wright's
technique, in our more general setting.

Theorem 7. Any surjective isometry of H
p
K, where 1 � p <1 and p 6� 2, has the

form

�TF��z� � '0a�z�
ÿ �1

pU � F �'a�z�� �;

where U is a unitary operator on K; � is a unimodular constant, a 2 D, and 'a is the
disk automorphism

'a�z� � aÿ z

1ÿ �az

� �
:

Theorem 8. Suppose that C' and C are isometrically equivalent composition
operators on H

p
K; 1 � p <1; p 6� 2. Then '�z� � eÿi� �ei�z�, for some real �. Con-

versely, if ' and  are so related, the operators C' and C are isometrically equivalent.

Proof. Suppose that T is a surjective isometry, as in Theorem 7, that satis®es
TC' � C T. Choose a nonzero k 2 K. Now, for any F 2 H

p
K and z 2 D, we have

hTC'F�z�; kiK � '0a�z�
ÿ �1

phF ' �'a�z�� �� �;U�kiK

and

hC TF�z�; kiK � '0a  �z�� �ÿ �1
phF �'a  �z�� �� �;U�kiK:

Letting F�z� � U�k, we conclude that

'0a�z�
ÿ �1

p� '0a  �z�� �ÿ �1
p;
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from which it follows that either a � 0 or  �z� � z. Since H
p
K separates points, we

conclude that either '�z� �  �z� � z, or a � 0 and '�z� � ÿ� �ÿ ��z�.
The proof of the converse is trivial.
We consider next the isometric equivalence problem for bounded composition

operators on S
p
K. We must ®rst characterize the surjective isometries of these spaces.

In doing so we employ a technique of Novinger and Oberlin from [13]. To adapt
their method to our setting, we make use of the following result of Deeb and Khalil
[6].

Definition 9. If B is a Banach space, then an x 2 B with xk k � 1 is called a
smooth point of the unit ball of B if there exists a unique � 2 B� such that �k k � 1
and ��x� � 1. A Banach space is said to be smooth if every boundary point of its
unit ball is a point of smoothness.

Theorem 10. Let B be a Banach space for which B� is separable and suppose that
F 2 L

p
B�ÿ� with Fk kLp

B�ÿ�� 1. Then the following conditions are equivalent:

(i) F is a smooth point of the unit ball of L
p
B�ÿ�.

(ii) F�ei��= F�ei�� 
B is a smooth point of the unit ball of B, for almost all ei� 2 ÿ for

which F�ei�� 6� 0.

The following characterization of smoothness is useful in our characterization
of the surjective isometries of S

p
K. A good reference is KoÈ the [10, p. 350].

Theorem 11. A Banach space B is smooth if and only if its norm is weakly dif-
ferentiable at every point except the origin. That is, B is smooth exactly when

lim
t!0

x� ty
 

Bÿ xk kB
t

exists for each y 2 B and all nonzero x 2 B.

Corollary 12. Every Hilbert space is smooth.

Corollary 13. For every separable Hilbert space K and each p � 1;Sp
K is smooth.

Theorem 14. T : S
p
K ! S

p
K, where 1 � p <1 and p 6� 2, is a surjective linear

isometry if and only if there exist unitary operators U;V on K and � 2 Aut�D� such
that

TF�z� � VF�0� �U

�z
0

�0���� �1=pF 0 ����� �d�:

Proof. Su�ciency follows almost immediately, for TF�0� � VF�0� and

�TF�0��� � �0���� �1=pUF 0 ����� �:
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Therefore

TFk kSp

K
� VF�0� 

K� ��0�1=pUF 0 � � 
H

p

K

� F�0� 
K� ��0�1=pF 0 � �
 

Hp
K

� F�0� 
K� F 0
 

Hp
K

� Fk kSp
K
:

Next, suppose that T : S
p
K ! S

p
K is a surjective isometry. Let n be a positive

integer and x 2 K with xk kK� 1. Let �n denote the mapping z 7!ÿ zn and, for t 2 R,
set Ft � �1� t�n�x. Clearly Ft 2 S

p
K with Ft�0�

 
K� 1. Now

F 0t
 p

H
p

K
� lim

r!1ÿ

1

2�
sup
0<r<1

�2�
0

tj jp nrnÿ1einsx
 p

Kds

� lim
r!1ÿ

np tj jprnp

� np tj jp;

so that Ftk kSp

K
� 1� n tj j. Also,

TFt�z� � Tx� T��nx�;

where for each x 2 K the constant function on D whose only value is x is also
denoted by x. Note that

1� n tj j � Ftk kSp

K

� TFtk kSp

K

� Tx�0� � tT��nx��0�
 

K� �Tx�0 � t T��nx�� �0 
H

p

K

� Tx�0� 
K� �Tx�0
 

H
p

K
� tj j T��nx��0�

 
K� T��nx�0
 

H
p

K

� Txk kSp

K
� tj j T��nx�

 
S
p

K
� 1� n tj j:

It follows that the (weak) inequality is an equality, and consequently that

Tx�0� � tT��nx��0�
 

K� Tx�0� 
K� tj j T��nx��0�

 
K;

�Tx�0 � tT��nx�0
 

H
p

K
� �Tx�0 

H
p

K
� tj j T��nx�� �0 

H
p

K
:

Since K has the aRNP, the polynomials with coe�cients from K are dense in
S
p
K, and so we can choose a positive integer n such that T��nx�0 6� 0. Now the func-

tion t 7!ÿ �Tx�0 � tT��nx�0
 

H
p

K
must be di�erentiable for all t provided only that

�Tx�0 6� 0, while the right-hand side of the above equality is clearly nondi�erentiable
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at t � 0. It follows that �Tx�0 � 0, and consequently that Tx is a constant function
with

Txk kSp
K
� Tx�0� 

K� 1:

Since Tx�0� 
K� 1 and

Tx�0� � tT��nx��0�
 

K� 1� tj j T��nx��0�
 

K

for all real t, a di�erentiability of norm argument shows that

T��nx��0� � 0;

for all n � 1.
Next, let F 2 S

p
K, and for each t 2 R de®ne Gt 2 S

p
K by Gt � x� t Fÿ F�0�� �.

Note that

Gtk kSp

K
� xk kK� tj j F 0 

H
p

K
� 1� tj j F 0 

H
p

K
;

TGtk kSp

K
� �Tx��0� � t TF�0� ÿ TF�0�� ��0�� � K � tj j �TF�0 

H
p

K
:


Now TGtk kSp

K
� Gtk kSp

K
is equivalent to

1� tj j F 0
 

Hp
K
ÿ �TF�0 

Hp
K

� �
� �Tx��0� � t TF�0� ÿ TF�0�� ��0�� � 

K

and, since �Tx��0� 6� 0, the expression on the right-hand side is a di�erentiable
function of t at 0. We conclude that

�TF�0 
Hp
K
� F 0
 

Hp
K

and

TF�0� � TF�0�� ��0� � TF�0�:

Denote by zS
p
K the subspace of S

p
K consisting of those functions in S

p
K that

vanish at 0. Letting D denote the di�erentiation operator and I the integration
operator IF�z� � � z0 F���d�, it is easy to show that D : zS

p
K ! H

p
K is a surjective iso-

metry whose inverse is I. But then the operator DTI : H
p
K ! H

p
K is a surjective iso-

metry. It follows from Theorem 7 that there exist a unitary operator U on K and a
� 2 R such that

DTI�F��z� � '0a�z�
ÿ �1

pU � F ei�'a�z�
ÿ �

;

for all F 2 H
p
K. But I�F 0� � Fÿ F�0�;TI�F 0� � TFÿ TF�0� and DTI�F 0� � �TF�0,

since TF�0� is a constant function. Hence
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TF�z� �
�z
0

'0a���
ÿ �1

pU � F ei�'a���
ÿ �

d� � TF�0�:

Choosing a unitary operator V on K such that VF�0� � TF�0�, our result follows.
Having characterized the surjective isometries of S

p
K, determining when two

(bounded) composition operators on S
p
K are isometrically equivalent is relatively

straightforward. Our last result extends a theorem from [8] dealing with isometric
equivalence of composition operators on Sp.

Theorem 15. Suppose that ' and  are self-maps of the unit disc inducing boun-
ded composition operators on S

p
K, where K is a separable Hilbert space and p � 1.

Then C' and C are isometrically equivalent if and only if there exists a � 2 R such
that  �z� � eÿi�'�ei�z�, for all z 2 D.

Proof. Suppose that TC' � C T, where T : S
p
K ! S

p
K is the surjective isometry

given by

TF�z� � VF�0� �U

�z
0

�0���� �1=pF 0 ����� �d�:

Note that the intertwining is equivalent to the equality of

VF '�0�� � �U

�z
0

�0���� �1=p�F � '�0 ����� �d�

and

VF�0� �U

� �z�
0

�0���� �1=pF 0 ����� �d�;

for all F 2 S
p
K and z 2 D. Di�erentiating each expression yields the equality

��0�1=p � �F � '�0 � � � ��0 �  �1=p � F 0 � �� �  � �  0:

Choosing a nonzero vector k 2 K and setting F�z� � zk, this equality becomes

��0�1=p � '0 � � � ��0 �  �1=p �  0:

Taking F�z� � z2k, the equality becomes

��0�1=p � ' � � � '0 � � � ��0 �  �1=p � �� �  � �  0:

The remainder of the proof of the necessity of the condition now follows as in
[8]. The proof of su�ciency is almost immediate.

The basic theme of our paper [8], inspired by the work of Campbell-Wright on
the Hardy spaces, was that on a broad class of Banach spaces of (scalar-valued)
analytic functions on the unit disc, isometric equivalence of composition operators is
``rare'' and occurs only in a trivial sense. We have demonstrated above that this
situation persists in a broader context of spaces of vector-valued analytic functions.
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