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ISOMETRIES BETWEEN NORMED SPACES WHICH ARE
SURJECTIVE ON A SPHERE

RUIDONG WANG

Abstract. In this paper, we study the extension of isometric
operator between unit spheres of normed spaces, and give an

equivalent statement of Tingley problem. We also give another

statement of Mazur–Ulam theorem: Let V : E → F be an iso-
metric operator, and V |S(E) denotes the operator V restricted to

the set S(E). If V |S(E) is an onto isometric operator from S(E)
to S(F ), then V must be linear.

1. Introduction

Throughout this paper, both E and F will denote real normed linear space.
We use Sδ(E) to denote the set {z ∈ E : ‖z‖ = δ}, where δ ∈ R

+. To simplify
notation, we write S(E) := S1(E), i.e., the unit sphere of E. If x, y ∈ E, we
denote by [x, y] the set {z ∈ E : z = λx + (1 − λ)y,0 ≤ λ ≤ 1}.

A mapping V : E → F is said to be an isometry if

‖V x − V y‖ = ‖x − y‖ (∀x, y ∈ E).

As normed spaces, we say E and F are congruent if there is a linear isomet-
ric operator T from E onto F . Mazur and Ulam had shown that any surjective
isometry between two real normed spaces must be an affine map. Therefore,
two normed spaces are congruent if and only if the two spaces are isomet-
ric; and the metric structure determines the linear structure. Mankiewicz [1]
extended that any surjective isometry between the convex bodies (or open con-
nected subsets) of two normed spaces can be extended to a surjective affine
map between the two spaces. Especially, two normed spaces are congruent if
and only if their unit balls are isometric.
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Tingley proposed the following problem in [2]: Let X and Y be normed
spaces with unit spheres S(X) and S(Y ). Suppose that V0 : S(X) → S(Y )
is an onto isometry. Is V0 necessarily the restriction to S(X) of a linear, or
affine transformation on X?

It will be very difficult to answer this question. Until recently, some affir-
mative results have been obtained, which had been shown in [4].

Since there is not much linear structure in the unit sphere of a normed linear
space, it is difficult to answer the above problem. As normed linear space is
metric space, we may ask the following question: Let X and Y be normed
spaces with unit spheres S(X) and S(Y ). Suppose that V0 : S(X) → S(Y )
is an onto isometry. Is V0 necessarily the restriction to S(X) of an isometric
operator on X?

In [5], Liu and Zhang give the following proposition.

Proposition. Let E and F be Banach spaces. Assume that V0 : S(E) →
S(F ) is a surjective isometry. If V0 can be extended to an isometry from E

into F , then there exists a linear isometry Ṽ from E onto F such that
Ṽ |S(E) = V0.

In the proof of this proposition, the authors show that if V0 can be extended
to an isometric operator V̂ : E → F , then the positive homogeneous extension
Ṽ (x) = ‖x‖V0( x

‖x‖ ) is surjective and isometry, by Mazur–Ulam theorem, Ṽ is
an linear isometry.

In this paper, we give a uniqueness theorem. It assumes V0 is the restriction
of some into-isometry V̂ , and shows that V̂ is necessarily the positive homo-
geneous extension Ṽ , i.e., V̂ = Ṽ , which improves the above proposition. This
shows that the above two questions are equivalent, and give another state-
ment of Mazur–Ulam theorem: If V : E → F is an into-isometry, so that
V (S(E)) = S(F ), then V is surjective and linear.

2. Main result

Lemma 1. Let E be a two-dimensional space whose unit sphere S contains
a nontrivial face [u, v]. Fix α > 1 and a point a point z ∈ E with ‖z‖ = α so
that z/α ∈ [u, v]. Then S ∩ Sα−1(z) is a subinterval Iz ∈ [u, v].

Moreover, if α ≤ 2, then Iz is a proper subinterval of [u, v] unless α = 2
and z = u + v.

Proof. It follows from the triangle inequality that S ∩ Sα−1(z) ⊂ [u, v].
Write z/α = λu + (1 − λ)v with 0 ≤ λ ≤ 1, and assume x ∈ S ∩ Sα−1(z). It
follows that x = su + (1 − s)v for some 0 ≤ s ≤ 1.
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From x ∈ Sα−1(z) and the fact that z−x
α−1 lies on the line passing through u

and v (see the formula below), it follows that z−x
α−1 ∈ [u, v]. Writing

z − x

α − 1
=

αλu + α(1 − λ)v − su − (1 − s)v
α − 1

=
αλ − s

α − 1
u +

(
1 − αλ − s

α − 1

)
v

we see that s must also satisfy the condition 0 ≤ αλ−s
α−1 ≤ 1, or

αλ − α + 1 ≤ s ≤ αλ.

Thus, x ∈ S ∩ Sα−1(z) is the interval Iz , which corresponds to the values
of s in the interval

[max{0, αλ − α + 1},min{1, αλ}] ⊂ [0,1].

If α ≤ 2 and v ∈ Iz , then αλ ≥ 1, hence αλ − α+1 ≥ 2 − α ≥ 0 with equality
αλ − α + 1 = 0 (i.e., u ∈ Iz) only when α = 2 and λ = 1

2 . �
Lemma 2. Let E be a normed space, and assume that ‖z1‖ = ‖z2‖ = α ≤ 2

and that ‖z1 − x‖ = ‖z2 − x‖ for every x ∈ S(E). Then z1 = z2.

Proof. Assume z1 
= z2 and α ≥ 1 (the case α < 1 is trivial, just take as z
one of the endpoints of the cord through z1 and z2). Passing to the subspace
spanned by z1 and z2 we may assume E is two-dimensional, and it then follows
from the triangle inequality that S ∩ Sα−1 contains the segment [z1/α, z2/α].
It follows that S(E) has a face [u, v] parallel to the line passing through z1

and z2.
By Lemma 1, S ∩ Sα−1(zj) are intervals Izj , and when α ≤ 2 and z1 
= z2

the explicit formula for the intervals shows that they are different. But this
means that there is a z ∈ S with ‖z1 − z‖ = α − 1 and ‖z2 − z‖ 
= α − 1 (or
vice-versa) contradicting the assumption of the lemma. �

In Lemma 2, it is necessary for us to assume that α ≤ 2. If α > 2, we have
the following counter example.

Example 1. If α > 2, let z1 = (α,α − 2), z2 = (α, α−2
2 ) ∈ l∞

(2), where l∞
(2)

denotes linear space R
2 with sup-norm, i.e., for any (β1, β2) ∈ l∞

(2), ‖(β1, β2)‖ =
max{|β1|, |β2| }. Then ‖z1‖ = ‖z2‖ = α, and for any z = (α1, α2) ∈ S(l∞

(2)), we
have ‖z1 − z‖ = ‖z2 − z‖.

Indeed, since 0 ≤ |α1|, |α2| ≤ 1, we have

α − α1 > 1, −1 < α − 2 − α2 ≤ α − α1

and
−1 <

α − 2
2

− α2 ≤ α − α1.

From the three inequalities above, we obtain that

‖z1 − z‖ = ‖z2 − z‖ = α − α1.

But it is obviously that z1 
= z2.
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From the following theorem, we can know exactly the way we construct the
above counter example.

Theorem 3. Let X be a Banach space, dim(X) = 2. If [u, v] ⊂ S(X) and

β = max
x=ξ1u+ξ2v∈S(X)

{ |ξ1|, |ξ2| }.

Then for any α > 2β, there exists z1, z2 ∈ Sα(X), such that for any x ∈ S(X),
we have ‖z1 − x‖ = ‖z2 − x‖, but z1 
= z2.

Proof. Letting z1 = α
2 u + α

2 v and z2 = (α − β)u + βv. Then for any x =
ξ1u + ξ2v ∈ S(X), we have

z1 − x =
(

α

2
− ξ1

)
u +

(
α

2
− ξ2

)
v

and
z2 − x = (α − β − ξ1)u + (β − ξ2)v.

Since [u, v] ⊂ S(X), α > 2β > 0 and β > max{ξ1, ξ2}, it is easy to see that
‖z1‖ = ‖z2‖ = α and z1 
= z2. We also obtain that

‖z1 − x‖ =
∥∥∥∥
(

α

2
− ξ1

)
u +

(
α

2
− ξ2

)
v

∥∥∥∥ = α − ξ1 − ξ2

and
‖z2 − x‖ = ‖(α − β − ξ1)u + (β − ξ2)v‖ = α − ξ1 − ξ2.

So ‖z1 − x‖ = ‖z2 − x‖. �

Theorem 4. Let V : E → F be a isometric operator, and V |S(E) denotes
the operator V restricted to the set S(E). If V |S(E) is an onto isometric
operator from S(E) to S(F ), then V must be linear.

Proof. First, we will show that V (θ) = θ.
Indeed, if V (θ) 
= θ, since V |S(E) is an onto isometric operator from S(E)

to S(F ), there exists x ∈ S(E) such that V (x) = − V (θ)
‖V (θ)‖ . Then∥∥∥∥ V (θ)

‖V (θ)‖ + V (θ)
∥∥∥∥ = ‖V (x) − V (θ)‖ = ‖x − θ‖ = 1.

But ∥∥∥∥ V (θ)
‖V (θ)‖ + V (θ)

∥∥∥∥ = 1 + ‖V (θ)‖.

Contradict to V (θ) 
= θ.
Second, we show that span{V (E)} = F. Indeed,

span{V (E)} ⊃ span{V (S(E))} ⊃ span{S(F )} = F.

By Figiel’s theorem ([3, p. 401, Theorem 9.4.2]), there is a continuous
linear operator T mapping F into E and such that the superposition TV is



ISOMETRIES BETWEEN NORMED SPACES 579

an identity on E. The operator T is uniquely determined and it has norm
one.

For any x, y ∈ S(E),0 ≤ λ ≤ 1, we have

‖x − λy‖ = ‖TV (x) − λTV (y)‖
= ‖TV (x) − T (λV (y))‖
≤ ‖V (x) − λV (y)‖.

We now show that the inequality above must be an equality, if not, there
exist x0, y0 ∈ S(E) and 0 < λ0 < 1 such that

‖x0 − λ0y0‖ < ‖V (x0) − λ0V (y0)‖.

The line L(V (x0), λ0V (y0)), which contains V (x0) and λ0V (y0), and S(F )
intersect in a point z̃0, which is different from the point V (x0). Since V |S(E)

is an onto isometric operator from S(E) to S(F ), it follows that there exists
z0 ∈ S(E) such that V (z0) = z̃0, and we have

‖V (x0) − V (z0)‖ = ‖V (x0) − λ0V (y0)‖ + ‖V (z0) − λ0V (y0)‖,

and
‖z0 − λ0y0‖ ≤ ‖V (z0) − λ0V (y0)‖.

So

‖x0 − z0‖ ≤ ‖x0 − λ0y0‖ + ‖z0 − λ0y0‖
< ‖V (x0) − λ0V (y0)‖ + ‖V (z0) − λ0V (y0)‖
= ‖V (x0) − V (z0)‖
= ‖x0 − z0‖.

The above inequality is impossible, so ‖V (x) − λV (y)‖ = ‖x − λy‖.
For any η > 1 and x, y ∈ S(E), we can still get the similar equality as above,

since

‖V (x) − ηV (y)‖ = η

∥∥∥∥1
η
V (x) − V (y)

∥∥∥∥
= η

∥∥∥∥1
η
x − y

∥∥∥∥
= ‖x − ηy‖.

If γ ≤ 2, since V is isometry and by the above equality, for any x, y ∈ S(E),
we obtain that

‖V (x) − γV (y)‖ = ‖x − γy‖ = ‖V (x) − V (γy)‖.

As V |S(E) is an onto isometric operator from S(E) to S(F ) and by Lemma 2,
for any y ∈ S(E), we have

V (γy) = γV (y).
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Thus, we obtain that V |Sγ(E) is an onto isometric operator from Sγ(E)
to Sγ(F ), for any γ ≤ 2.

By a similar argument as above, since V |S2(E) is an onto isometric operator
from S2(E) to S2(F ), we obtain that

V (ζx) = ζV (x),

for any x ∈ S(E) and ζ ≤ 22.
By induction, we obtain that V (ξx) = ξV (x), for any ξ ∈ R

+ and x ∈ S(E).
Since V |S(E) is an onto isometric operator from S(E) to S(F ), so V is an onto
isometric operator form E to F . Our assertion is immediate from Mazur–Ulam
theorem. �
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