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Abstract. Solvable subgroups of the isometry groups of a simply-connect-

ed manifold of negative curvature are characterized and this characterization

is used to show that the isometry group of the universal Riemannian covering

of a compact manifold of negative curvature is either discrete or semisimple.

0. Introduction. A number of recent papers have related the geometry of

manifolds of negative curvature to the algebra of various groups of isometries

(for example [4], [8]). In this paper we study various groups of isometries of a

simply-connected manifold M of negative curvature. In Theorem 5 we use

results of Bishop and O'Neill [2] to show that a solvable group of isometries

either leave a single geodesic invariant, permute a class of asymptotic

geodesies, or else have a nonempty fixed point set. If the total isometry group

I(M) does not satisfy either of two former conditions, we show in Theorem 7

that there is a compact normal subgroup K such that I(M)/K is semisimple

and acts effectively on a closed, connected, totally convex submanifold of M.

Using these results we show in Theorem 9 that if M is the universal

Riemannian covering of a compact manifold of negative curvature, then the

isometry group 7(Af) is either discrete or semisimple. This may be viewed as

an extension of the classical situation where the compact manifold may be

considered as a double coset space T\G/7<" of a connected semisimple Lie

group G and where the symmetric space G/K can be given an invariant metric

of nonpositive curvature so that G is isomorphic to the identity component of

the isometry group [5].

1. Preliminaries. M will denote a simply-connected, complete, Riemannian

manifold of sectional curvature K < C < 0. Given any oriented geodesic y

and any point X G A7 there exists a unique oriented geodesic through x whose

distance from y tends to zero as t tends to oo, the asymptote to y through x [2].

Orthogonal trajectories to a family of asymptotic geodesies give a foliation of

M by (n — 1) planes called horospheres [1].

7(Af) will denote the Lie group of isometries of M and 70 its identity

component. If £ is a class of asymptotic geodesies let S(£), the stability group

of £, be the subgroup of isometries which permute the geodesies of £ (compare
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'ray-subgroup' [2]). Now each element of S(£) will also permute the horo-

spheres associated to £. Define 77(£) to be the subgroup of 5(|), composed of

isometries which map each such horosphere into itself. However using the fact

that isometries of S(£) commute with the geodesic flow restricted to geodesies

of | we can show

Lemma 1. 7/d> G S(£) maps one horosphere associated to £ into itself, then

4> G 77(0-

We need the following characterization of isometries on M.

Proposition 2 (Bishop-O'Neill [2]). Let <j> be an isometry of M. Then

exactly one of the following is true:

(a) d> has a fixed point.

(b) <p translates a (unique) geodesic.

(c)ff,--M—>R defined by f^(x) = d (x,d>(x)) has no minimum.

Following [3], we call the isometries (a), (b), and (c) elliptic, axial, and

parabolic, respectively. Parabolic isometrics preserve a unique class of asymp-

totic geodesies, whereas axial isometrics preserve exactly two such classes. We

show

Lemma 3. 7/ a parabolic isometry <p is in the stability group S(£), it must also

be in H(i).

Proof. We show that if d> G T7(£), then it must be axial. If <p, ■ M —> M is

the geodesic flow along geodesies of £ and T7(x) is the horosphere passing

through x e M, then d>(77 + (x)) = d>,o(77 + (x)) for some t0 G 7?. Now the fact

that M has curvature bounded above by a constant less than zero implies

(Arnold-Avez [1]) that <p, = H + (x) -» 77 + (qp,ox) is a metric space contraction

mapping (if y, is an expansion we consider <p_,). Since <J> is an isometry,

d>_1 ° <f>, ■■ H + (x) —* H + (x) is also a contraction and has a unique fixed point

by the contraction mapping theorem for complete metric spaces. This fixed

point corresponds to the geodesic translated by <j>.

2. Solvable and nilpotent subgroups of I(M). If S is any subset of T(Af) we

denote by Fix S the set of all common fixed points of elements of S. Then Fix

S is known to be a closed totally geodesic submanifold of M.

A set K C M is totally convex if whenever x and y are two points of K the

infinite geodesic joining x to y lies in K. A totally convex submanifold is

necessarily connected and totally geodesic.

Lemma 4. Let S be a solvable group of elliptic isometries of M. Then Fix S is

nonempty.

Proof. We first prove the lemma for S abelian. Consider closed, totally

convex submanifolds of M which are invariant under the isometries of S. Let

<j> be any isometry in S and let C^ = Fix d>, which is nonempty by assumption.

Then C6 is a closed, totally convex submanifold which is invariant under 5

because S is abelian. Now let C be a submanifold with the above properties

which is of minimal dimension. Since C is invariant under d>, C must intersect

Q, nontrivally [4, Lemma 1]. However, since Cfl C^ is a submanifold of C,
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the minimality of C implies that C is contained in C^ for all tb G S and, in

particular, that Fix S is nonempty.

In general let 5 = S0 D Si D • • ■ D Sk_x D {1} be the derived series for

S. Fix Sk_l is nonempty since Sk_x is abelian. Now Sk_2 leaves Fix Sk_x

invariant because Sk_x is normal in Sk_2. Thus Sk_2/Sk_x is an abelian group

of isometries of Fix Sk_x and the above reasoning implies that Fix Sk_2 is

nonempty. Continuing in this way we show that Fix S is nonempty.

Theorem 5. Let S be a solvable group of isometries with no common fixed

points. Then either S leaves some geodesies invariant or else S is contained in S(|)

for some class £ of asymptotic geodesies.

Proof. Let S = S0 D Sx D ■ • • D S„_i D {1} be the derived series for S

and let Sk be the largest group in the sequence consisting entirely of elliptic

isometries. Then Fix Sk is nonempty and invariant under Sk_x which must

contain either an axial or a parabolic isometry.

Suppose tb G Sk_x has axis y. Then y lies in Fix Sk [4]. Let xp be any element

of Sk_x. Then xp~] tbxptb~] = x G Sk. Thus xp~:tbxp leaves y invariant and tb

leaves xp(y) invariant. However tb has a unique axis because the curvature of

M is strictly negative and so xp also leaves y invariant. Similarly if xp G Sk_2,

consideration of xp~[tbxp<p~~i as above will show that xp leaves y invariant.

Proceeding in this way S must leave y invariant in this case.

Suppose now that <f> G Sk _ x is parabolic and that £ is the unique class of

asymptotes permuted by tb. Reasoning exactly as above with £ taking the place

of y, one can show that S leaves £ invariant, i.e. that S is contained in S(£).

In the case of a nilpotent group we can obtain results which are a little more

precise.

Theorem 6. Let N be a nilpotent group of isometries with no common fixed

points. Then either TV contains an axial isometry and leaves its axis invariant or

else N is contained in 77(£) for some £.

Proof. Consider the series TV = 7V0 D TV, D • • ■ D Nn_x D {1} where Nt

= [TV, TVr_, ] and again suppose that Nk is the largest group for which Fix TV, is

nonempty. As above, the existence of an axial isometry tb in Nk_x implies that

TV leaves the axis of tb invariant.

Now suppose that <J> G Nk_x is parabolic with tb G 77(£). As in Theorem 5

we can show that TV is contained in S(£). Suppose that there exists xp G TV such

that xp G 77(|). Then (Lemma 3) xp must be axial with axis y, say. Now

<p~ xptbxp~ = x £ Nk and so $ must leave y invariant. This is impossible since

tp is parabolic and thus TV is contained in 77(£).

Note. Theorem 6 is false for solvable groups. For example when SL (2, r)

acts as isometries of the Poincare upper half plane, the upper triangular

matrices form a solvable subgroup containing both axial and parabolic

isometries.

3. Invariant manifolds and semisimple groups of isometries. In this section

we shall restrict our attention to metrics of A7 which have the property that the

total isometry group I(M) does not leave invariant any one geodesic and is not

equal to any single stability group S(£). This condition is satisfied, for example,
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when M is the Riemannian covering of a negatively curved manifold N with

two distinct closed geodesies and, in particular, when N is compact.

Theorem 7. Suppose M has a metric which satisfies the above condition on

I(M). Then there exists a compact normal subgroup K of I(M) such that either

I(M)/K is discrete or else it is semisimple and acts effectively on a closed, totally

convex submanifold of M.

Proof. Let M' be a closed, totally convex submanifold of M which is

invariant under all isometries and is of minimal dimension. Let K be the

subgroup of I(M) made up of all isometries leaving M' pointwise fixed. K is

compact since the subgroup of I(M) leaving any given point fixed is compact

[5]. Now suppose <#> G I(M) and \p G Tv and x G M' are arbitrary. Then

d>(x) G M' and so i//(rf>(x)) = d>(x). Thus <p~x-ty§(x) = x and so d>~'iW> G K.

Thus K is normal in I(M).

Suppose I(M)/K is not discrete and let R be any normal solvable subgroup.

Then R acts as a group of isometries of M'. According to Theorem 5 if Fix 7?

is empty, either R leaves some geodesic of M ' invariant or else T? C S(£,) for

some £. In the former case R contains an axial isometry <f> with axis g. The

normality of R in I/K implies that <p preserves the geodesic a(g) for a given

a G T and thus a(g) = g as in the proof of Theorem 5. Thus I(M) preserves

g. In the latter case it follows similarly that I(M) = S(£). Since Fix R is also

closed, and totally convex, the minimality of M' implies that Fix R = M' and

so 7? is trivial. Thus I(M)/K is semisimple.

Corollary 8. If I(M) satisfies the hypothesis of Theorem 1 and M = M'

(i.e. except for M there are no closed, totally convex submanifolds invariant under

I(M)), then I(M) is either semisimple or discrete.

Theorem 9. Let N be a compact Riemannian manifold of negative curvature

and M its universal Riemannian covering. Then I(M) is discrete or semisimple.

Proof. We consider the fundamental group n,(AO as a subgroup of I(M).

Since N is compact, each covering transformation is axial. If Ylx (N) were to

leave a single geodesic invariant or if Hi (N) were contained in S(£) for some

£, it would then follow [2] that Hr(A/) is isomorphic to the integers, which is

impossible for compact N, [6]. Thus I(M) must satisfy the hypothesis of

Theorem 7. Now suppose there exists a closed, connected, totally convex

submanifold M'—not M itself—which is invariant under I(M) and thus under

HX(N). Let N' = p(M') wherep •■ M -* N is the covering projection. Then N'

is closed and totally convex and so N is diffeomorphic to the normal bundle

of N' [2, Lemma 3.1] and, in particular, is noncompact. Thus M' = M and the

result follows from Corollary 8.
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