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ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM
BY

HEDY ATTOUCH AND ROGER J. B. WETS1

Abstract. It is shown that on the space of lower semicontinuous convex functions
defined on R", the conjugation map—the Legendre-Fenchel transform—is an
isometry with respect to some metrics consistent with the epi-topology. We also
obtain isometries for the infinite dimensional case (Hilbert space and reflexive
Banach space), but this time they correspond to topologies finer than the Mosco-
epi-topology.

1. Introduction. Initially, the study of the epi-topology for the space of lower
semicontinuous functions was motivated by the fact that on the subspace of convex
functions the Legendre-Fenchel transform, i.e. the conjugation map, is bicontinuous.
Actually, it is to state this result, which he proved for functions defined on R", that
Wijsman [1] was led to introduce the concept of epi-convergence. Mosco [2], and
also Joly [3], generalized this theorem to functions defined on a reflexive Banach
space by considering an epi-topology generated by both the weak and the strong
topology on the underlying space. We refer to it today as the Mosco-epi-topology. A
further extension to the nonreflexive Banach case has been obtained recently by
Back [4].

Walkup and Wets [5] obtained a related result, namely that on # the hyperspace
of closed convex cones, subsets of a reflexive Banach space, the polar map is an
isometry when the distance between two cones P and Q is measured in terms of the
Hausdorff distance between P n B and Q D B with B the unit ball. In finite
dimensions this isometry implies the bicontinuity of the Legendre-Fenchel transform
on the space of lower semicontinuous convex functions equipped with the epi-topol-
ogy; details are worked out in [6]. In §4, we refine this result and show that the
isometry of the polar map yields an isometry for the Legendre-Fenchel transform,
provided the notion of distance between two functions is defined in terms of a
suitable metric.

For infinite dimensions, however, the Walkup-Wets result is not immediately
transferable to the functional setting, at least not in an operational form. This can be
traced back to the fact that the unit ball is not compact. In §2 we exhibit new

Received by the editors November 25, 1984.
1980 Mathematics Subject Classification. Primary 49A50, 58E30; Secondary 49A29, 47H05, 52A05,

90C31.
Key words and phrases. Convexity, epi-convergence, variational convergence, duality, conjugation,

Legendre-Fenchel transform, isometry, polarity.
1 Supported in part by a Fellowship of the Centre National de la Recherche Scientifique and a grant of

the National Science Foundation.

©1986 American Mathematical Society
0002-9947/86 $1.00 + $.25 per page

33

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



34 HEDY ATTOUCH AND R J. B. WETS

isometries for the Legendre-Fenchel transform relying on Moreau-Yosida approxi-
mates. We obtain one isometry in terms of the approximated functionals and
another one in terms of the resolvents and subdifferentials. We then explore the
important relationship between these two isometries. Still another isometiy is
brought to the fore in §3 involving the indicator functions and the support functions
of convex sets. It also relies on approximates of the original functions, to which we
refer as Wijsman approximates in recognition of the fact that these were the tools
used by Wijsman in his derivation of the bicontinuity result refered to earlier.

2. Isometries for Moreau-Yosida approximates. Let Ibea Hilbert space, identi-
fied with its dual, with norm || ■ || and inner product (•,•). Let /: X -*] — oo, oo]
be an extended real valued function, finite valued for at least some x in X. Such a
function is said to be proper; it is the only type of function that appears in this
paper. For every X > 0

/n^||.||a)(*)- Mxi [y) + jK\\x-y\

is the Moreau-Yosida approximate of f of parameter À; here D denotes inf-convolution.
These approximates play an important role in the analysis of variational limit
problems, basically because a sequence of functions {/": X -> ] - oo, oo], v = 1,...}
epi-converges (with respect to the strong topology of X) to the lower semicontinuous
function / if and only if

(2.2) /= sup lim sup /{ = sup lim inf f{,
X>0      x^oo X>0     "^^

provided the /" are (quadratically) minorized, i.e. there exists x0 e X and ß > 0
such that for all v = 1,...

2
/'(*)> -j8(||x-*0||   +l),

[7, Theorem 5.37]. Recall that, given (X, t) a first countable topological space, a
sequence {/": X -* R, v = I,...) epi-converges to / (with respect to the topology
t), if for all x in X

(2.3) liminf f(x") > fix),    whenever x =  lim x",
v—>oo v—* 00

and for some sequence {x", v = 1,... } with x = lim„ _ x x"

(2.4) lim sup/"(*") </(*).
v—* 00

A short review of the properties of epi-convergence can be found in [7, §2] (for more
details consult the monograph [8]).

The Moreau-Yosida approximates possess a number of properties that make them
well suited for the analysis of the limit of sequences of functions. For example, with
/ (quadratically) minorized, we have that fx is locally Lipschitz with the Lipschitz
constant depending only on the parameters A, x0 and ß [7, Theorem 5.8]. Thus, if a
collection {/", v = 1,...} is minorized with the same quadratic form, the {f{,
v = 1,... } are locally equi-Lipschitz. Another property [8, Proposition 2.67] needed
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ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM 35

later on is: For any X > 0 and ju, > 0, we have

(2.5) (A),=/x+,,
which is called the resolvent equation. Indeed

(A)»(*) - ■■>'-L||,-,,' + m(/(2) + -L||,-2||'

= inf

= inf

= inf

/(*)+w(¿

/(*) +

2/x '

x —

-VII    + 2A \y-z\

X + u (ftz + Xx) 2X X + u ifiz + Xx) — z

2(X + u)

Note that this identity remains valid if A' is a Banach space.
The analysis of the limit properties of sequences of convex functions via their

Moreau-Yosida approximates highlights the full potential of this technique. Instead
of (2.2), we have that a sequence of convex functions {/": X -» ] - oo, oo], v = \,...}
Mosco-epi-converges to the (necessarily convex and lower semicontinuous) function
/ if and only if for all X > 0

(2.6) fx(x) =  lim f{(x)    for all x e X,
v—* 00

provided only that / be proper [9, Théorème 1.2]. Recall that Mosco-epi-conver-
gence is epiconvergence for both the strong and weak topologies of X, which means
that in (2.3) one considers all weakly converging sequences while in (2.4) one
requires the sequence to be strongly converging. Also

(2.7)

since i
by

(2.8)

(AY »k\ f* + 'i
2/2X)* = X|| • \\2/2. As usual, /*: X -> R, the conjugate of /, is defined

/*(v):=  sup [(v,x)-/(*)].
JtSl

The map / •-> / * is the Legendre-Fenchel transform.
An important relationship between the Moreau-Yosida approximates of / and its

conjugate /* is highlighted by the next theorem. This identity was already known to
Moreau [10] in the case X = 1, see also [11, §31]. It is the key to a number of
isometries.

2.9. Theorem. Suppose X is a Hilbert space and f: X -> R is a proper convex
function. Then for any X > 0

(2.10) (/*)x(Xx) = |||x||2-A-1(x).
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36 HEDY ATTOUCH AND R. J. B. WETS

Proof. We have

(/*h(Xx) = inf
U

= inf sup

/*(") +^l|Xx-M||2

(y,u)~ f(y) + 2X"!! A* - «|

sup
v

-fiy) + nàn\(y,u) + ¿tJXx - uf

= sup
y

= -inf

-fiy)+(y,Xx - Xy) + ^-\\Xx -(Xx - Xy)

f(y) + ¿II* -.HI

2A

X II   II2+ 2 11-11

which yields (2.10). The interchange of inf and sup can be justified as follows:
Define

g(y) = mini (y,u)+ ^tJAx - u X"\x\t-\\x -yt).

The function g is concave, finite and continuous on X. Thus, by Fenchel's duality
theorem [12] we have

sup [g(y)-f(y)]= inf [/•(«) -g,(«)],
y «

where g* is the concave conjugate of g, i.e.

gm(u) = mî[(u,y)- g(y)],
y

and a straightforward calculation shows that

l   \ l   \\\ il2
g*(") = "2x11^^ - "II • D

As a corollary to this theorem, we obtain an interesting identity between the
gradients of (/*)A and the resolvents of parameter X-1 associated with /. Let 3/(x)
denote the set of subgradients of the convex function / at x, i.e.

(2.11) 9/(x):= {v\f(.y) > f(x) + (v, y-x) for au y eX}.

The convex function fx is differentiable, and

(2.12) V/X(x) = X-^x - Jxx),

where Jx for X > 0 is the resolvent of parameter X associated to /, i.e. the operator
from X into X defined by

(2.13) Jxx:= il + Xdf)\x).

Note that
1

f\(x)=f(J\x) + 2\\\x~Jxx
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ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM 37

To obtain (2.12), observe that for any X > 0

1    „ „2
y e arg min

if and only if

/+2xl*-

(a/+X~1/)(y)-X1x = 0

or equivalently, if and only if

y=(I + Xdfy\x)=Jxx.

Since

dfx(x) = { v\(v,0) e 9(x,v)(/(y) + ±\\x - y ||2)},

we have

V\(x) = { v\v = X_1(x -Jxx)},

which also means that the set of subgradients is a singleton and, fx being convex, it
is thus Fréchet differentiable with its gradient vfx given by (2.12). The resolvent Jx
is a contraction and the gradient x >-> Vfx(x) is Lipschitz with constant \_1 (for
more about resolvents and the properties of Yosida approximates (/ + X3/) : of the
monotone operator 3/, consult [13]).

Combining (2.12) with (2.10), we obtain

2.14. Corollary. Suppose f is a proper closed convex function defined on a
separable Hilbert space X. Then for any X > 0

(2.15) v(/*)A(Xx) = Jx-ix = x - \-xvA-.(x).

Now let SCQ^) be the cone of proper lower semicontinuous convex functions
defined on X, here a Hilbert space. For every X > 0 and p> Owe define on SCC(X)
the distance functions

(2.16) dxJf,g)=  sup |A(x)-gx(x)|
IMKp

and

(2.17) d(Jf,g)=  sup \\j{x-Jix\\,
W<p

where / and g are two elements of SCQX) and J{ and J{ are the resolvents of
parameter X associated with / and g respectively. Note that in view of (2.12) we
could also define d( „ as follows:

(2.18) dJKp(f,g) = X  sup || v/x(*) - Vgx(x)||.
IWKp
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38 HEDY ATTOUCH AND R. J. B. WETS

Recall that if /e SCC^), so does /*, and /** =/. This suggests comparing
distances between any two functions and their conjugates. This leads us to

2.19. Theorem. Suppose X is a Hilbert space. Then for any f, g e SCC( X) and
any X > 0 and p 3* 0

(2.20) dKp(f,g) = dx-KpX-i(f*,g*),
and

(2.21) dlJf,g) = Xdl-1,pX-i(f*,g*).

Proof. From (2.10) it follows that

\h(x)-gx(x)H(r)x-^-1x)-(g*)M^-1x)\
and hence

sup \h(x)-gx(x)\=    sup    |(/*)x-iO0-(**)x-»O0|
ll*ll«P || v||<X_1P

which gives us (2.20).
From (2.15) and (2.12) we see that

|/Jfx-/ifx||-X||/^.(X-1jc) -/¿.(x-1*)!
which implies that

sup \\j(x - J£x\\ = A    sup    \\j(-i(y) - Jfi(y) \\
ll*ll«P H.vlKX-'p

and this yields (2.21).   D
Of course with A = 1, as a direct consequence of the above and (2.18), we obtain

2.22. Corollary (isometries). For every p ^ 0, the Legendre-Fenchel transform
on SCC(X) is an isometry for dlp andd[p, i.e. for all f, gin SCC(A'):

(2.23) dlp(f,g) = dlp(f*,g*)

and

(2-24) dip(f,g) = d{Jf*,g*).
Note also that for A = 1,

d{,p(f,g)=  sup ||v/i(*)- Vgx(x)||.
11*11 <p

The distance function d± „ is calculated in terms of the function values, whereas
d( is in terms of slopes (2.18) or resolvents (2.17). Both distance functions generate
Hausdorff metrics, for example:
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ISOMETRIES FOR THE LEGENDRE-FENCHEL TRANSFORM 39

with the {pk, k = 1,...} a sequence of positive real numbers increasing to + oo,
and

00

(2.26) dist'(/,g):=   I \{2-kdlPk(f,g))/{l + d{Jf,g))}.
k = l

Let us note that dist(/, g) = 0 implies /x = gx and hence f = g. This last
implication, which might seem at first surprising, relies on the fact that the functions
/ and g are closed and convex. Indeed if for such functions and some A0 > 0 one
has /x = g\ , then / = g. To see this, just take the conjugates of /Xo and gX(¡. From
(2.7)   '

/-* + ^0||.||2=„* + ^0||.||2J 2 " "      *        2 "  "

which implies

f* = g*.
It follows that / = g since the functions / and g are closed and convex. Let us stress
the fact that in order to recover general closed functions / from their Moreau-Yosida
approximates one needs all approximates fx (or at least a sequence fx with A„ -» 0
as n -* + oo).

Similarly, disty(/, g) = 0 implies 3/ = 3g and hence / = g after some normaliza-
tion of the functions.

From (2.23) and (2.24), one gets the following

2.27. Corollary (isometry). Suppose X is a Hilbert space. The Legendre-Fenchel
transform on SCC(Jf) is an isometry for the Hausdorff metrics dist and disty defined
by (2.25) and (2.26). In particular, we have

(2.28) dist(/,g) = dist(/*,g*)

and

(2.29) dist'(/, g) = disty(/*, g*).

It should be emphasized that convergence for a sequence of convex functions {/":
X —> R, i» = 1,...} to a limit function / can of course be defined in terms of these
distance functions. As can be surmised from our earlier comments, there is a close
connection between epi-convergence in SCC(X) and the convergence generated by
the metrics introduced earlier. To study these relationships, we begin with comparing
the uniform structures associated to the distance functions {dx p; A > 0, p > 0} and
{<„; A > 0, p > 0}.

2.30. Proposition. Suppose f and g are proper closed convex functions defined on a
Hilbert space X. For any A > 0 and p ^ 0 let dx p and dx be the distance functions
defined by (2.16) and (2.17) respectively. Then

(2.31) dxJf, g) < X-V<„(/, g) + «x(/, g),
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40 HEDY ATTOUCH AND R. J. B. WETS

where

(2.32) «,(/, g) = |/x(0) - gA(0) | = dXßif, g).

Proof. We have that

h(x)=fxiO)+f (vfxirx),x)dr,

since fx is finite everywhere and differentiable, see (2.12). The same holds with g
and thus

A(*) - Sxix)=h(0) - gA(0) + Ç ( VA(tx) - Vgxirx),x)d7.

This yields

lA(*)-gx(*)l<lA(0)-gx(0)|+ f \(vfx(rx)-Vgx(Tx),x)\dj

<ax(f,g)+\\x\\- f ||vA(tx)- Wgxirx)\\dr,

where the last inequality follows from the Cauchy-Schwarz inequality. Taking the
supremum on both sides with x restricted to the closed ball of radius p, we have

¿x,P( A g) < «x( A g) + pf A"Kp(A g) dr,

utilizing here the relation (2.18). And this in turn gives (2.31).    D

2.33. Theorem. Suppose f and g are proper closed convex functions defined on a
Hilbert space X. For any A > 0 and p ^ 0 let dx and dx be the distance functions
defined by (2.16) and (2.17) respectively. Then

(2.34) <p(Ag)<(l + A)(2A.Po(Ag))1/2

for any p0 such that

(2.35) po^Cl + X-^p + X-^xi/.g),
where

(2-36) 0x(Ag)=Ko|| + ||AgO||.

Proof. Since A and gx are convex, finite everywhere, and differentiable with
gradients Vfx and Vgx, we have that for any x and y in X:

h(y)-fÁx)>(vfx(x),y-x),
g\(x)-g\(y)>(vgx(y),x -y).

Adding them up, these inequalities yield for all x and y in X:

(2.37) [ A(y) - gx(y)] - [AW - gx(*)] > < v/x(*) - Vgx( v), y-x).
Now fix x and choose y such that

(2.38) y:= (/ + Vgxyl[(I + Vfx)(x)] = ^(X/ + Ag+i)[U + VA)(*)] !
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the last equality comes from (2.5), which implies that

J?x = (A + l)_1(Ax + Ag+i*) - (/ + Vgx)"1*.

Thus for all x e X and y as above, the inequality (2.37) becomes

(2.39)    || vAW - vgx(y) || « |(A( v) - gx(y)) -(AW " *x(*)) l^
Next, we obtain a lower bound for the left-hand side term of (2.39) in terms of
II Y/x(*) - Vgx(x)||. Indeed we have

II VA(*) - Vgx(x) || < || vA(*) - Vgx( v) || + || Vgx(y) - Vgx(x) ||
<I|VA(*)- Vgx(v)||+A-1||x- v||

<(l+X-1)||vA(^)-vgx(y)|;
the second inequality follows from the fact that Vgx is Lipschitz with constant X-1,
and the third inequality from the definition (2.38) of y which implies that

x-y= vgx(v)- vA(*)-
This last inequality with (2.39) implies
(2.40)

II vA(x) - vgx(x) || < (1 + A^)(| A( v) - gx(y) | + | AW - gx(*) I)'72-
Now since /f+1 is a contraction, so is

~ 1 A
^xTT^ + xTT7

and thus for any z

||Dxz||<||i)X2-JDx0| + ||I'x0NI|z||+ Y^-H/jf+,011.

Also,

||(/ + vA)(*) II < II*II + II v/x(x) - v/x(0) || +1| vA(o) ||
X +  1  ,, 1   i,   Tfnu<^r\\x\\ + ̂ \\j{0\\,

where to obtain the last inequality we have used the facts that v/x is Lipschitz with
constant X-1 and, as follows from (2.12), that

vfx(o) = Uo-j{o).X
Thus for y, as defined by (2.38), we have

(2.41) ll^ll^^ll^ll+lll^oll + ̂ II^^Oll.
Noting that for every x e X, where X -> || Vgxx|| increases as X decreases to zero,

we obtain

l|vgx+10||<||vgx0||,
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42 HEDY ATTOUCH AND R. J. B. WETS

that is

X-rill^iONx11^01
Returning to (2.41) we get

M<nr Wl + x"1(lkio|+iiJjf on).
Taking the supremum on both sides of (2.40) with ||x|| < p and appealing to (2.18)
and the above inequality, we obtain

1/2

sup \fx(y)-g\(y)\+ sup |A(*)-gx(*)l
>'ll«Po IWKp

X-ld[Jf,g)^(l+X-1)

with

po = (l + A-1)p + A-1(||//0|| + ||Ag0||).
Since p < p0, this yields (2.34).   D

2.42. Corollary. Suppose f and g are proper closed convex functions defined on a
Hilbert space X such that

/(0) = inf/=0 = infg = g(0).
Then for any A > 0 and p ^ 0 we have

(2.43) XdxJf,g) < p<p(Ag) < P(l + A)[2A,(1+x-)p(Ag)]1/2.
In particular, when A = 1, this implies

(2.44) dhp(f, g) < pdijf, g) < 3p{dU2p(f, g))1/2.

The inequalities (2.31) and (2.34), summarized in (2.43) in the "normalized" case
(/(0) = 0 = inf/), make explicit the relationship between the uniform structures
induced by dx p and dx p on SCC(A'). If we restrict ourselves to the convex cone of
"normalized" functions in SCC( X), i.e. such that /(0) = 0 = inf A then

(2.45) dxJf,g) < pX-^i/.g) ^ p(l + X-'lK^^-.i/.g)]172.
Let {/": X -> R, v = 1,...} be a sequence of proper convex functions, and

suppose they are "normalized" as defined above. Then (2.45) allows us to compare
the convergence "rate" of the functions, or at least of their Moreau-Yosida ap-
proximates of parameter A, and that of their resolvents. And either one of these then
give us a measure of the convergence rate of a sequence of epi-convergent functions
as we show next. Let us begin with a couple of preliminary lemmas that are of
independent interest in various applications of these results.

2.46. Lemma. Suppose X is a Hilbert space, with f and g proper, lower semicontinu-
ous convex functions defined on X. Then for all X > 0, ju > 0 and p > 0

¿x+p.,p(Ag) < dXpo(f,g)
for any p0 such that

P0>p + M~1max{|A/0||,||Ag0||}.
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Proof. Let A > 0 and u > 0 and recall that, in view of (2.5), ( fx)ß = f-\ + L

»e)i

1   m „2A+,*(*) = inf (A(») + ödl*-w2/x

and

Suppose

Then

which yields

We also have that

and, of course,

gx+^(x)=m^gx(í;) + 2^||x-í;|

!;í:=argmin(A(-) + ¿ll*--||2).

0= Vfx{v{)+Uv{-x)

v{ = (i + uvfxy\x).

fx+,(x)=fM) + ¿II*-"il

1 2g\+¿x) < 8Á°Í) + j^W* - «ill >2M1

and these two relations imply

(2.47) gx+M(x) -fx+ll(x) < gx{v{) -fx{v{).

Since x <-* J^x = v{ is a contraction,

ikii <h - ̂ A°ll+kA°ll <n* - °n+kA°l-
On the other hand, from the equality V( A)M = VA + M> it follows that

Jf*x= (X + u)~1[Xx + aJ{+fix],

/A0-(X + M)"Vjf+(i0,
and thus

Khwi+Mx + ̂ rl/^Pi.
Returning to (2.47), for any p > 0

sup (gx+„W -A+mÍ-*)) <   SUP  (Sx(*)~A(*))
II*Np IUIKpo

with

p0>p + u(X + ^)'1max{||y/+(X0|, ||Ag+fl0||}.
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44 HEDY ATTOUCH AND R. J. B. WETS

Observe that A >-> ||v{x|| and A >-» ||Vfx|| are monotonically decreasing functions,
and thus the above inequality is satisfied if

Pö> p + l»X-1max{||^fO||, ||JjfO||}.
Repeating the same argument, but interchanging the role of / and g, and using the
definition of dx p yields

A+fl,p(Ag)<¿x,p0(Ag)-     □

2.48. Lemma. Suppose X is a Hilbert space, with f and g proper convex lower
semicontinuous functions defined on X. Then for any X > 0, a > 0 and p > 0

dx.Pif,g)<dx+lip,(f,g),
where

p':= (l + /iX-1)p + MX-1max{||//0||,||yjfO||}.

Proof. With the same construction as in the proof of Lemma 2.46 we have, from
(2.47), that

A(»x) -gx("0<A+„(*)-£x+,i(*)-
Observe that (/ + uVfx)(v{) = x. Given any y = X, taking x = (I + avfx)(y) we
obtain v{(x) = y and thus

(2.49) A(v)-gx(y)<A + /1(w{)-gx + /I(w{)

with w{:= (I + juvAXv). Note that

IWhiivii + M-Kn^ii+lk/oll)-
When || v|| < p, it follows that

||w{||< (1 + aX~l)p + uX'^lJlOW^ p'.
Taking suprema on both sides of (2.49) with \\y\\ < p yields

sup ifx(y)-gxiy)) <  sup {fx+liiy)-gx+ll(y)).
\\y\\<P Ib-IKp'

The same holds when the roles of / and g are interchanged, and this completes the
proof.    □

As a direct consequence of Lemmas 2.46 and 2.48 we obtain

2.50. Corollary. Suppose X is a Hilbert space with f and g proper lower
semicontinuous convex functions defined on X such that /(0) = g(0) = inf/= infg.
Then for all X > 0, u > 0 and p > 0

¿x+M,p(Ag) < äXp(f,g) < ¿(x+,o,p(i+x-V)(As)-

2.51. Theorem. Suppose X is a Hilbert space, and {/": X -* R, v = 1,...} andf:
X -* R are a collection of proper closed convex functions, such that for some A > 0
and all p ^ 0,

lim ¿J/,/') = 0.
V-* OO
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Then

f = Mosco-epi-lim/".
v—* 00

Moreover, if X is finite dimensional, then the reverse implication is also valid.

Proof. In view of [9, Théorème 1.2] a sequence of proper convex functions {/",
v = 1,...} Mosco-epi-converges to / if and only if for all A > 0, the Moreau-Yosida
approximates of parameter A converge pointwise to A» i-e- f°r au x e X and all
A > 0,

lini/x'W=AW.
V—* OO

Now, if

(2.52) hm dxJf,r) = 0
v—* 00

for some A = A0 > 0 and all p > 0, it follows from Lemmas 2.46 and 2.48 that the
above holds for all A > 0. The first one of these lemmas gives the convergence for all
A > A0, and the second one for all 0 < A < A0, since it implies that

A,P(Ag)< A0,P()(Ag)>
where

p0 = (1 +(A0 - X)X-*)p +(X0 - A)A-1(max[||7(0||, || Ag0||]).

Since (2.52) implies the uniform (pointwise) convergence on all balls of radius p of
the A" to fx, and this for all A > 0, we have that / is the Mosco-epi-limit of the /".
To obtain the converse observe that the convex functions [fx, p = 1,...} and A
are equi-locally Lipschitz, and this combined with pointwise convergence implies, by
the Arzelà-Ascoli Theorem, the uniform convergence on compact sets, which in
finite dimensions are the closed bounded sets.   D

Note that we used Lemmas 2.46 and 2.48 to pass from requiring that dx p(f,f)
goes to 0 for some A > 0 instead of for all A > 0. This also confirms that the
epi-convergence engendered by the convergence of the distance functions dx is
strictly stronger (in infinite dimensions) than the Mosco-epi-convergence, since
having

A = pointwise-limA"
for some A > 0 is not sufficient to ensure that / is the Mosco-epi-limit of the /". It
is also easy to see that we could not obtain the epi-convergence of the sequence {/",
v = I,...} to / by requiring that dXp(f,f) goes to 0 for all A > 0 and some
p0 > 0. So, we may feel that Theorem 2.51 is in this setting the best result possible.

Let us finally notice that Theorem 2.51 is certainly valid in a reflexive Banach
space. One has to extend Lemmas 2.46 and 2.48 to this setting and rely on [8,
Theorem 3.26].

The next result could be obtained from the equivalence of Mosco-epi-convergence
and the convergence of the resolvents [9, Théorème 1.2(c),(d)]. However, it is easier
to obtain it here as a corollary of the previous theorem, Proposition 2.30 and
Theorem 2.33.
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2.53. Corollary. Suppose X is a Hilbert space, and {f: X -* R, v = 1,... } and
f: X -> R are proper convex lower semicontinuous functions. If for some A > 0 and all
p > 0

lim <„(/,/*) = 0    and     lim dXß(f,f) = 0,
v—* oo v—* 00

/= Mosco-epi-lim/".
P—* 00

Moreover, if X is finite dimensional, then the converse is also true.

Proof. It really suffices to observe that the hypotheses of the corollary imply that
for all A > 0 and p ^ 0

(2.54) lim dxJf,f) = 0,
v —* 00

as follows from (2.31), and then appeal to the theorem to complete the proof of the
first claim. In the other direction, we first rely on Theorem 2.51 to obtain (2.54) from
which it follows (2.34) that

lim d(p(f,f") = 0
v—* 00

for all p > 0, since (2.54) also implies that lim p^xdxo(f,f") = 0.    D
To conclude this section let us describe a situation that covers a number of

important applications, where the metrics dXp and dXp appear as the appropriate
concepts for measuring distance between convex functions.

We write

/= T^-epi-lim/"
v—* 00

if epi-convergence is with respect to the T-topology on X, i.e. for all x in X, (2.3)
must hold for all sequences {xr, v — 1,...} r-converging to x and (2.4) for some
T-converging sequence. Recall that a collection of functions {/": X -* R, a e A} is
said to be equi-coercive if there exist a function 0: /< + -> [0, oo] with limr^x0{r) =
oo such that for all a g A

fix) > 6(\\x\\x)    for all xe*.

2.55. Theorem. Suppose X and H are two Hilbert spaces and X •-* H is a
continuous compact embedding. Then, for any collection {f; f, v = 1,...} of proper,
equi-coercive, lower semicontinuous, convex functions defined on X, the following four
assertions are equivalent:

(i) / = weak^--epi-lim,_,„,/';
(ii) / = Mosco-epi-lim „_ ^ /" on H;
(iii) for all p > 0, lim,^ dUp(f,f*) = 0;
(iv) for all p > 0, lim_ d{Jf, f) = 0 and Hmv^xdXfl(f,f) - 0;

where dx    and dx   are defined in terms of the norm \\ • \\H on H.
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/'(*)

Proof. Because of the coercivity assumption, each function /" on H defined by

'f(x)    iîx&X,
+ 00       iîx = H\X

is also a proper, lower semicontinuous convex function. We simply write /" when no
ambiguity is possible.

(i) -» (ii). We begin by verifying the appropriate version of (2.4) for the Mosco-
epi-convergence, i.e. to every x e H there corresponds a strongly convergent se-
quence {je* e H, p = 1,...} such that limsupv^00/"(x'') < f(x). There is nothing
to prove if f(x) = oo. If f(x) < oo, then x e X and from (i) it follows that there
exists a weakly convergent sequence {xv = X, v = 1,...} that gives the desired
inequality. This sequence is strongly converging in H since ^ is a compact
injection from X into H.

Now to establish (2.3), pick any sequence [xv = H, v = I,...} weakly converging
to x in H. We have to show that

Kminf/'(*') >/(*).
V-* 00

If liminf„^0O/"(x'') = oo, the inequality is clearly satisfied. Otherwise, passing to a
subsequence if necessary, we may assume that

lim inf/"(x") =  lim f'(x') < oo.
V—» 00 V—* 00

From the equi-coercivity of the sequence {/", p = 1,... }, and the compact embed-
ding X «■* H, it follows that for v sufficiently large the x" are in X and the sequence
is weakly converging in X to x. The desired inequality now follows from (2.3) itself
since / is the weak^-epi-limit of the /".

(ii) -» (i). The argument is similar to the preceding one, simplified by the fact that
we are now going from convergence in H to convergence in X.

(ii) -* (iv). We show that to every p > 0 and e > 0 there corresponds ve such that
for all v > vE and x e H with \\x\\H < p,

\\J{X - JXX\\H ^ E,

where J{ = jf and /x = //. We argue by contradiction. Assume that for some
p0 > 0 and e0 > 0 there exists a sequence {p{k), k = 1,...} that goes to + oo, and
a sequence {xk e. H, k = \,...} bounded in norm by p0 such that for all k:

(2.56) \\j{wxk - Vll> e0-
Since / = Mosco-epi-lim„^xf (on H) we have that for all x

A(x) =  lim f{(x),
V—* 00

cf. (2.6), and
(2.57) Jxx = strong^ lim J{x.

From the definition (2.13) of J{x, we have

f{(x) = f*{J{x) + \\\x - J{x\\2„,
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which implies

fî(x)>r(j;x).
Pick x° g dorn/. Then again /= Mosco-epi-limv^mfv implies the existence of a
sequence {x°", v = 1,...} strongly converging in H to x° such that

f(x°)=  lim fix0");
v—» 00

using here conditions (2.4) and (2.3). By definition of f[

A'(*W(*°')+ill*-*0'lk
and hence from the above, for k = 1,...

/"i)(;;(i)^)</'(t)(xM*1) + ill** - x°-'(*>||iï.
Now, the {x°'"'-k), k = 1,...} converge to x° and the {xk, k = 1,...} are norm-
bounded (by p0). Thus

which implies that

supf(k)(j{{k)xk) < oo,
k

sup || ̂ 1"</c)jcA: j) < 00
k

since the collection {fv(k), k = 1,...} is equi-coercive. This means that the se-
quence {J{{k)xk, k = 1,...} is (strongly) relatively compact in H since ^-> is a
compact embedding of X into H. Similarly, the sequence {Jlxk, k = 1,...} is
relatively compact in H. We can thus extract subsequences that we still denote by
[xk, k = 1,... } and {J{(k), k = l,...} such that

x = weak^- lim  xk,
k —* oo

(2.58) " = strong^ lim Jxxk,
k-* oo

v = strong ff lim J{(k)xk
k—> oo

for some u and u in H.
For any v in H, from the monotonicity of the operator 3/"—the functions /" are

convex—and (2.13) the definition of Jxx which implies x - J{x g dfv(J{x) and
y - J{y G df(J{y), we have

(J{y - J{x, (y-J{y)-(x- J{x)) > 0,

that is
/ \     h m2
\ Jîy - J\X, y - x) > || J{y - J{x|| ff.

From the continuity of x •-> /^x it follows that these operators are maximal
monotone [13] from H into i/. Moreover, the sequence of operators ( J", v = 1,...}
is graph convergent to /x as follows from (2.57), which implies the following closure
property, see [9]:

whenever x = weakw- lim x"; and y = strong^- lim y", and
(2.59) "^°° k^x,

y" = J{x", it follows that y = JYx.
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Using this result, with the sequences identified by (2.58), it yields

Jxx = strongH- lim Jxxk;        Jxx = strong^- lim J[(k)xk;
k->oo k—> oo

which clearly contradicts (2.56).
(iii) -» (iv) -* (ii). This follows from Proposition 2.30 and Theorem 2.51.    D

3. Isometry for Wijsman-approximates. In [6, §6] it is shown that the study of the
epi-convergence of a sequence {/", p = 1,...} to a limit function / can be reduced
to the study of the convergence of a parametrized family of functions {/"(A; •);
v = 1,..., A>0} obtained from the /' by inf-convoluting them with a collection
{g(A, •), A > 0}, called a cast in [6]. One is allowed to choose this collection
{g(A, •), A > 0} so as to endow the "regularized" functions {/"(A; •); v — 1,...,
A > 0} with some desired properties, provided naturally that as A |0 the /"(A; •)
converge (pointwise) to /", and that if /= epi-lim^^/", then a formula of the
type

lim   lim f(X,-)=f
X10  »-»oo

holds. One possibility is to choose for A > 0

r\    \       l  ii  ii2g(X,-)= 2X||-||.
This leads to the Moreau-Yosida approximates {fx, v — 1,...}, introduced in §2,
that have played such an important role in the theory and the applications of
epi-convergence beginning with [9]; for a more recent account consult [8]. Another
possibility is to choose the g(X, •) so that they are adapted to the sequence in
question such as done by Fougères and Truffert [14] in their work on lower
semicontinuous regularizations, in particular of integral functionals, by a reference
function. Each cast {g(X, •), X > 0} is potentially the source of new isometries for
the Legendre-Fenchel transform. In this section, we work with g(X, •) = X_1|| • || to
construct for given /, the "regularized" function:

(3.1) /[X](x):=(/DX-1||.||)(x)=inf[/(y)+X-1||x-y||].
y

We refer to /[X] as the Wijsman-approximate off of parameter X in recognition of the
role played by this type of function in the seminal work of Wijsman [1]. Of course,
we have that

epi/[\] = \(x,a = inf a')|(x,a') G epi/+ epi A_1||-|| j

and if / is a proper lower semicontinuous convex function, then so is /[X] for all
X > 0. Moreover, /[X] is Lipschitz assuming only that there exists a constant y > 0
such that f(x) + y{\\x\\ + 1) > 0 for all x (see [14, Theorem 3.2]). Here, unless
specified, we let A" be a Banach space with norm || • || paired with its dual X*
through the bilinear form ( ■ , •). The norm on X* is denoted by || • ||*. Let f:
X -> R be a proper lower semicontinuous convex function. Then

(3-2) (Ax,)» =/*(«)+*x-a»,
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where \pc is the indicator function of the set C, i.e.

(3.3) *c(x) 0 ifxGC,
. + oo     otherwise,

and B* = {£>||M|* < 1} is the unit ball of X*. Also

3.4.  Lemma.   Suppose X is a reflexive Banach space and f is a proper lower
semicontinuous convex function defined on X. Then

(3.5) /ix](*)=     sup    [{v,x)-f*(v)}.
IN.«*-1

Proof. We have

f[X](x)= inf[/(x-y) + A-1||v||]
y

= inf sap[(o,x-y) - f*(v) + X'l\\y\\]

sup -f*(o) + (v,x)- sup{(v,y)-X'x\

= sup [(»,*) -f*(v)-tx-iBt(v)],

where the interchange of inf (l and sup(, can be justified by the same arguments as
those used in the proof of Theorem 2.9; we have also used the fact that || • || * = \¡/Bm.
D

To begin with we exhibit a relationship between indicator and support functions.
We need a couple of lemmas, whose proofs we include for easy reference. The
second one is due to Hörmander [15], whereas the first one is, or should be, part of
the folklore. Recall that if C and D are two nonempty subsets of X, the Hausdorff
distance between C and D is given by

(3.6) haus(C, D) — sup sup dist(x,C), sup dist(x, D)
ieO xeC

where dist(x,C):= inf eC||x — v||.

3.7. Lemma. Suppose C and D are nonempty subsets of a Banach space X with norm
|| • || such that haus(C, D) is finite. Then

(3.8) haus(C, D) = sup |dist(x,C) - dist(x, D) \
X<BX

Proof. Given any nonempty set S, and any pair (y, z) in X, we always have

(3.9) II v-z|| + dist(y,S) ^ disu^S).
Indeed, for any e > 0, let

xe g e-argmin(|| y - • || + ^s):= { x g S\ \\y - x\\ - e < dist(y,5)},

Then

||y - z|| + dist(y,S) + £ >\\y - z|| +||y - xe\\ >\\z - xe\\ > dist(z,S)
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which yields (3.9) since the above holds for all e > 0. Now take any point x g X,
then for any e > 0 there always exists y g C such that

(3.10) |dist(x,C) - dist(x, D) | < |dist( y, D) \ + e,
or a point z g D such that

(3.11) |dist(x,C) -dist(x,Z))| < |dist(z, D) \ + e.
If dist(x, C) = dist(x, D) there is nothing to prove. Suppose that

a := dist(x, D) - dist(x, C) > 0.

For p = 1,..., let

y"G(lA)-argmin(||x- -\\ + *c)-

Then by (3.9), for v = 1,...

dist(y",D) > dist(x,£>) -||x -y"\\> dist(x,D) -dist(x,C) - v~l

which gives (3.10). We have to rely on (3.11) if a < 0. This means that

sup |dist(x,C) - dist(x, D) \ —    sup   |dist(x,C) - dist(x, D) \,
xeX xeiCUD

which in view of (3.10) and (3.11) can also be written:

sup  sup dist(x,D), sup dist(x,C)
.xeC i€D

and this is the definition of the Hausdorff distance.   D
The conjugate of the indicator function \ps of a set S is the support function of S

denoted by \j/%, i.e.

<¿*(í;) = sup[ (v,x)\xeS\.

3.12. Lemma [15].  Suppose C and D are nonempty closed convex subsets of a
reflexive Banach space X with norm || ■ || such that haus(C, D) is finite. Then

(3.13) haus(C, D) =    sup   \^*(v) ~ 4>d(v)\
IMI.«i

Proof. First, observe that for C nonempty convex we have

dist(x, C) = (H O ̂ c)(x)

= sup^x^-OHlD^)»]
v

= sup[(x,t;> -(tfvii.oi")+**(«'))]

=  sup [(x,v) -^êO)] = (^c)di(^);
IN.<1

compare with (3.5). Now

haus(C,D) = inf 0 \0 > sup dist(x, D), 6 >  sup dist(x,C)
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as follows from the definition of the Hausdorff distance. Since

sup dist(x,C)= sup    sup   [(x,v) - ¡p*(v)]
X<=D jEfl    ||U||«<1

=   sup
llelL<l

-^c(v) + sup (x, v)
x<=D

sup   y%(v) -^(«)]
IML«1

we have that

haus(C,D) = inf > sup irc{v)-rDiv)),o> sup (rDiv) - rdv))
IMI.«i IH.«i

which is just another version of (3.13).   D
Equipped with these two formulas, we are now ready to state the main result of

this section. For any pair (f, g) of proper functions defined on X, we define the
Wijsman distance d[X]p between / and g as follows:

(3-14) d[X]p(f,g) =   sup |/[X](x)-g[X)(x)|.
IWKp

If the functions are defined on the dual space X* then we write dfX]p to
emphasize the fact that the dual norm has been used in the definition of the
Wijsman distance.

3.15. Theorem. Suppose X is a Hilbert space and C, D are closed convex subsets of
Xsuch that OeCnfl. Then, for all X > 0 and p > 0 we have

(3.16) dlxlp(tc,tD) = dlp-llx-1{rc,n)-

Proof. By definition (3.14) of d[X]p

d{xhl,(4>c>4>D) =    sup  \i4<c)ix]ix) ~(4'D)Xx](x)\
||x||< p

= A"1  sup |dist(x,C) - dist(x,D)|
IWKp

= A-1   sup |dist(x,C n pB) - dist(x,£» n pB)\,
ll*ll«p

where B = (x|||x|| < 1} is the unit ball in X. The second equality follows from the
definition of (^C)[X], and the third one from the fact that, whenever C is a closed
convex set containing the origin and x g X satisfies ||x|| < p, then

(3.17) dist(x,C) = dist(x,CD pB).
Let us first notice that dist(x, C) < dist(x, C n pB). On the other hand since X is

a Hilbert space, the mapping y <-* projc y is a contraction. From 0 g C it follows
that

||projcx|| <||x|| < p.

Consequently, projcx belongs to C n pB and

dist(x,C) =||x - projcx|| ^ dist(x,Cn pB)

which combined with the opposite inequality yields (3.17).
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Let us return to the computation of d[X]p(\pc,\¡/D) and note that from (3.10) and
(3.11)

sup |dist(x,C n pB) - dist(x,D n pB)\
x&X

=   sup \dist(x,C n pB) - dist(x, D n pB)\,
M<p

the supremum being achieved (up to an arbitrary small quantity) on the set
(CuD)n pB. From Lemma 3.7 we obtain

d[XU(ypc,\bD) = A_1haus(Cn pB, D n pB).

Lemma 3.12 yields the dual formulation of haus(C O pB, D n pB), that is,

haus(C npB,DnPB)=    sup  |(^Cnpí)*(ü) -(^npi,)*^) I-

Let us observe that

Ucnpfl)* = Uc + *,bY = ̂ PPII-IU = (^c)[p-l-
Combining these last equalities and using the positive homogeneity of support
functions, we finally obtain

d[X].Mc^D)=        SUp      \{4'c)lp-i]iV)-i'pD)[p-1]il>)\=d[p-'].X-'{^C^*D)- D
IML<*_1

3.18. Corollary (isometry). Suppose X is a Hilbert space and C, D are closed
convex subsets of X such that 0 G C and OeD. Then

(3.19) W*o*o)-<Wte*£).
/.e. //je Legendre-Fenchel transform is an isometry as a map between the space of
indicator functions of convex sets and the space of support functions of convex sets when
the distance is defined in terms of d^x.

We recover in the Hilbert case the Walkup-Wets result [5] as a direct consequence
of this corollary. Indeed if C and D are nonempty closed convex cones, then both C
and D contain the origin and

Vc = »i'polO

where pol C = {v g X*\( v, x) < 0 for all x g C} is the polar cone of C. Then

(¡mA^c* ^d) = haus(C n B, D n B)
and

<W*poic. ^poiß) = haus(polCn B,polD n £).
Thus

3.20. Corollary (Isometry [5]). Suppose # is i/ie space of nonempty closed convex
cones included in a Hilbert space X. Then pol: <£ -> ^ is an isometry in the following
sense: Given P and Q in *€

haus(P n B, Q n B) = hausipolP n £,polg n 5).
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Given {C, p = 1,... } a sequence of subsets of X, the formula (3.16) allows us to
define a convergence rate for the epi-convergence of their support and indicator
functions. Indeed we have

3.21. Theorem. Suppose X is a reflexive Banach space, and {/": X -» R,
v = 1,...} and f: X -* R are a collection of proper lower semicontinuous convex
functions uniformly minorized by the quadratic form — a(||x|| + 1) for some a > 0,
such that for all X > 0 and all p ^ 0

lim rf[xi.p(/,/') = 0.
v—» 00

Then

/= Mosco-epi-lim A.
V—» + 00

Moreover, when X is finite dimensional, the reverse implication is also valid.

Proof. Let us first verify that given any sequence {x\ p = 1,...} weakly
converging to x, the inequality (2.3) holds, i.e.

(3.22) hmiaîf(xv)>f(x).
v

By definition of /A,, for every X > 0
/'(*') >/[Á](xr).

The sequence {xp, p = 1,... }, being weakly convergent, is contained in a fixed ball
Bp of X. By definition of d[X]p

|ft](*0-/[X](*0|< W/V)-
Therefore

/'(*') >/[X](*,)-<W/'./)-
Using the assumption that d[X]p(f,f) goes to 0 as v goes to oo, and the weak lower
semicontinuity of the convex continuous function /[X), this inequality yields

lim inf/'(*,) >/[X,(x).
v—» 00

Since / = supx > 0/[X] (see [6, §6]), we obtain (3.22).
Let us now verify the second assertion (2.4) of the Mosco-epi-convergence

definition, i.e., the existence of a sequence {xv, p = 1,... } for every x g X strongly
converging to x such that

(3.23) f(x)> lim sup/"(x").

For X > 0, and 7 = 1,2,..., let

(3.24) /fx,* g argminv,eK|/"(y) + yJI* _-Hlj>

which means that

(3.25) f{X](x)=f(Jl\]x)+h\x-J["X]x\\.
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Note that Jxx\x is not necessarily unique. Since /> /[X], and /[X] = limv_00/[x], it
follows that for every x g X,

f(x) > limsup limsupAx](x),
X10 v-»oo

which with (3.24) yields

(3.26) f(x) > limsup limsup
x¿o v —» oo     "■

f\J{\]X) + X llX       ̂ [A]*!

We can now rely on a diagonalization process [8], to choose a sequence { A„, v g N}
decreasing to zero such that

(3.27) /(x) > limsup
X|0

1
f[J[\,]X) + ^    || X       ^[X,!-*!

If /(*) = oo, there is nothing to prove, the inequality (3.23) is trivially satisfied by
any sequence, converging to x. So let us assume that f(x)< oo. Since the functions,
{/", v = 1,...} are uniformly minorized by x •-» -a(||x|| + 1), we have that

r(j{K]x)^-a(\\j{K]x\\+l)

and hence for v sufficiently large

(3.28) fix) + 1 >

This in turn implies that

-«(11-ft.]* 11 + ) + x+ I"        V

(3.29) I* - -ft.]*! < ! _ yaX (/(*) + «INI + « + 1).
Since X„ j 0, it follows that with x" := J[X jX that

x = strong- lim x",
y-» 00

which with (3.27) yields (3.23).
For the converse observe that for all X > 0, the functions {/1X], v — 1,...} and

/[X] are equi-Lipschitz and this combined with pointwise convergence [6, Theorem 5]
implies, by the Arzela-Ascoli Theorem, the uniform convergence on compact sets,
which in finite dimensions correspond to the closed bounded sets, i.e. for all X > 0
and p > 0

0=  lim    sup |Ax]0)-/[Á](*)|=  lim d[X],p(/,/*)- D

3.30. Corollary [16, p. 523; 17, §4]. Suppose X is a reflexive Banach space and
{C; C, v = 1,...} is a collection of closed nonempty convex subsets of X and for all
P >0,

lim haus(C n pB, D n pB) = 0.
v—* 00

Then C = Mosco-lim^^C, i.e. \pc = Mosco-epi-lim,, _ x \pcv. Moreover, if X is a
finite dimensional Euclidean space, the reverse implication is also valid.
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Proof. Returning to the beginning of the proof of Theorem 3.15, we see that in
general

^[xi.pi^c^ß) = X"1  sup |dist(x,C n pB) - dist(x,D n pB)\
||JC||<P

< A-1   sup |dist(x,C n pB) - dist(x,D n p5)|
IWKp

= A"1 haus(C D pB, D n pB),
with equality if X is a Hilbert space. Thus, lim^^hausiC n p5, C n pfi) = 0
implies in the reflexive Banach case that lim,,.,^ diX]p(\pc, \pc.) = 0, and is equiva-
lent to that condition when X is the finite dimensional Euclidean space. It now
suffices to apply Theorem 3.21 with / = \pc and /" = tpc-    n

Note finally that as a consequence of this corollary, (3.16), and (3.13), in finite
dimension, we have that

ib* = epi-lim ¡b*'

if and only if

(3.31) lim sup \(^c')ix]iv) -(^cW")
IMI«l

0.

It is not known, as is the case for Moreau-Yosida approximates, if the pointwise
convergence of all the Wijsman approximates does actually imply Mosco-conver-
gence, although it is natural to conjecture that it does.

As with the distance functions dx and dx p generated by the Moreau-Yosida
approximates (see (2.25) and (2.26)), we can define a Hausdorff metric on the spaces
of indicator and support functions, equivalently on the space of closed convex sets,
for which the Legendre-Fenchel transform is an isometry. We would refer to it as the
Wijsman metric. We can also go one step further in using the preceding results to
build a distance function on the space SCC(-Y) of proper lower semicontinuous
convex functions defined on X. One way to achieve this is detailed in §4; here we
record another possibility. Let f,g = SCC(A") and p > 0 such that C'.— epi/n
(pB X R) and D:= epig n (pB X R) are nonempty.

Then, by (3.13),
(3.32)

haus(epi/n(p5 X R),epign(pB X R)) =    sup    \4>*-(v,ß) - yb*D(v,ß)\
\\v,ß\U<l

since here the Hausdorff distance is finite. By straightforward convex calculus we
have

ttPi/rl(PBxR)iv,ß)=   sup  [(v,x)+aß\a>f(x)]
*ll<p

+ 00

sup  (v,x)
11*11« p

if j8> 0,
if yß = 0,

sup [(v,x)-(-ß)f(x)]     if/? < 0.
1*11 <p
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For h G SCC( X) and 6 g R + , the epigraphical multiplication 6 * h is defined by

ln      '.   .      fO if 0 = 0, x = 0,
(***)(*)= [^-i,)     ifö>0

For 0 > 0, we have

(6*h)*(v) = 6h*iv).
Thus for ß < 0

sup  [<Vx>-(-/?)/(*)] =   sup [(v,x)-((-ß)*f*)*(x)]
II*II«p II*IKp

= ((-/8)*/*)[p -](«)
as follows from (3.5). Also for /? = 0 we have a similar formula and thus

*;/n<,iX«)(P./5)-((-i')*/*V'i('')-
Substituting this in (3.32), with an obvious change of variable and epi[pl/ =
{(x,a)\f(x)^ a, \\x\\ ^ p), we get

haus(epilp]/, epi[p]g) =     sup    \(ß */*)[p-i,(ü) -(/? * g*)[p-i](i;) |.
.    l|o,p||.<l

From this relation we could extract a notion of distance between / and g and their
conjugates.

4. The cosmic distance. In [18, §1.F] Rockafellar and Wets introduce the notion of
extended real vector space by adjoining to the finite dimensional space R" its
horizon, horÄ", consisting of all direction points; each direction point corresponding
to an equivalence class determined by the congruence relation that identifies parallel
closed half-lines. In contrast to a 1-point compactification of R", the compactifica-
tion by direction points allows us to discriminate between different directions of
unboundedness of sets and sequences. Geometrically, one can identify this extended
space with the surface of an «-dimensional hemisphere with the rim (the horizon)
representing the direction points, and the open half-sphere the points of R", cf.
Figure A. Given any normed linear space (X, || • ||), the same construction enables
one to identify the extended real vector space X U hor X, where hor X consists of the
direction points of X, with a closed hemisphere in X X R_; the unit ball in X X R
is {(x, i?)|(||x||2 + r/2)1/2 < 1}. In general this is not a compactification of X but it
suggests defining a metric on X that makes it a bounded space. The cosmic metric
was introduced in [18, Definition 1F3] when X is a finite dimensional Euclidean
space. Here we extend its definition to a more general setting.

4.1. Definition. The cosmic distance between two points x and y of an extended
normed linear space X U hor A1, denoted by dist'(x, y) is the geodesic distance between
the corresponding elements of the hemisphere H, i.e. the distance along the great circle
joining the elements in question.

We shall not pursue here a detailed study of the cosmic metric. This is done in the
Euclidean case in [18, §§1F and 3B]. We only use it to exhibit an isometry for the
Legendre-Fenchel transform that does not rely on approximates.
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Hemisphere

hor X

Figure A. The cosmic view of X

Every extended-real-valued function / defined on X, a reflexive Banach space, is
completely determined by its epigraph, epi/, a subset of X X R. Given any subset
of ( X X R ), in particular epi /, we can identify it as in [6] with a closed convex cone
in(X X R)X R_,viz.:

cl{ X(x,a, -l)|(x,a) e epi/, A > 0} =:cl cn(epi/X {-1}),

or equivalently with a closed subset of the hemisphere H in (X X R) X R_. Given
two proper functions / and g we can use as a measure of the distance between them
the Hausdorff distance between the (bounded) subsets of the hemisphere determined
by the preceding construction or equivalently, in view of Definition 4.1, the
cosmic-Huasdorff distance, denoted by haus', between the (unbounded) subsets epi /
and epi g of X X R,
(4.2)    haus'(epi/, epi g)

and

sup      dist'((x,a), epig),      sup      dist'(( y,ß), epi/)
(jc,a)eepi/ (y,y3)eepig

dist'((x,a),epig):=        inf       distc((x,a), iy,ß)).
(y,0)eepig

If / and g are convex functions on a Hilbert space X, then the closed cones they
generate in ( X X R ) X R _ are also convex. For closed convex cones we already have
an isometry for the polar map in terms of the Hausdorff distance between their
intersections with the unit ball, or equivalently between their intersections with the
unit sphere. Since, by construction and definition of the cosmic distance,
(4.3)

haus' (epi /, epi g ) = haus(cl cn(epi / X { -1} ) n H, cl cn(epi g X ( -1} ) n H ),

which by Corollary 3.20 equals

haus[(pol cn(epi/ X {-1})) n H, (pol cn(epig X {-1})) n H],
which again by Definition 4.1 is equal to

haus'( Ef*,E*),
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where

£/:= {(D,jB)|(>,-l,jB)epolcn(epi/x{-l})}

and E* is defined similarly. Now observe that (v, ß) belongs to Ef if and only if

(u,x) - a - ß < 0    for all (x, a) G epi/,

or equivalently if (v, ß) G epi/*. And thus

(4.4) haus'(epi/, epig) = haus'(epi/*, epig*).

Let us denote by dc(f, g) the cosmic distance between two proper functions / and g,
defined by
(4.5) ¿'(/,g) = haus'(epi/,epig).
We thus obtain the theorem below that completes a similar result to Rockafellar and
Wets [18, Chapter 3]:

4.6. Theorem. Suppose X is a Hilbert space and f and g are proper lower
semicontinuous convex functions defined on X. Then

(4.7) dc(f,g) = dc(f*,g*).

Given a collection of convex functions {/", v = 1,... } defined on X, a reflexive
Banach space, we can introduce a notion of convergence in terms of the cosmic
distance. We say that / is the cosmic-epi-limit of the sequence {/", v = 1,...}
which we write

/=epi'-lim/*,   if lim «/«(/»,/)-0.
x^oo "-*00

The next theorem justifies referring to / as an epi-limit.

4.8. Theorem. Suppose X is a reflexive Banach space and {/; /", v = 1,...} is a
collection of proper lower semicontinuous convex functions defined on X such that
/=epi'-lim_00/". Then

f= Mosco-epi-lim/".
V—* 00

Moreover, if X is a finite dimensional Euclidean space, then f = epi-lim„^O0/" if and
only if f= epi'-lim „^Z".

Proof. We know that

lim haus'(epi/", epi/) = 0
V —» 00

if and only if

lim haus([clcn(epi/" x(-l})] r\B, [cl cn(epi/X {-1})] n B) = 0.
!>—* 00

The last equality holds if and only if the same holds with B replaced by pB with any
p > 0, the sets involved being closed convex cones. We now apply Corollary 3.30
and we see that the above implies that

clcn(epi/x{-l}) = Mosco-lim clcn(epiA X{-1}),
V—* 00
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and this in turn implies that

epi/= Mosco-lim epi/".
»'—♦OO

If X is the Euclidean «-space, to obtain the second assertion we argue as above
except that we rely on the second part of Corollary 3.30:

limhaus' (epi/", epi/) = 0
v —» 00

if and only if
clcn(epi/x{-l}) =  lim cl cn(epi/" X {-1}).

v—» 00

By [6, §4] this occurs if and only if epi/= lim„_(00epi/", or equivalently, / =
epi-lim^^/".   D
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