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This paper presents a new and self-contained proof of a result characterizing objects

isomorphic in the free symmetric monoidal closed category, i.e., objects isomorphic in every

symmetric monoidal closed category. This characterization is given by a finitely axiomatizable

and decidable equational calculus, which differs from the calculus that axiomatizes

all arithmetical equalities in the language with 1, product and exponentiation by lacking

1c = 1 and (a · b)c = ac · bc (the latter calculus characterizes objects isomorphic in the free

cartesian closed category). Nevertheless, this calculus is complete for a certain arithmetical

interpretation, and its arithmetical completeness plays an essential role in the proof

given here of its completeness with respect to symmetric monoidal closed isomorphisms.

1. Introduction

In 1981 S. V. Soloviev gave a characterization of objects isomorphic in the cartesian

closed category freely generated by an infinite set of objects, and thereby characterized

the objects isomorphic in every cartesian closed category. (Two objects A and B are

isomorphic in a category iff there is an arrow f from A to B and an arrow f−1 from B

to A such that f−1f = 1A and ff−1 = 1B .) Soloviev’s result was proved again by other

means in Bruce et al. (1992).

This characterization is given by the equational calculus that otherwise axiomatizes

all equalities between arithmetical terms built up with variables, 1, product and exponen-

tiation. The specific axioms of this calculus are the equalities of commutative monoids

and the following four equalities:

c1 = c, ca·b = (ca)b

1c = 1, (a · b)c = ac · bc.

In 1993 Soloviev produced a similar characterization of objects isomorphic in the sym-

metric monoidal closed category freely generated by an infinite set of objects. As before,
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this yields a characterization of the objects isomorphic in every symmetric monoidal closed

category. The equational calculus now in question is obtained just by rejecting the last two

equalities displayed above. It is quite easy to see that these equalities cannot hold when

interpreted in terms of isomorphisms of an arbitrary symmetric monoidal closed category,

and it is as easy to verify that the calculus obtained after rejecting these equalities is sound

for this interpretation. Soloviev’s and our paper are devoted to proving it is also complete.

Apart from some relatively minor flaws, which we believe can be corrected, the proof

of Soloviev (1993) has the drawback that it is not self-contained. It relies essentially on an

earlier work of A. A. Babaev (Babaev 1981) about normalization of terms in a specific sort

of typed lambda calculus, which plays the role of the internal language of the free sym-

metric monoidal closed category. This lambda calculus has pairing and projections, but

expressions involving pairing and projections are not always granted the status of terms:

they may happen to be only quasi-terms. The normalization of a term may proceed via

quasi-terms. Even in the absence of quasi-terms, there have been some uncertainties con-

cerning the normalization of typed lambda terms of that kind (the proofs in Lambek and

Scott (1986, Part I, Chapters 13–14) and Mints (1980), a reference in Babaev (1981), are not

flawless; we have not checked Babaev (1981) in detail). So there should be a gain in finding

for the calculus mentioned above a new, self-contained, completeness proof with respect to

symmetric monoidal closed isomorphisms. The aim of this paper is to present such a proof.

Actually, our proof has some similarity with Soloviev’s proof of 1981. There, he reduced

the characterization of the isomorphic objects of the free cartesian closed category to the

characterization of the isomorphic objects of a concrete cartesian closed category – the

category of finite sets. Thereby, he found an interpretation for the isomorphisms of the

free cartesian closed category in the arithmetic of natural numbers. Similarly, we use

the category of finite pointed sets to characterize the isomorphic objects of the free

symmetric monoidal closed category, and we find an arithmetical interpretation for these

isomorphisms. (The argument of Soloviev (1993) is rather closer to Bruce et al. (1992):

both papers rely on techniques of the lambda calculus.)

Apart from the purely mathematical interest of characterizing isomorphic objects in

such important sorts of categories as cartesian closed and symmetric monoidal closed,

results of this kind are also interesting for logic. The free cartesian closed category is the

conjunction-implication fragment of intuitionistic logic, and the free symmetric monoidal

closed category is the fragment of linear logic with product (multiplicative conjunction),

implication and the multiplicative propositional constant I (sometimes written 1). The

philosophical significance of isomorphism in logic is discussed in Došen and Petrić (1994)

and Došen (1997, Section 9). An approach to the subject under the imprint, not of logic

or mathematics, but of concerns in the zone of computer science, may be found in Di

Cosmo (1995), which has a rather useful bibliography.

2. The category SyMonCl

In this section we present the symmetric monoidal closed category freely generated by an

infinite set of objects, i.e., a graph without arrows whose vertices are these objects. This

category, called SyMonCl, is the image of this set of objects under the functor left adjoint
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to the forgetful functor from the category of symmetric monoidal closed categories into

the category of graphs.

We take as the set of objects that are the free generators of SyMonCl an infinite set of

propositional letters, which we call simply letters. The objects of the category SyMonCl

are formulae built-up from the letters with the help of the binary connective •, called

product (which is often written ⊗), and the binary connective of implication →; we also

have a propositional constant, i.e., nullary connective, I. The letters and I are the atomic

formulae. For letters we use the schematic letters p, q, r, ..., possibly with indices, and for

formulae the schematic letters A,B, C, ..., possibly with indices.

An expression of the form f : A ` B will stand for an arrow from A to B. (We write

` instead of the more usual →, which we have reserved for implication.) The prefix f in

f : A ` B is called an arrow-term; A ` B is the type of this arrow-term. For arrow-terms

we use the schematic letters f, g, h, ..., possibly with indices. The category SyMonCl has

the following primitive arrow-terms, for every formula A,B and C:

1A : A ` A
b→A,B,C : A • (B •C) ` (A •B) •C, b←A,B,C : (A •B) •C ` A • (B •C)

cA,B : A •B ` B •A
σA : I •A ` A, σiA : A ` I •A
δA : A •I ` A, δiA : A ` A •I
εA,B : A • (A→ B) ` B, ηA,B : B ` A→ (A •B).

The remaining arrow-terms of SyMonCl are built-up from the primitive arrow-terms

with the help of the following binary operations on arrow-terms:

f : A ` B g : B ` C
gf : A ` C

f : A ` B g : C ` D
f •g : A •C ` B •D

f : A ` B g : C ` D
f → g : B → C ` A→ D

Note that the first operation, composition, is a partial operation, while the • and →
operations on arrow-terms are total.

The arrows of the category SyMonCl are equivalence classes of arrow-terms; i.e., for

every arrow-term f we take the class of arrow-terms equal to f according to the following

equalities (which we add to the usual equality postulates: reflexivity, symmetry, transitivity

and congruence with the operations on arrow-terms):

categorial equalities

(cat) For f : A ` B, g : B ` C and h : C ` D, h(gf) = (hg)f.

(cat1) For f : A ` B, f1A = f, 1Bf = f.

product equalities

( • ) For f1 : A1 ` B1, g1 : B1 ` C1, f2 : A2 ` B2 and g2 : B2 ` C2,

(g1f1) • (g2f2) = (g1 •g2)(f1 •f2).

( •1) 1A •1B = 1A •B
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implication equalities

(→) For f1 : A1 ` B1, g1 : B1 ` C1, f2 : A2 ` B2 and g2 : B2 ` C2,

(g1f1)→ (g2f2) = (f1 → g2)(g1 → f2).

(→ 1) 1A → 1B = 1A→B

b equalities

(b) For f : A ` D, g : B ` E and h : C ` F, ((f •g) •h)b→A,B,C = b→D,E,F (f • (g •h)).

(bb) b→A,B,Cb←A,B,C = 1(A •B) •C, b←A,B,Cb→A,B,C = 1A • (B •C)

(b5) b→A,B •C,D = (b←A,B,C •1D)b→A •B,C,Db→A,B,C •D(1A •b
←
B,C,D)

c equalities

(c) For f : A ` C and g : B ` D, (g •f)cA,B = cC,D(f •g).

(cc) cB,AcA,B = 1A •B
(bc6) cA •B,C = b←C,A,B(cA,C •1B)b→A,C,B(1A •cB,C)b←A,B,C

σδ equalities

(σ) For f : A ` B, fσA = σB(1I •f). (δ) For f : A ` B, fδA = δB(f •1I).

(σσi) σAσ
i
A = 1A, σi

AσA = 1I •A (δδi) δAδ
i
A = 1A, δi

AδA = 1A •I
(σδ) σI = δI
(σδb) b→A,I,D = δi

A •σD

(σδc) cI,C = δi
CσC

εη equalities

(ε) For f : A ` B, fεC,A = εC,B(1C • (1C → f)).

(η) For f : A ` B, (1C → (1C •f))ηC,A = ηC,Bf.

( • εη) For f : A ` B, εA,B •C(1A • (f → 1B •C))(1A •ηB,C) = f •1C .

(→ εη) For f : A ` B, (1A → εB,C)(1A → (f •1B→C))ηA,B→C = f → 1C .

The product and implication equalities say that • and → are bifunctors. The b and c

equalities say that the b→ and c arrows are natural isomorphisms satisfying the coherence

conditions (b5) and (bc6) (which amount to Mac Lane’s pentagonal and hexagonal

diagrams; see Mac Lane (1971, VII.1, p. 158, VII.7, p. 180)). The σδ equalities say that

the σ and δ arrows are natural isomorphisms satisfying the coherence conditions (σδ),

(σδb) and (σδc) (see Mac Lane (1971, pp. 159, 180); the second condition amounts to

Mac Lane’s triangular diagram). The εη equalities say that the ε and η arrows are natural

transformations that are the counit and unit of an adjunction.

3. Linkage and diversification

In the first, preparatory, part of our proof we establish a lemma – the Diversification

Lemma – with the help of a technique derived from Eilenberg and Kelly (1966) (see also

Kelly and Mac Lane (1971); this technique is related to Gentzen’s notion of a cluster – cf.

Došen and Petrić (1994, Section 3)). This part of our proof is not entirely new. Soloviev

establishes a lemma essentially identical to ours in Soloviev (1993, Section 7), with a

similar technique. However, because Soloviev works in a somewhat different context (he

has a sequent system à la Gentzen where we have a category introduced in a more

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 14 Jul 2009 IP address: 129.132.128.136

Isomorphic objects in symmetric monoidal closed categories 643

standard way), and because we want to make our proof self-contained, we shall not skip

this preparatory part of the proof.

We shall define below when for an arrow-term f of type A ` B of SyMonCl two

occurrences of the same letter in A or B are linked by f. Formally, we define a set of

unordered pairs {x, y} such that for some letter p, the elements x and y are distinct

occurrences of p in A or B, each pair {x, y} being called a link of f. When A is the same

formula as B, we nevertheless consider the set of occurrences of letters in A as disjoint

from the set of occurrences of letters in B.

Every link of f will be of one of the following sorts:

(1) it is straight iff it links an occurrence of a letter in A to an occurrence of this letter

in B;

(2.1) it is crooked in A iff it links an occurrence of a letter in A to another occurrence of

this letter in A;

(2.2) it is crooked in B iff it links an occurrence of a letter in B to another occurrence of

this letter in B.

The word w(A) of a formula A is obtained by deleting in A all occurrences of the

connectives I, • and →, and all parentheses. For example, w(((p •I) → q) → p) is pqp.

For f : A ` B, the word figure of f will be w(A) written above w(B). For example, the

word figure of b→p •q,I,p is

pqp

pqp

Word figures are only an auxiliary device. Links defined for them are to be transferred

to formulae from which the words in the word figure were obtained. After the links are

made, we just put back the connectives and parentheses. In examples below we shall draw

immediately the links as they are to be found in formulae, assuming it is clear how these

links were established through the word figures associated with the formulae.

We can now proceed with our definition of links by induction on the complexity of the

arrow-term f of type A ` B.

If f is 1A, b→D,E,C , b←D,E,C , σB , σi
A, δB or δi

A, the i-th symbol of w(A) is linked to the

i-th symbol of w(B), the words w(A) and w(B) being two copies of the same word. For

example, with b→p •q,I,p we have the links

(p • q) • (I • p)

| | |
((p • q) • I) • p

If f is cC,D , we have the word figure

w(C)w(D)

w(D)w(C)

(w(C)w(D) is w(C •D), that is, w(C) concatenated with w(D)). Then the i-th symbol of

w(C) above is linked to the i-th symbol of w(C) below, and the i-th symbol of w(D) above

is linked to the i-th symbol of w(D) below. For example, with cp •q,p→I we have the links
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(p • q) • (p ! I )

(p ! I ) • (p • q)

All the links defined up to this point are straight.

If f is εC,B , we have the word figure

w(C)w(C)w(B)

w(B)

Then the i-th symbol of the left w(C) above is linked to the i-th symbol of the right w(C)

above, and the i-th symbol of w(B) above is linked to the i-th symbol of w(B) below. For

example, with εp •q,I→(p •q) we have the links

(p • q) • (( p • q)  ! ( I  ! ( p • q )))

I  ! (p • q )

Note that here, besides straight links, we have links crooked in A, that is C • (C → B).

If f is ηC,A, we have the word figure

w(A)

w(C)w(C)w(A)

Then the i-th symbol of the left w(C) below is linked to the i-th symbol of the right w(C)

below, and the i-th symbol of w(A) above is linked to the i-th symbol of w(A) below. Note

that here, besides straight links, we may have links crooked in B, that is C → (C •A).

We obtain the links of the arrow-term hg of type A ` B from the links of g of type

A ` C and the links of h of type C ` B in the following manner. A sequence of links

{x1, x2}, {x2, x3}, {x3, x4}, . . ., {xn−1, xn}, with n > 2, makes a chain of links. A link of hg is

a pair {x1, xn} obtained from a chain {x1, x2}, . . ., {xn−1, xn} of alternating g and h links,

with at least one g or h link, where

(1) x1 is in A and xn is in B, or

(2.1) x1 is in A and xn is in A, or

(2.2) x1 is in B and xn is in B.

If n > 3, then for every i in {2, ..., n− 1} we must have xi in C . Note that all these chains

are maximal (they are not proper parts of longer chains). In Case (1), where we define

the straight links of hg, we have chains made of an even number of alternating g and h

links – at least two of them. In Case (2.1), where we define the links of hg crooked in

A, we have chains made of an odd number of alternating g and h links, starting with a

g link and finishing with a g link – so we have at least one g link. And in Case (2.2),
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where we define the links of hg crooked in B, we have chains made of an odd number of

alternating g and h links, starting with an h link and finishing with an h link – so we have

at least one h link. (We have no use for closed chains {x1, x2}, . . ., {x2n−1, x2n}, {x2n, x1},
with n > 1, made of an even number of alternating g and h links, where for every i in

{1, . . . , 2n} we have that xi is in C . Anyway, by a result of Kelly and Mac Lane (1971,

Theorem 2.2), such chains cannot arise in the free category SyMonCl.)

For the links of the arrow-terms f1 •f2 of type A1 •A2 ` B1 •B2 and f1 → f2 of type

B1 → A2 ` A1 → B2, we take the disjoint union of exact copies of the links of f1 of type

A1 ` B1 and of the links of f2 of type A2 ` B2. This concludes our definition of links.

The links of an arrow-term in which there is no composition are called atomic. Such

links are made of minimal chains, with only one pair of occurrences of letters. We find

longer chains only behind links of arrow-terms with composition (though not all links of

such arrow-terms must be obtained from chains with more than one atomic link).

Note that for f of type A ` B every occurrence of a letter in A or B is linked by exactly

one link of f to another occurrence of the same letter in A or B; that is there are no

chains of f links with more than one link. The links establish a one–one correspondence

between half of the occurrences of letters in A or B and the remaining half.

Let a subformula of a formula A be an even-floor subformula of A iff it occurs in an

even number of antecedents of implications of A, and let it be an odd-floor subformula

of A iff it occurs in an odd number of antecedents of implications of A (zero is an

even number: so every formula is an even-floor subformula of itself; even-floor and odd-

floor subformulae are sometimes called, respectively, positive and negative, or consequent

and antecedent subformulae). It is not difficult to conclude that for f of type A ` B
every straight link of f links either an even-floor subformula of A with an even-floor

subformula of B, or an odd-floor subformula of A with an odd-floor subformula of B;

a link crooked in A links an even-floor subformula of A with an odd-floor subformula

of A, and, analogously, with links crooked in B. In this paper we have no need for this

distinction between even-floor and odd-floor subformulae (but we need the related notion

of floor; see Section 10).

We now establish that our definition of links, which is given with respect to the

arrow-terms of SyMonCl, may also be given with respect to the arrows of SyMonCl.

Lemma 3.1. If f = g in SyMonCl, then the links of f are equal to the links of g.

Proof. We make an induction on the length of the derivation of the equality f = g

in SyMonCl. This reduces to checking only the basis of this induction (namely, all the

equalities of Section 2), because the induction step (namely, checking that the rules for

equality preserve the equality of links) is trivial. Let us consider as examples a few cases

in the basis of the induction, which might not be immediately obvious.

For the associativity of composition (cat) we have to check that every chain of alter-

nating f links, g links and h links that is a link of h(gf) is also a link of (hg)f, and vice

versa. If from such a chain we delete all the h links, we obtain a collection of gf links,

whereas if we delete all the f links, then we obtain a collection of hg links.

For the equality ( • ) it is enough to note that a link of f1 can never make a chain with a
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link of g2, and a link of f2 can never make a chain with a link of g1. We reason similarly

for the equality (→).

For the equality (ε) it is enough to consider the following figures, where lines stand

for finite, possibly empty, sets of links: full straight lines stand for sets of straight links;

crooked lines for sets of crooked links; while the dotted line of f stands for a set of links

that may be either straight or crooked.

C • (C ! A )

eC, A

A

B

f

C • (C ! A )

C • (C ! B )

B

1C • (1C ! f )

eC, B

For the equality ( • εη) we have the figures

A • C

A • (B ! (B • C ))

1A • ηB, C

A • (B ! (B • C ))

A • (A ! (B • C ))

B • C

1A • ( f ! 1B   C)

eA, B • C

A • C

B • C

f • 1C•

We proceed similarly for the equalities (η) and (→ εη).

Lemma 3.2. Take the arrows f : A ` B and g : B ` A. If every link of gf and fg is

straight, then every link of f and g is straight.

Proof. If a link of f is crooked in A, then a link of gf : A ` A is crooked in the left

A. If a link of f is crooked in B, then a link of fg : B ` B is crooked in the right B.

Similarly, if a link of g is crooked in A, then a link of gf : A ` A is crooked in the right

A. If a link of g is crooked in B, then a link of fg : B ` B is crooked in the left B.

The formula A is an instance of the formula A′ iff A is the result of uniformly

substituting the formula B1 for the letter p1, . . ., the formula Bn for the letter pn in A′, with

n > 0; the letters p1, . . ., pn are mutually distinct, but the formulae B1, . . ., Bn need not be

mutually distinct. Similarly, the arrow-term f is an instance of the arrow-term f′ iff f is
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obtained by uniformly substituting B1 for p1, . . ., Bn for pn in the indices of f′. It is easy

to check that the indices of arrow-terms are such that if f of type A ` B is an instance of

f′ of type A′ ` B′, then A is an instance of A′ and B is an instance of B′. We speak of

letter-for-letter instances when substitution is letter-for-letter; i.e., the substitute formulae

B1, . . . , Bn are all letters.

We say that an arrow-term f has diversified links if each link of f is made of occurrences

of a letter different from the letters of any other link of f.

Lemma 3.3. Every arrow-term of SyMonCl is a letter-for-letter instance of an arrow-term

of SyMonCl with diversified links.

Proof. Take the links of an arrow-term f of SyMonCl. Each such link is obtained

from a chain of atomic links. For every such chain, take a separate new letter and replace

the letter of the chain by the new letter throughout the chain. This replacement yields

an arrow-term f′ of SyMonCl with diversified links. For example, let f be εp,p •p(1p •ηp,p),

whose links are shown in the following figure:

p • p

p • ( p ! ( p • p ))

1p • ηp, p

p • p

ep, p • p

This yields εq,q • r(1q •ηq,r) for f′, according to the figure

q • r

q • ( q ! ( q • r ))

1q • ηq, r

q • r

eq, q • r

(Note that though εq,q • r(1q •ηq,r) has diversified links, this is not the case for either 1q •ηq,r
or εq,q • r .)

Lemma 3.4. If f is a letter-for-letter instance of f′, then every link of f is straight iff every

link of f′ is straight.

Proof. It is enough to note that letter-for-letter substitution cannot change the sort of

links: a straight link made of occurrences of the letter pi engenders a straight link made
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of occurrences of the substitute letter qi; similarly, a crooked link engenders a crooked

link. (If the substitution were not letter-for-letter, some links of f′ could simply disappear

in f, by substituting for pi a formula Bi without letters, and the left-to-right direction of

the ‘iff’ statement would be invalidated.)

Let let(A) be the set of letters occurring in the formula A. The formula A is diversified

iff every letter in let(A) occurs in A exactly once. Now we can prove the main lemma of

this section.

Diversification Lemma. For every isomorphism f : A ` B of SyMonCl there is an

isomorphism f′ : A′ ` B′ of SyMonCl such that f is an instance of f′, and A′ and B′ are

diversified.

Proof. Suppose f : A ` B is an isomorphism of SyMonCl. So there is an arrow

g : B ` A of SyMonCl such that gf = 1A and fg = 1B . Since every link of 1A and 1B is

straight, by Lemma 3.1, every link of gf and fg is straight. By Lemma 3.2, every link of

f and g is straight.

Then we apply the procedure of the proof of Lemma 3.3 to gf in order to obtain g′f′

with diversified links whose letter-for-letter instance is gf, where f is a letter-for-letter

instance of f′ of type A′ ` B′ and g a letter-for-letter instance of g′ of type B′ ` A′ (we

could as well have applied this procedure to fg in order to obtain f′g′). Since every link

of gf is straight, every link of g′f′ is straight, by Lemma 3.4, and since g′f′ has diversified

links, A′ is diversified. Since every link of f is straight, again by Lemma 3.4, every link of

f′ is straight, and hence B′ is diversified, too (we could as well have appealed to the fact

that every link of g′ is straight). We compute that g′f′ = 1A′ and f′g′ = 1B′ exactly as

we computed that gf = 1A and fg = 1B . For that it is enough to check that none of the

equalities of SyMonCl ceases to hold after the replacements made in chains according to

the procedure in the proof of Lemma 3.3.

It is clear that in the Diversification Lemma we actually have that f is a letter-for-letter

instance of f′, and we also have that let(A′) = let(B′).

4. The system S

We shall now introduce the system that characterizes the isomorphic objects of SyMonCl

in the sense of the completeness theorem of the next section. This system, called S, is

an equational calculus whose theorems are of the form A ∼= B, where A and B are

formulae, as introduced in Section 2 (we write ∼= rather than = because of the intended

interpretation of S in terms of isomorphisms). The axiom schemata and rules of S are:

specific axioms

( •I) I •C ∼= C

( •ass) (A •B) •C ∼= A • (B •C)

( •com) A •B ∼= B •A

(S1) I→ C ∼= C

(S2) (A •B)→ C ∼= B → (A→ C)
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equality postulates

A ∼= A

From A ∼= B, infer B ∼= A.

From A ∼= B and B ∼= C , infer A ∼= C .

From A ∼= B and C ∼= D, infer A •C ∼= B •D.

From A ∼= B and C ∼= D, infer B → C ∼= A→ D.

(Note that the axiom schema A ∼= A can be derived with the symmetry and transitivity of
∼= either from ( •I) or from (S1).)

When letters stand for numerical variables, I is read as 1, the product A •B is read as

arithmetical product, A→ B is read as BA and ∼= is replaced by =, all the equalities of S

hold in the arithmetic of natural numbers. Two equalities are missing to get a complete

axiomatization of the equalities in 1, product and exponentiation that hold in natural

numbers:

(C1) C → I ∼= I

(C2) C → (A •B) ∼= (C → A) • (C → B).

The system S plus (C1) and (C2), which we call C, characterizes objects isomorphic in the

cartesian closed category freely generated by an infinite set of objects, as was demonstrated

by Soloviev (1981).

The subsystem of S in the language without → that has only the axiom schemata

( •I), ( •ass) and ( •com), and where the last equality postulate is omitted, axiomatizes

commutative monoids. This system characterizes objects isomorphic in the symmetric

monoidal category freely generated by an infinite set of objects, as well as objects

isomorphic in the cartesian category freely generated by an infinite set of objects.

We shall need, in particular, the subsystem of S that has only the axiom schemata

( •ass) and ( •com) and the equality postulates. We call this system AssCom. That A ∼= B

is provable in AssCom means that the formulae A and B are identical up to associativity

and commutativity of the product.

5. The Main Completeness Theorem

Our ultimate goal in this paper is to prove the following completeness theorem for S.

Main Completeness Theorem. A ∼= B is provable in S iff A and B are isomorphic in

SyMonCl.

If two objects are isomorphic in SyMonCl, then their images under a symmetric

monoidal closed functor are isomorphic in every symmetric monoidal closed category.

Such a functor always exists because of the freedom of SyMonCl. So, according to the

Main Completeness Theorem, the system S characterizes the forms of objects isomorphic

in every symmetric monoidal closed category. Since SyMonCl is freely generated from

infinitely many propositional letters, there is no bound on the number of distinct objects

partaking in these forms. (If SyMonCl were generated by a finite set of letters, there would

be such a bound; in the extreme case, if SyMonCl were generated from an empty set of

letters, we would only learn from it something about the isomorphisms involving the unit

objects of symmetric monoidal closed categories.)
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It is straightforward to check the soundness part of the Main Completeness Theorem,

i.e., the direction from left to right. The bulk of this paper is devoted to establishing the

converse, i.e., the completeness part.

6. Normal forms

For our proof of the Main Completeness Theorem we need a notion of normal form for

formulae, which we proceed to define in this section.

Let us first define the following I-reductions of formulae, which consist in replacing

subformulae of the forms on the left-hand side by formulae on the right-hand side:

I-redexes contracta

I •A A

A •I A

I→ A A

The I-reductions are strongly normalizing (i.e., every sequence of I-reductions is finite),

because the number of occurrences of I diminishes. Moreover, it is easy to show that I-

reductions have the Church–Rosser property, so that all formulae have a unique I-normal

form, that is one without I-redexes. In a formula in I-normal form occurrences of I can

only remain in subformulae of the form A→ I.

Let us also define the→-reductions of formulae, which consist of replacing subformulae

of the forms on the left-hand side by formulae on the right-hand side:

→-redex contractum

B → (A→ C) (A •B)→ C

The →-reductions are also strongly normalizing, because the number of occurrences

of → diminishes. However, →-normal forms, that is those without →-redexes, are not

necessarily unique, as the following example shows:

C ! ( B ! ( A ! D ))

(B • C ) ! ( A ! D )

(A • ( B • C )) ! D

C ! (( A • B ) ! D )

((A • B) • C ) ! D

Though the →-normal form of a formula is not unique, it is unique up to associativity

of the product; i.e., all →-normal forms of a formula are in the relation ∼= of the system

that has only the axiom schema ( •ass) and the equality postulates.

We say that a formula is in normal form, tout court, iff it is in I-normal form and

→-normal form. We can easily prove the following lemma.

Normal Form Lemma. For every formula A there is a formula A′ in normal form such

that A ∼= A′ is provable in S.
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Proof. We can reduce every formula A to a formula A′ in normal form by reducing A

first to the I-normal form and then reducing this I-normal form to an →-normal form.

Note that →-reductions cannot produce new I-redexes in formulae in I-normal form. Of

course, A ∼= A′ is provable in S, because both I-reductions and →-reductions are covered

by theorems of S.

The proof of this lemma yields a decision procedure for S. To verify whether A ∼= B is

provable in S, reduce A and B to normal forms A′ and B′. It remains to check whether

A′ ∼= B′ is provable in AssCom, which is done by deleting parentheses around products

and making all possible permutations of factors in these products – a finite task.

We have mentioned here the uniqueness of normal form up to associativity of the

product and we have shown that S is decidable, but we need neither this uniqueness of

normal form nor the decidability of S to prove the Main Completeness Theorem. For that

the Normal Form Lemma is enough.

7. The category FinSet*

As the system C, that is, S plus (C1) and (C2), has an arithmetical interpretation for which

it is complete, we may wonder whether S itself has such an arithmetical interpretation. We

introduce such an interpretation in this section, and establish in subsequent sections that S

is complete for this interpretation under the condition that we deal with diversified formu-

lae. This will be the essential ingredient of our proof of the Main Completeness Theorem.

First we introduce a concrete symmetric monoidal closed category. The objects of the

category FinSet* of finite pointed sets are finite nonempty sets each of which contains a

distinguished element ∗. Arrows are functions f from finite pointed sets to finite pointed

sets that preserve ∗; that is, f(∗) = ∗. For two finite pointed sets X and Y , the product is

the smash product

X •Y =def . {∗} ∪ {〈a, b〉 : a ∈ X& b ∈ Y& a 6= ∗& b 6= ∗}

and X → Y is the set of all functions from X to Y that preserve ∗, the constant function

with value ∗ in Y being the element ∗ of X → Y . In FinSet* the object I is a set {∗, 0} with

two elements. The arrows 1X are identity functions, composition is composition of func-

tions, and for the remaining functions of the symmetric monoidal closed setting we have

b→(〈a, 〈b, c〉〉) = 〈〈a, b〉, c〉, b←(〈〈a, b〉, c〉) = 〈a, 〈b, c〉〉
c(〈a, b〉) = 〈b, a〉
σ(〈0, a〉) = a, σi(a) = 〈0, a〉, when a is not ∗
δ(〈a, 0〉) = a, δi(a) = 〈a, 0〉, when a is not ∗
ε(〈a, f〉) = f(a), (η(b))(a) = 〈a, b〉, when a and b are not ∗
(f •g)(〈a, b〉) = 〈f(a), g(b)〉, when f(a) and g(b) are not ∗
(f → g)(h) = ghf.

It is straightforward to verify that FinSet* is a symmetric monoidal closed category (cf.

Eilenberg and Kelly (1966a, Chapter IV.1, pp. 548–549)). Actually, we have in FinSet*
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K. Došen and Z. Petrić 652

projection arrows and a pairing operation on arrows with respect to the smash product,

but this category fails to be cartesian with this product because projections are not natural

transformations.

Two finite pointed sets X and Y are isomorphic iff they are of the same cardinality,

that is, card(X) = card(Y ). Let us now see how the operation of smash product and

the operation → on finite pointed sets behave with respect to cardinality. It is easy to

calculate that

card(X •Y ) = (card(X)− 1)(card(Y )− 1) + 1

card(X → Y ) = card(Y )card(X)−1.

Of course, card(I) = 2. It is useful to have special symbols for the corresponding operations

on N+, that is, the set of natural numbers strictly greater than 0. We shall write

m� n =def . (m− 1)(n− 1) + 1

mn =def . m
n−1.

These definitions can be explained as follows. Take any one–one map f from the set

of natural numbers N into N. Then f defines a one–one correspondence between N and

f(N), the image of N under f. Let f−1 be the inverse of f from f(N) to N. We can

define on f(N) an operation � such that f is an isomorphism from the commutative

monoid N with ordinary multiplication and 1 onto f(N) with � and f(1). Since we want

f(mn) = f(m)� f(n), by replacing m by f−1(m) and n by f−1(n) we obtain

m� n = f(f−1(m)f−1(n)).

By putting f(k) = k + 1, we obtain the definition of � above, and f(1) = 2. For mn we

have

mn = mf
−1(n)

which yields the equalities corresponding to (S1) and (S2):

mf(1) = m

mn�k = (mn)k

but not the equalities corresponding to (C1) and (C2).

So, in the symmetric monoidal closed category FinSet* we find an arithmetic of positive

natural numbers with the operations � and . In the following sections we make this

arithmetic work for our proof of the Main Completeness Theorem.

The category FinSet* is isomorphic to the category whose objects are finite sets and

whose arrows are partial maps. The set X •Y is the cartesian product of the sets X and

Y , while X → Y is the set of all nonempty partial maps from X to Y ; the set I is a

singleton. The arrows and operations of the symmetric monoidal closed setting are defined

analogously to what we had in FinSet*. The cardinality of X •Y is the ordinary product

of the cardinalities of X and Y , while

card(X → Y ) = (card(Y ) + 1)card(X) − 1.

Let = be the corresponding operation on N; that is, m
n
= is short for (m + 1)n − 1. The
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structure 〈N+,�, −, 2〉 is isomorphic to 〈N, ·,= , 1〉, where · is ordinary product, and instead

of the first structure we might as well have used the latter structure for our proof of the

Main Completeness Theorem in the following sections.

8. Some arithmetical inequalities

We shall need, in particular, the following inequality.

Lemma 8.1. If m, n > 2, then mn > m� 2n.

Proof. We have

mn − 1 = (m− 1)(mn−2 + mn−3 + . . .+ m1 + 1)

(m� 2n)− 1 = (m− 1)(2n−2 + 2n−3 + . . .+ 21 + 1).

As a corollary we have another inequality.

Lemma 8.2. If m, n > 2, then 2m�n > 2m � 2n.

Proof. Put 2m for m in the inequality of Lemma 8.1. Then 2m�n = (2m)n > 2m � 2n.

Let us introduce the following notation by recursion:

i0(m) = m

ik+1(m) = 2i
k
(m)

(so the number ik(m) is

2m

�
22

with 2 appearing k times). It is easy to see that

ik(ih(m)) = ik+h(m)

ik+1(m)ih(n) = ih+1(n)ik(m).

We can now establish the following generalization of Lemma 8.2.

Lemma 8.3. If m, n > 2, then for every k > 1 we have ik(m� n) > ik(m)� ik(n).

Proof. We make an induction on k. For k = 1, we have Lemma 8.2. For k > 1, we have

ik(m� n) = 2i
k−1

(m�n)

> 2i
k−1

(m)�i
k−1

(n)
, by the induction hypothesis

> 2i
k−1

(m) � 2i
k−1

(n), by Lemma 8.2

= ik(m)� ik(n).

9. The Arithmetical Completeness Theorem

Let a valuation of the set of formulae in 〈N+,�, −, 2〉 be a function ν that assigns to

letters some arbitrary numbers from N+ and satisfies

ν(I) = 2
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ν(A •B) = ν(A)� ν(B)

ν(A→ B) = ν(B)ν(A).

We shall prove in Section 11 the following completeness theorem for S, which we shall

use in the same section to prove the Main Completeness Theorem.

Arithmetical Completeness Theorem. If

(D) A and B are diversified,

then A ∼= B is provable in S iff for every valuation ν we have ν(A) = ν(B).

The soundness part of this theorem, i.e., the direction from left to right of the ‘iff’

statement, is easily established by induction on the length of proof of A ∼= B in S.

Actually, we do not need condition (D) to establish this part of the theorem. We use (D)

for the converse, i.e., the completeness part. We leave for another occasion the question

of whether the Arithmetical Completeness Theorem also holds without condition (D),

because we do not need to answer this question to prove the Main Completeness Theorem.

10. The Auxiliary Theorem

In this section we shall prove the following theorem, which in Section 11 we shall use for

the proof of the Arithmetical Completeness Theorem.

Auxiliary Theorem. If

(D) A and B are diversified,

(N) A and B are in normal form,

(V) for every valuation ν we have ν(A) = ν(B),

then A ∼= B is provable in AssCom.

First we introduce the following terminology. The floor of a subformula in a formula A

is the number of antecedents of implications of A in which this subformula occurs. For

example, in (((p → q) → p) • r) → p the floor of the leftmost p is 3 and the floor of the

subformula p→ q is 2; the floor of p in p is 0. (The floor of an even-floor subformula is

even and the floor of an odd-floor subformula is odd; cf. Section 3.) In Soloviev (1981)

the floor of a subformula is called its implicational depth (in Russian; we prefer climbing

up because in the exponential notation the floor of an exponent is indeed the level above

the ground line on which the exponent is written).

We denote the floor of a letter p in a diversified formula A by p ↑ A. (This notation

would be ambiguous if A were not diversified.) If we take a valuation ν such that ν(p) = n

for some n > 2 and ν(q) = 2 for every letter q different from p, then it is easy to calculate

that

ν(A) = ip↑A(n).

We shall often use this fact in the following series of lemmata, where for the sake of
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definiteness we take that n is 3. In these lemmata, (D), (N) and (V) will always be as in

the Auxiliary Theorem; let(A) is, as before, the set of letters occurring in A.

Lemma 10.1. If (V), then let(A) = let(B).

Proof. Suppose p ∈ let(A) and p /∈ let(B). Take a valuation ν such that ν(p) 6= 2 and

ν(q) = 2 for every letter q different from p. If ν(p) = 1, then ν(A) = 1, and if ν(p) > 2,

then ν(A) > 2. Since ν(B) = 2, we get a contradiction with (V). (Of course, we proceed

analogously when p /∈ let(A) and p ∈ let(B).)

Lemma 10.2. If (D) and (V), then for every p in let(A) we have p ↑ A = p ↑ B.

Proof. Suppose p ∈ let(A). Then, by Lemma 10.1, p ∈ let(B). Take the valuation ν such

that ν(p) = 3 and ν(q) = 2 for every letter q different from p. If p ↑ A 6= p ↑ B, then

ν(A) = ip↑A(3) 6= ip↑B(3) = ν(B)

which contradicts (V).

Let us call a formula prime iff it is either atomic or an implication. Every formula A

is of the form A1 • . . . •An, for some n > 1, where for every i in {1, . . . , n} the subformula

Ai is prime and parentheses are distributed in some manner in the outermost products

of A1 • . . . •An (if there are such products). Let us call the schema A1 • . . . •An the prime

representation of A. We can then state and prove the following lemma.

Lemma 10.3. Suppose (D), (N) and (V), and let A1 • . . . •An, for some n > 1, be the prime

representation of A, and B1 • . . . •Bm, for some m > 1, the prime representation of B. If

for some i and j in {1, . . . , n} such that i 6= j we have p ∈ let(Ai) and q ∈ let(Aj), then

there is no k in {1, . . . , m} such that p ∈ let(Bk) and q ∈ let(Bk).

Proof. Suppose for some i and j in {1, . . . , n} we have i 6= j. So n > 2. Suppose,

moreover, p ∈ let(Ai), q ∈ let(Aj) and for some k in {1, . . . , m}, p ∈ let(Bk) and q ∈ let(Bk).
Since Bk is prime and has more than one letter (p and q are different because of (D)), it

must be of the form B
′

k → B
′′

k . Now four cases are possible:

(Case 1) p ∈ let(B ′k) and q ∈ let(B ′′k),
(Case 2) p ∈ let(B ′′k) and q ∈ let(B ′k),
(Case 3) p ∈ let(B ′k) and q ∈ let(B ′k),
(Case 4) p ∈ let(B ′′k) and q ∈ let(B ′′k).

Case 1. Take the valuation ν such that ν(p) = ν(q) = 3 and ν(s) = 2 for every letter s

different from p and q. Then

ν(A) = ip↑A(3)� iq↑A(3) = iq↑A(3)� 2
i
p↑A−1

(3)

ν(B) = iq↑B(3)
i
p↑B−1

(3)
.

By Lemma 10.2, p ↑ A = p ↑ B > 1 and q ↑ A = q ↑ B, while by Lemma 8.1, ν(B) > ν(A),

which contradicts (V).

For Case 2 we proceed as in Case 1.
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Case 3. Take the valuation ν of Case 1. Then for some h > 1, we have one of

(3.1) ν(B) = ih(iq↑B−h(3)
i
p↑B−h−1

(3)
), or

(3.2) ν(B) = ih(ip↑B−h(3)
i
q↑B−h−1

(3)
), or

(3.3) ν(B) = ih(ip↑B−h(3)� iq↑B−h(3)),

while

ν(A) = ih(ip↑A−h(3))� ih(iq↑A−h(3)).

By Lemma 10.2, p ↑ A = p ↑ B > 1 and q ↑ A = q ↑ B > 1. If (3.1), then

ν(B) > ih(iq↑B−h(3)� 2
i
p↑B−h−1

(3)
), by Lemma 8.1

> ν(A), by Lemma 8.3.

We proceed analogously with (3.2), whereas with (3.3) we simply apply Lemma 8.3 to get

ν(B) > ν(A). So we have a contradiction with (V).

Case 4. Here, because of (N), there must be a letter r in let(B
′

k); otherwise, B would not

be in normal form. By Lemma 10.1, r ∈ let(A). Now three subcases are possible:

(Subcase 4.1) r ∈ let(Ai),
(Subcase 4.2) r ∈ let(Aj),
(Subcase 4.3) r ∈ let(Ah), where h 6= i and h 6= j.

In Subcase 4.1 we take the valuation ν such that ν(r) = ν(q) = 3 and ν(s) = 2 for every

letter s different from r and q, and we obtain a situation analogous to Case 1: the letter

r now plays the role of p.

In Subcase 4.2 we take the valuation ν such that ν(p) = ν(r) = 3 and ν(s) = 2 for every

letter s different from p and r, and we obtain a situation analogous to Case 2: the letter r

now plays the role of q.

In Subcase 4.3 we take either the valuation of Subcase 4.1 or the valuation of Subcase

4.2.

It is clear that we can also prove the version of Lemma 10.3 where its second sentence

is replaced by: ‘If for some i and j in {1, . . . , m} such that i 6= j we have p ∈ let(Bi) and

q ∈ let(Bj), then there is no k in {1, . . . , n} such that p ∈ let(Ak) and q ∈ let(Ak).’ As a

corollary of Lemma 10.3 we have the following lemma.

Lemma 10.4. Suppose (D), (N) and (V), and let A1 • . . . •An, for some n > 1, be the prime

representation of A, and B1 • . . . •Bm, for some m > 1, the prime representation of B. Then

n = m.

Proof. Suppose n > m (when n < m, we proceed analogously). So n > 2. Because of

(N), for every i in {1, . . . , n} there must be a letter pi in let(Ai). By Lemma 10.1, for every i

in {1, . . . , n} we have pi ∈ let(B). By the Pigeonhole Principle, for some i and j in {1, . . . , n}
such that i 6= j there is a k in {1, . . . , m} such that pi ∈ let(Bk) and pj ∈ let(Bk). But this

contradicts Lemma 10.3.

We shall now start on the proof of the Auxiliary Theorem by induction on the number

of binary connectives in A. The basis of this induction is covered by the following

proposition.

Basis. If (D), (N) and (V), and A is an atomic formula, then A ∼= B is provable in AssCom.
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Proof. If A is I, then, because of Lemma 10.1 and (N), we must have that B is I, too.

If A is p, then, because of Lemmata 10.1 and 10.2, and (D) and (N), we must have that

B is p, too.

For the next two propositions, which cover the induction step of our proof, we need

the following Induction Hypothesis:

The Auxiliary Theorem holds when A is replaced by an A′ in which

there are strictly less binary connectives than in A.

Induction Step with →. Suppose the Induction Hypothesis. If (D), (N) and (V), and A is

an implication, then A ∼= B is provable in AssCom.

Proof. If A is an implication, then, because of Lemmata 10.1 and 10.2, and (D) and

(N), we cannot have that B is an atomic formula. Because of Lemma 10.4, the formula

B cannot be a product. So B must be an implication, too. Let A be A1 → A2 and B be

B1 → B2. We shall show that let(A1) = let(B1).

Suppose for some p we have p ∈ let(A1) and p /∈ let(B1) (of course, we proceed

analogously when p /∈ let(A1) and p ∈ let(B1)). By Lemma 10.1, p ∈ let(B2). Because of

(N), there must be a letter q in let(B1), and by Lemma 10.1, q ∈ let(A). Then we have the

following two cases:

(Case 1) q ∈ let(A1),

(Case 2) q ∈ let(A2).

Case 1. There must be an implication in B2, because, by Lemma 10.2, p ↑ B > 1. We

cannot have that B is B1 → (B
′

2 → B
′′

2), because then B would not be in normal form. So

B must be B1 → (B
′

2 •B
′′

2) (and the implication is in B
′

2 or B
′′

2). Suppose p ∈ let(B ′2) (when

p ∈ let(B ′′2), we proceed analogously). Because of (N), there must be a letter r in let(B
′′

2).

By Lemma 10.1, r ∈ let(A). Then there are two subcases:

(Subcase 1.1) r ∈ let(A1),

(Subcase 1.2) r ∈ let(A2).

Subcase 1.1. Take the valuation ν such that ν(p) = ν(r) = 3 and ν(s) = 2 for every letter s

different from p and r. Then for some h > 1 either

(1.11) ν(A) = ih(ir↑A−h(3)
i
p↑−h−1

(3)
), or

(1.12) ν(A) = ih(ip↑A−h(3)
i
r↑A−h−1

(3)
), or

(1.13) ν(A) = ih(ip↑A−h(3) · i
r↑A−h(3)),

while

ν(B) = ip↑B(3)� ir↑B(3).

By Lemma 10.2, p ↑ A = p ↑ B > 1 and r ↑ A = r ↑ B > 1. If (1.11) or (1.12), we

use Lemmata 8.1 and 8.3, and if (1.13), we use Lemma 8.3, to get ν(A) > ν(B), which

contradicts (V) (cf. Case 3 of the proof of Lemma 10.3).

Subcase 1.2. Take the valuation ν of Subcase 1.1. Then

ν(A) = ir↑A(3)
i
p↑A−1

(3)
.

By Lemma 10.2, p ↑ A = p ↑ B > 1 and r ↑ A = r ↑ B, while by Lemma 8.1, ν(A) > ν(B),

which contradicts (V) (cf. Case 1 of the proof of Lemma 10.3).
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Case 2. There must be an implication in A2, because, by Lemma 10.2, q ↑ A > 1. We

cannot have that A is A1 → (A
′

2 → A
′′

2), because then A would not be in normal form. So

A must be A1 → (A
′

2 •A
′′

2) (and the implication is in A
′

2 or A
′′

2). Suppose q ∈ let(A′2) (when

q ∈ let(A′′2), we proceed analogously). Because of (N), there must be a letter r in let(A
′′

2).

By Lemma 10.1, r ∈ let(B). Then there are two subcases:

(Subcase 2.1) r ∈ let(B1),

(Subcase 2.2) r ∈ let(B2).

We treat Subcase 2.1 as Subcase 1.1 and Subcase 2.2 as Subcase 1.2, replacing p by q and

interchanging A and B.

So let(A1) = let(B1). From (D) and Lemma 10.1, it follows that let(A2) = let(B2).

Moreover, let(A1) and let(A2) are disjoint, and let(B1) and let(B2) are disjoint, too. From

(V), it follows that for every valuation ν such that ν(p) = 2 for every p in let(A2)

ν(A2)ν(A1) = ν(B2)ν(B1)

that is

2ν(A1) = 2ν(B1)

which implies ν(A1) = ν(B1). Since let(A1) and let(A2) are disjoint, it follows that (V1) for

every valuation ν we have ν(A1) = ν(B1). We also have that (D1) A1 and B1 are diversified

(a subformula of a diversified formula is diversified), and (N1) A1 and B1 are in normal

form (a subformula of a formula in normal form is in normal form). Since A1 has strictly

less binary connectives than A, we may apply the Induction Hypothesis to obtain that

A1
∼= B1 is provable in AssCom. Quite analogously, we obtain that A2

∼= B2 is provable in

AssCom. So A1 → A2
∼= B1 → B2 is provable in AssCom.

Induction Step with • . Suppose the Induction Hypothesis. If (D), (N) and (V), and A is a

product, then A ∼= B is provable in AssCom.

Proof. Let A1 • . . . •An, for some n > 2, be the prime representation of A and B1 • . . . •Bm,

for some m > 1, the prime representation of B. By Lemma 10.4, we have n = m.

First we show that for every i in {1, . . . , n} there is a k in {1, . . . , n} such that let(Ai) =

let(Bk). Take an Ai and let p ∈ let(Ai). By Lemma 10.1, there is a Bk such that p ∈ let(Bk).
If let(Ai) = let(Bk), we are done. If let(Ai) 6= let(Bk), then there are two cases:

(Case 1) q /∈ let(Ai) and q ∈ let(Bk),
(Case 2) q ∈ let(Ai) and q /∈ let(Bk).
In Case 1, by Lemma 10.1, for some j different from i we have q ∈ let(Aj). Since p ∈ let(Bk)
and q ∈ let(Bk), we get a contradiction with Lemma 10.3.

In Case 2 we similarly get a contradiction with Lemma 10.3 (or, rather, with the version

of this lemma mentioned immediately after the proof of Lemma 10.3).

We infer easily from (D), (N) and (V) that Ai and Bk are diversified, that they are in

normal form, and that for every valuation ν we have ν(Ai) = ν(Bk) (cf. the last paragraph

of the proof of the Induction Step with →). Since Ai has strictly less binary connectives

than A, we may apply the Induction Hypothesis to obtain that Ai ∼= Bk is provable in

AssCom. We obtain similarly that

A1 • . . . •Ai−1 •Ai+1 • . . . •An ∼= B1 • . . . •Bk−1 •Bk+1 • . . . •Bn
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is provable in AssCom, and with the help of ( •ass) and ( •com) we may infer that A ∼= B

is provable in AssCom.

This concludes the proof of the Auxiliary Theorem.

11. Proof of the completeness of S

First we prove the Arithmetical Completeness Theorem. Suppose

(D) A and B are diversified,

(V) for every valuation ν we have ν(A) = ν(B).

Then there are formulae A′ and B′ such that A ∼= A′ and B ∼= B′ are provable in S,

(D′) A′ and B′ are diversified,

(N′) A′ and B′ are in normal form,

(V′) for every valuation ν we have ν(A′) = ν(B′).

This is an immediate consequence of the Normal Form Lemma of Section 6, of the fact

that a normal form of a diversified formula is a diversified formula, and of the soundness

of S with respect to our arithmetical models (if A ∼= A′ and B ∼= B′ are provable in S,

then for every valuation ν we have ν(A) = ν(A′) and ν(B) = ν(B′)).

Then, by the Auxiliary Theorem, we have that A′ ∼= B′ is provable in AssCom, and hence

A′ ∼= B′ is provable in S. Combining this with A ∼= A′ and B ∼= B′, which are provable

in S, we obtain that A ∼= B is provable in S, and we have established the Arithmetical

Completeness Theorem.

Next we prove the Main Completeness Theorem. Suppose A and B are isomorphic in

SyMonCl. By the Diversification Lemma of Section 3, there is an isomorphism f′ : A′ ` B′
of SyMonCl such that A′ and B′ are diversified, and A and B are instances of A′ and

B′, respectively, with the same substitution. Since f′ is an isomorphism of SyMonCl, for

every symmetric monoidal closed functor F from SyMonCl into FinSet* we must have

that F(f′) is an isomorphism in FinSet*. This implies that card(F(A′)) = card(F(B′)).

For every valuation ν of the set of formulae in 〈N+,�, −, 2〉 there is a symmetric

monoidal closed functor F from SyMonCl into FinSet* such that for every formula C ,

card(F(C)) = ν(C) (it is enough to ensure that for every letter p, card(F(p)) = ν(p), and

this we can always do because of the freedom of SyMonCl). It follows that for every

valuation ν we have ν(A′) = ν(B′). By the Arithmetical Completeness Theorem, it follows

that in S we can prove A′ ∼= B′, and hence also its instance A ∼= B.

12. A short proof of a restricted completeness theorem for S

Our proof of the Main Completeness Theorem is not short. (If the proof of Soloviev

(1993) were written in sufficient detail, we suppose it would be longer than ours, especially

if Babaev (1981) were incorporated.) So it might be worth presenting as an appendix to

our paper a shorter proof of a restricted, but still quite general, version of the theorem.

However, this proof is not self-contained: it relies on the result of Soloviev (1981).

Let us call a formula consequential iff for each of its subformulae of the form A → B,

if some letter occurs in A, then some letter occurs in B. The restricted version of the
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Main Completeness Theorem excludes formulae that are not consequential – the same

sort of troublesome formulae that were excluded in Kelly and Mac Lane (1971) for

proving coherence in symmetric monoidal closed categories. So one may surmise that the

difficulties encountered in proving the unrestricted Main Completeness Theorem are due

to the presence of these formulae.

Consider the subsystem of the system S of Section 4 obtained by rejecting the axiom

schema

(S2) (A •B)→ C ∼= B → (A→ C).

That A ∼= B is provable in S minus (S2) means that the formulae A and B are identical

up to associativity and commutativity of the product and the deleting of I in products

and antecedents.

Let [A] be the set of all formulae B such that A ∼= B is provable in S minus (S2).

We call the equivalence classes [A] formula-terms, and we define on them the following

operations:

[A1] ◦ . . . ◦ [An] =def . [(. . . (A1 •A2) • . . . •An)], for n > 2

[A]⇒ [B] =def . [A→ B].

We use the schematic letters a, b, c, . . ., possibly with indices, for formula-terms.

Next we define the following reductions of formula-terms, which consist of replacing

subterms of the forms on the left-hand side by formula-terms on the right-hand side:

S2-redex contractum

b⇒ (a⇒ c) (a ◦ b)⇒ c

C2-redex contractum

b⇒ (((d1 ◦ a)⇒ c1) ◦ . . . ◦ ((dn ◦ a)⇒ cn)) (a ◦ b)⇒ ((d1 ⇒ c1) ◦ . . . ◦ (dn ⇒ cn))

To exclude trivial reductions, we take S2-redexes with the proviso that a 6= [I] and b 6= [I],

and C2-redexes with the proviso that a 6= [I].

In Section 4, we called C the system S extended with the axiom schemata

(C1) C → I ∼= I

(C2) C → (A •B) ∼= (C → A) • (C → B).

The S2-reductions, that is, those involving S2-redexes only, are justified by (S2), and hence

by the system S, while, in the presence of (S2), the C2-reductions, that is, those involving

C2-redexes only, are justified by (C2). We call the reductions involving both S2-redexes

and C2-redexes C-reductions, because they are justified by theorems of the system C.

Note that if we interpret a1 ◦ . . . ◦ an as a1 for n = 1, we obtain S2-reductions as a

particular case of C2-reductions for n = 1 and d1 = [I]. In fact, S allows a somewhat

more general kind of reduction than S2-reductions, which is obtained from C2-reductions

by putting n = 1 and requiring that b 6= [I] (for n = 1 and b = [I], C2-reductions would

be exactly converse to S2-reductions). If we interpret a1 ◦ . . .◦an as [I] for n = 0, we obtain

reductions justified by (C1) as a particular case of C2-reductions for n = 0 (with b = [I],

this corresponds exactly to (C1); with b 6= [I] we also use (S2)). So the equality of the

C2-redex with its contractum sums up all of (S2), (C1) and (C2) for n > 0. However, we

use here the notation a1 ◦ . . . ◦ an only for n > 2, as it was officially introduced.
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A formula-term in which there are no S2-redexes is in S-normal form, while a formula-

term in which there are neither S2-redexes nor C2-redexes is in C-normal form. We can

establish that both S2-reductions and C-reductions are strongly normalizing and that

they have the Church–Rosser property (in connection with the S-normal form, cf. the

→-normal form of Section 6). So S-normal forms and C-normal forms of formula-terms

are unique.

We can then prove three lemmata, which yield the Restricted Completeness Theorem

below.

Lemma 12.1. Suppose A and B are consequential. If A ∼= B is provable in C, then [A] and

[B] have the same C-normal form.

Proof. Let A ∼= B be provable in C. Since A and B are consequential, we can prove

A ∼= B in C without using the axiom schema (C1). (To show this, replace by I every

subformula of the form C → D where some letter occurs in C and no letter occurs in D,

in the proof of A ∼= B in C, and iterate the replacement until no such subformulae are

left; the result can be transformed into a proof of A ∼= B in C without (C1).) Then we can

pass from [A] to [B] by a chain of C-reductions or replacements converse to C-reductions.

Because of the Church–Rosser property of C-reductions, this yields that [A] and [B] have

the same C-normal form.

Lemma 12.2. Suppose A and B are consequential and diversified. If A ∼= B is provable in

C, and [A] and [B] are in S-normal form, then [A] is equal to [B].

Proof. Let A ∼= B be provable in C and let [A] and [B] be in S-normal form. By

Lemma 12.1, [A] and [B] have the same C-normal form. But no C-reduction can apply

to these formula-terms: S2-reductions are excluded because [A] and [B] are in S-normal

form, while C2-reductions are excluded because A and B are diversified. So [A] and [B]

are in C-normal form, and hence they are equal.

Lemma 12.3. Suppose A and B are consequential and diversified. If A ∼= B is provable in

C, then A ∼= B is provable in S.

Proof. Let A ∼= B be provable in C. Then for some A′ and B′, consequential and

diversified, we have that A ∼= A′ and B ∼= B′ are provable in S, A′ ∼= B′ is provable in C,

and [A′] and [B′] are in S-normal form. By Lemma 12.2, [A′] is equal to [B′], so A′ ∼= B′

is provable in S. It follows that A ∼= B is provable in S.

Restricted Completeness Theorem. If A and B are consequential, then A ∼= B is provable

in S iff A and B are isomorphic in SyMonCl.

Proof. We need to establish only the completeness part of the ‘iff’ statement. So

suppose that A and B are consequential and that they are isomorphic in SyMonCl.

By the Diversification Lemma of Section 3, there is an isomorphism f′ : A′ ` B′ of

SyMonCl such that A′ and B′ are diversified, and A and B are instances of A′ and B′,

respectively, with the same substitution. Since this substitution is letter-for-letter, A′ and

B′ are consequential, too. It is clear that A′ and B′ are isomorphic in the cartesian closed

category freely generated by the same letters that have generated SyMonCl, and so, by

the completeness result of Soloviev (1981), A′ ∼= B′ is provable in C. But then, by Lemma

12.3, A′ ∼= B′ is provable in S, and hence its instance A ∼= B is provable in S.
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Lemma 12.3 is of an independent interest – besides serving for the proof of the last

theorem. It says that for consequential and diversified formulae the systems S and C

coincide. Since C axiomatizes all the equalities that hold between arithmetical terms in

the language with 1, product and exponentiation, this gives another restricted arithmetical

completeness for the system S.
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