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ISOMORPHIC SUBGROUPS OF FINITE ^-GROUPS. II 

GEORGE GLAUBERMAN 

1. Introduction and notation. Suppose that we are given an isomorphism 
<t> between two subgroups of index p in a finite p-group P . Let Nfo) be the 
largest subgroup of P fixed by <j>. By a result of Sims [2, Proposition 2.1], iV(#) 
is a normal subgroup of P . In [2], we showed that P/N(<f>) has nilpotence 
class at most two if p = 2, and at most three if p is odd. We then applied this 
result to investigate certain cases of the following question. Suppose that P is 
contained in a finite group G and that some subgroup of index p in P is a normal 
subgroup of G. Let a be an automorphism of P. Then, does a fix some non-
identity normal subgroup of P that is normal in G? 

In this paper, we consider characteristic subgroups of P rather than normal 
subgroups. For <j> as above, we use the following notation: 

(1.1) (a) p is a prime; 
(b) P is a finite p-group; 
(c) Q and R are subgroups of index p in P ; 
(d) <t> is an isomorphism of R onto Q; 
(e) Q* = N(<f>); 

(f ) c is the nilpotence class of P/Q*. 

We also consider the following hypothesis: 

(1.2) (a) P Ç G ; 
(b) Q < G; 
(c) G is generated by a subset ^f enjoying the property that, for every 

h eJtf, P is conjugate to Ph in (P, Ph). 

Note that (1.2) is satisfied when P is a Sylow subgroup of G or when G is 
generated by two conjugates of P . 

For every group G and every positive integer i, let G* be the ith term of the 
lower central series of G. Thus, 

Gi = G and Gi+i = [Giy G], for i è 1. 

If G is a finite p-group for some prime p, let 

tii(G) = (x\x £ G and xpi = 1) and G*(G) = (xpi\x 6 G), 

for i = 1, 2, 3, . . . . In addition, define s/(G) to be the set of all Abelian 
subgroups of maximal order in G and J(G) to be the subgroup of G generated 
by the elements of s/(G) (the Thompson subgroup of G). 
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We obtain the following results: 

THEOREM 1. Assume (1.1). Then P satisfies at least one of the following 
conditions'. 

(i) Oi(z(P)) = SMZ(<2)) = Qi(z(iO); 
(ii) (a) p = 2 andPc+2V^(P) = <2c+2O

m(<2) = RC+2U
C^(R), or 

(b) p = 3 and P*&*(P) = Qc^KQ) = ^ c + 2y2( i^) , or 
(c) £ ^ 5 andPc+2W(P) = QC+2^(Q) = 2 W W ; 

( i i i ) J (P) = 7 ( 0 ) = / ( # ) ; 
(iv) P/Q* w Abelian. 

COROLLARY 1. L ^ p be a prime, P be a finite p-group, and Q be a subgroup of 
index p in P. Then P and Q satisfy at least one of the following conditions: 

(A) There exists a characteristic subgroup K of P enjoying the following 
properties: 

(Al) Whenever <j> satisfies (1.1), then K C R and </>(K) = K. 
(A2) Let P = P/K. Then P&*(P) = 1, if p = 2, P&2(P) = 1, if p = 3, 

andP$Sl(P) = l,ifp^5. 
(B) Whenever <f> satisfies (1.1), £&£» P/N{<t>) is Abelian. 

THEOREM 2. Z,g£ p be a prime, P be a finite p-group, and Q be a subgroup of 
index p in P . Then there exists a characteristic subgroup K of P that satisfies the 
following conditions: 

(a) Whenever G is a group that satisfies (1.2), then K < G. 
(b) Let P = P/K. Then PA1S*(P) = 1, if p = 2, P5U

2(P) = 1, if p = 3, and 
P5U

l(P) = l,ifp^5. 

Some variations on Theorem 2 are given in Theorems 3.4 and 6.5. 
Let us reconsider the question mentioned in the first paragraph. Suppose 

that P is a Sylow ^-subgroup of G and that CG(Q) C Q. If there exists a 
non-identity characteristic subgroup K of P that is normal in G, then if is 
fixed by a, regardless of the choice of a. Assume that SL(2, p) is not involved 
in G. By results of J. Thompson and of the author [1, p. 19], 

G = (CG(Z(P)),NG(J(P))). 

If J(P) Q Q, then J(P) = J(Q) (by Lemma 2.1) and we can let K = J(P). 
If J(P) £ Q, then P = J(P)Q and NG(J(P)) = i \^ (P) Ç NG(ZÇP)). 
Hence, we may take If = Z{P), if J ( P ) g <2-

Thus, Theorem 2 is of interest mainly when SL(2, p) is involved in G. 
Actually, Theorem 2 raises two much more general questions: 

1. Can we find K if we remove the restriction that \P/Q\ = pf 
2. Can we find K independently of Q, even at the cost of slightly weakening 

condition (b) of Theorem 2? 
The anwers to these questions appear to depend on further investigation or 

discovery of 'interesting' characteristic subgroups of ^-groups. 
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In general, we use the notation of our previous paper [2], to which we will 
refer as I. In particular, all groups considered in this paper are finite. We 
require the following additional notation. Let G be a group. For any subsets S 
and T of G, let 5 — T be the set of all elements of 5 that lie outside T. 
Suppose that p is a prime and that G is a finite £-group. Then G is a regular 
^-group [4, Kap. I l l , § 10] if, for every x, y <E G, 

x y = (xy)p, modulo W^x, y)r). 

Acknowledgement. We thank Bowdoin College, the Institute for Advanced 
Study, the National Science Foundation, and the Sloan Foundation for their 
partial support during the writing of this article. We also thank Bowdoin 
College for the opportunity to present most of this work during the Bowdoin 
Finite Groups Seminar in the summer of 1970. 

2. Preliminary results. We require a number of elementary results. 

LEMMA 2.1 Let G be a finite p-group. 
(a) If A £ s/(G), then A = CQ(A). 
(b) IfJ{G) Ç i î Ç G , then J{G) = J{H). 
(c) IfHQG and J(G) 9* J(H), then J(G) = J(H). 

Proof. These statements are elementary consequences of the definitions. 
(For a proof of (a) and (b), see [3, pp. 271-272]. The proofs of (b) and (c) are 
similar.) 

LEMMA 2.2. Suppose that G is a group and that H, K, L < G. Then 

[H, K, L] ç [K, L, H][L, H, K]. 

Proof. Let N = [K, L, H][L, H_, K]. _For every subgroup X of G, let 
X = XN/N. Then [R, L, H] = [£, H, K] = 1. By Lemma 2.6 of I, we have 
[E, K, L] = 1. 

LEMMA 2.3. Suppose that G is a group and that H, K < G. Assume that 
G = HK and that [H, K] C H\ Then, for i = 1, 2, 3, . . . , 

(a) [Hi9 K] C Hi+ly 

(b) [Kt, H] ç Hi+1, and 
(c) Gt = HiKt. 

Proof. We use induction on i. By hypothesis, (a), (b), and (c) are true for 
i = 1. We will make frequent use of Lemma 2.2. 

Suppose that i ^ 1 and that (a), (b), and (c) are true for i. We prove them 
for i + 1. 

(a) Here, 

[Hi+ll K] = [Hu H, K] £ [H, K, Ht][Hi9 K, H] C [H2l Ht][H^lf K] C Hi+1, 

by induction. 
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(b) By (a) and induction, 

[K1+1, H] = [K„ K,H\Q [K, H, Kt][H, Ku K] ç [Ht, Kt][Hi+1, K] 

C [H, Ku H][Kif H, H]Hi+2 £ Hi+2. 

(c) By (a), (b), and induction, 

Gt+i = [Gi9 G] = [HtKu HK] = [Hu H][HU K][KU H][KU K] Q Hi+1Ki+1. 

Thus, Gi+i = Hi+iKi+1. This completes the proof of Lemma 2.3. 

Suppose that P and <j> satisfy (1.1) and that iV(</>) = 1. Then we define 
integers t, u,v and elements Xi, . . . , xt of P as in Section 3 of I. Here, pl = |P | ; 
if P is Abelian, u = t; if P is not Abelian, u is the smallest positive integer such 
that [xu xu+i] 9^ 1 for some i; and v = t — u. For every x Ç P , there exist 
unique elements tf(l), . . . , e(t) of Zp such that X X\ » % m X l e{t). Moreover, 
<f)(Xi) = Xi+i, for i = 1, 2, . . . , / — 1. 

If P and 0 satisfy (1.1), then 0 induces an isomorphism <// of P/Q* onto 
Q/Q*, and iV(</>') = 1. In this case, we will define t, u, v, and xx, . . . , xt for 
P/Q* as in the preceding paragraph. We use this notation in the next result. 

LEMMA 2.4. Assume (1.1). Suppose that P/Q* is not Abelian. Then 
(a) Z(P/Q*) = (xv+1, . . . , %u) and Z(Q/Q*) = (xv+1, . . . , xu+1), and 
(b) ifx e {P/Q*) - (Q/Q*) and y G Z(Q/Q*) - Z(P/Q*), then 

([x,y]) = ( h v i ] ) Ç Z ( W ) , 

Proof. This follows from Lemma 3.5 and Proposition 3.4(b) of I. 

LEMMA 2.5. Assume (1.1). Suppose that G is a group that contains P and that 
\f/ is an isomorphism of P into G. Assume that the restriction of \p to R is equal to 
<t>. Then N(4>) < (P, iKP)>. 

Proof. This follows directly from Lemma 2.4 of I. 

LEMMA 2.6. Suppose that H is a normal subgroup of a group G. Let A be the 
set of all automorphisms of G that centralize H and G/H. Then A is Abelian. 

Proof. Suppose that a, /3 £ A and that g G G. Let h — g~1ga and k = g~lg®. 
Then h, k £ H and g<* = gh, g? = gk. Let / = gkg~\ Then / G H, k = g~lfg, 
and 

k = ka = (g-lfg)a = h-ig-ygh = hrikh. 

Thus, hk = kh. Now, g& = (gA)* = gkh = gM = g#*. 

LEMMA 2.7. Suppose that S is a Sylow p-subgroup of a finite group G and that 
P is a weakly closed subgroup of S with respect to G. Then: 

(a) For every g G G, P is conjugate to P9 in (P, P°). 
(b) For every p-subgroup T of G that contains P , P is weakly closed in T with 

respect to G. 
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(c) Suppose that P C H QG and that N < H. 
Then PN/N is weakly closed in some Sylow p-subgroup of H/N with respect to 
H/N. 

Proof. Special cases of parts (a) and (b) are proved in Lemmas 7.1 and 7.2 
of I. However, the proofs are valid in the general case. Part (c) follows from 
part (b) by Lemma 7.9 of I. 

We require a number of results on powers of products. For the following two 
( 7Yl\ 

results, we denote by I J the binomial coefficient whose value is 

w 
m\/n\(m — n)\, for integers m, n such that 1 ^ n ^ m. 

PROPOSITION 2.8. (P. Hall-Petrescu). Let G be a group generated by two 
elements x, y. Then there exist elements d Ç Gt (i = 1, 2, 3, . . .) such that, for 
every positive integer ra, 

x y = {xy) C2 . . . Cw_i Gm. 
Proof. This is proved in [4 p. 317] for a free group on two generators. Since 

G must be a homomorphic image of such a free group, the result follows. 

COROLLARY 2.9. Let p be a prime and G be a p-group generated by two elements 
x, y. Then 

(a) xvyv = (xy)v, modulo WÇG'2)Gv, and 
(b) xp2y*s = (xy)v\ modulo V2(G2)^(Gp)Gp+2. 

Proof. For i = l , 2 , . . . , ^ — 1, ( . l i s divisible by p, and f . J is divisible 

by p2. Furthermore, I • ) is divisible by p for i — p and i = p + 1. Apply 

Proposition 2.8. 

Corollary 2.9(a) yields the next result: 

LEMMA 2.10. / / p is a prime, G is a p-group, and Gv = 1, then G is a regular 
p-group. 

LEMMA 2.11. Suppose that p is a prime and that G is a regular p-group. 
(a) For all x G Oi(G), xv = 1. 
(b) If x, y £ G, then xv = yv if and only if (xy~l)p = 1. 

Proof. This is proved in [4, pp. 324-327]. 

LEMMA 2.12. Suppose that p is a prime and that G is a p-group generated by 

two elements x, y. Assume that xv = 1. For all i ^ 2, 

Proof. We use induction on i. Let H = (x, G2). Then Hv Q Gp+i. So, by 
Lemma 2.10, H/Gv+i is a regular ^-group. Now, H < G. Let i l* = (x°\g £ G). 
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Then H* < G, H* Ç H, and G/H* is cyclic. Hence, H* 3 G2 and i7* = H. 
Therefore, H and H/Gp+i are generated by elements of order p. By Lemma 
2.11, H/Gp+i has exponent 1 or p. So Œ 1 ^ ) C Gp+i. 

Suppose that i è 2 and that ^(G*) ÇI Gi+P_i. We wish to prove that 
13l(Gi+\) Ç Gj+P. By considering G/Gi+P, if necessary, we may assume that 
Gi+P = 1. Since 

\Gi)p C GPi Ç Gz-+p = 1, 

Gi is regular, by Lemma 2.10. Take any w £ Gt and s Ç G. By induction, 
ze/p G GH-P-I Ç Z(G). Hence, 

1 = [w*, s] = wr*(ze;*)l\ 

Thus, wv = (wz)v. By Lemma 2.11, (w~lwz)p = 1. So 

[w, z] = w~lwz 6 Oi(Gi). 

Since w and 2 are arbitrary, Gi+\ = [Gu G] Ç Œi(G*). By Lemma 2.11, G*+i 
has exponent 1 or p. Hence, ^(Gf+i) = 1 C Gi+P, as desired. 

LEMMA 2.13. Let p be a prime and Q be a subgroup of index p in a finite 
p-group P . Suppose that x Ç P — Q and that xv = 1. Then: 

(a) For 1 S i ^ p, P^l(P) = P^iQ)-
(b) Ifp = 2, then PZW(P) = P30

2(<2) a«d P ^ 3 ( P ) = P^3(<2). 
(c)Ifp = Sandl^i^ 5, *Ae» PtV>2(P) = P^2{Q). 

Proof. Take x G P — Q such that xp = 1. For every z £ P — Q and i ^ 1, 
there exists 3; 6 Ç such that (s?*) = {(xy)p%). Now choose an arbitrary element 
y of Ç and let 5 = (x, y). 

(a) Suppose that 1 tik i S p- By Corollary 2.9, (x^)p = xpyp = yp, modulo 
W^Sp. Since S2 Ç Ç and S , Ç P , C P „ (xy)p Ç U1(Q)PÙ AS y is arbitrary, 
^ ( P ) S Pi^iQ). Therefore, 

p&(P) =P io
1
(0). 

(b) Suppose that p = 2. By Corollary 2.9 and Lemma 2.12, (x;y)4 = 

%Y = y\ modulo S8. Consequently, y2 (P) ÇP 3 y 2 (G) and P 3^ 2(P) = P&2(Q). 
Take s Ç S3 such that (x;y)4 = yAz, modulo S4. Then (X3/)8 = y8z2, modulo 

S4. By Lemma 2.12, y 1 ^ ) £ S4. Hence, 

PS2(P) = P*V2(Q). 

(c) Suppose that >̂ = 3 and that 1 ^ i rg 5. By Corollary 2.9 and Lemma 
2.12, (X3/)9 = x93/9 == 3/9, modulo S5. Therefore, 

PtV*(P) = PtV
2(Q). 

3. Statement of main results. In this section, we state the main results 
of the paper and derive the results of § 1 from them. 
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LEMMA 3.1. Assume (1.1). Then ^ falls into at least one of the following cases: 

(i) a,(z(P)) = ni(z(0)), 
(ii) CP(Q) £ (2* am* Oi(Z(P)) ^ 0 ^ ( 0 ) ) , 

(iii) 7 (P) = J(Q), 
(iv) Z(P) C Z(Ç) ç Q* a» i / ( P ) * / « ? ) . 
Proo/. Assume that 0 violates (i), (ii), and (iii), and observe that 4> satisfies 

(iv). 

For our next result, we use the following restrictions on integers d, m, and n. 

(3.1) (a) If p = 2, then m = d = 3 awd n = 2, or m = 4 awd w = 3. 
(b) If p = 3, JÂe» m = d = 3 and n = l, ord^m^5 and n — 2. 
(c) If p ^ 5, then d ^ m ^ 5 and n = 1. 

THEOREM 3.2. Assume (1.1). Jjf case (i) 0/ Lemma 3.1 occurs, then 
Oi(Z(P)) = Oi(Z(Q)) = Oi(Z(P)). 

Suppose that case (ii) occurs. Let d = c + 1, if [P,Z(Q)] $£ Q* or 
[P, Z(P)] $£ Ç*, awd Ze£ d = c + 2, otherwise. Suppose that d, m, and n satisfy 
(3.1). Then Pi = Qt = Ru for all i ^ d, awd 

PmO^P) = <2J^(<2) = RJT{R). 
If case (iii) occurs, then J{P) = /((?) = J(R). 
If case (iv) occurs, then P/Q* is Abelian and 

<2* = cP(Z(<2*)). 

Remark. Since P/<2* is Abelian when c = 1, in case (ii) we always have 
3 ^ d ^ 4, if p = 2, and 3 g d ^ 5, if £ is odd. 

It is easy to verify cases (i) and (iii) of Theorem 3.2. (See Lemma 2.1 for 
case (iii).) The proofs of cases (ii) and (iv) are given in §§ 4 and 5. 

Note that Theorem 3.2 yields Theorem 1. To obtain Corollary 1 from 
Theorem 1, let K be a characteristic subgroup of P that is maximal with respect 
to property (Al); since 1 satisfies (Al), K must exist. If K satisfies (A2), we 
are done. Assume that K violates (A2). Take any <j> that satisfies (1.1). Then 
(j>(K) = K and K C Q*. Hence, <£ induces an isomorphism #' of R/K onto 
Q/K. By the maximal choice of K, Q^Z^P/K)) ^Qi(Z(Q/K)). Similar 
arguments show that <£' violates conditions (i), (ii), and (iii) of Theorem 1. 
Therefore, (P/K)/N{<j>f) is Abelian. Since iV(<*>') = Q*/K, P/Q* is Abelian. 

THEOREM 3.3. Let p be a prime, P be a finite p-group, and Q be a subgroup of 
index p in P . Let Q =C^aeAntpQa- Then P satisfies at least one of the following 
conditions: 

( i ) ^ ( Z ( P ) ) =Ûi(Z(Ç)) ; 
(ii) (a) p = 2 and PAU*(P) = Qj}*(Q), or 

(b) p = 3 and P5U
2(P) = Q,U2(Q), or 

(c) p ^ 5 and P$Sl(P) = Q&l(Q)\ 
(iii) J ( P ) = J(Q); 
(iv) Q < G,for every group G that satisfies (1.2). 
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Note that in Theorem 3.3 and in the next theorem, Q is a characteristic 
subgroup of P and P/Q is an elementary Abelian group. To obtain Theorem 
2 from Theorem 3.3, let K be a, characteristic subgroup of P that is maximal 
with respect to the condition (a) of Theorem 2. By Theorem 3.3, we obtain 
condition (b) of Theorem 2. 

(3.2) (a) P C G. 
(b) Q < G. 
(c) For some Sylow p-subgroup S of G, P is a weakly closed subgroup of S 

with respect to G. 

THEOREM 3.4. Let p be a prime, P be a finite p-group, and Q be a subgroup of 
index p in P. Let Q = D a€Autp(?a- Then P satisfies at least one of the following 
conditions: 

( i)Ûi(Z(P)) = O 1 ( Z ( 0 ) ; 
(ii) (a) p = 2 and P302(-P) = Q&HQ), or 

(b) p = 3 and PJ5*(P) = QiVziQ), or 
( c ) ^ 5 andP3B

l(P) = QflHQ); 
( i i i ) J (P) =J{Q); 
(iv) whenever G is a group that satisfies (3.2), then Z(P) < G or Q < G. 

Assuming Theorem 3.4, we obtain the following result: 

COROLLARY 3.5. Let p be a prime, P be a finite p-group, and Q be a subgroup 
of index p in P. Then P satisfies at least one of the following conditions: 

(a) whenever G is a group that satisfies (3.2), then there exists a non-identity 
characteristic subgroup K of P such that K <3 G; 

(b) p --= 2 and PSU
2(P) = 1, or p = 3 and PAU2(P) = 1, or p ^ 5 and 

P8Q1(P) = 1. 

Proof. Assume that P violates (b). Let L be a characteristic subgroup of P 
that is maximal with respect to the property that L < G whenever G satisfies 
(3.2). If L ?£ 1, we have (a). Assume that L = 1. By the maximal choice of L, 
the groups P and Q must violate conditions (i), (ii), and (iii) of Theorem 3.4. 
Therefore, for every G that satisfies (3.2), Z(P) or Q is a normal subgroup of 
G. Since P violates (b), Z(P) ^ 1 and Q 9^ 1. Hence, we obtain (a). 

4. Case (ii). We now treat case (ii) of Lemma 3.1 and obtain case (ii) of 
Theorem 3.2. 

THEOREM 4.1. Assume (1.1) and assume that CP(Q) £ Q*. Then: 
(a) We have P = CP(Q*)Q. 
(b) For all i ^ c + 2, Pt = Qt = Riy and <j> fixes Pt. 
(c) If [P9 Z(Q)] £ Q* or [P, Z{R)} £ Q*, then Pc+1 = Çc+i = Rc+ll and 0 

fixes Pc+i. 
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Proof. Suppose that CP(Q*) C Q. Since 0 fixes Ç*, ^ ( C p ((?*)) C C P ( Q * ) . 

So CP(<2*) C iV(0) = Q*. Then CP(Ç) Ç £*, contrary to hypothesis. This 
proves (a). 

Since 0(Z?*) = Q* and i?* C P , , for all i, it now suffices to prove that 
Pi — Qu for all i ^ c + 2, and that P c + i = Qc+i in case (c). Take 
Xi, • • • Ï xt G P/(?* as in Lemma 2.4. Let 3/1 be an element of xi, and let 
y* = 0 i - 1(yi) , for i = 2, 3, . . . , /. Take x G CP(Q) - Q*. 

Suppose that x Q Q. Then CP(x) 2 (x, Q) = P. Thus, x G Z(P) and 
-P = (0) #)• I n this case, Pt = Ç*, for all i è 2, by induction. Therefore, for 
the remainder of the proof, we assume that x G Q. 

We have 

(4.1) xQ* = *r*<r> . . . */<*>, 

for some d(r), . . . d(s) G Zp and some r, 5 such that d(r) and d(s) are nonzero 
and 2 ^ r ^ s ^ t. Let m = 5 — r + 1 and y — ^~(r_1) (x). Since 

xQ* G Z(<2/<2*)> 

Lemma 2.4 yields that » + 1 ^ r ^ ^ « + 1, Hence, 

(4.2) m ^ t — 1 and m ^ w — v + 1. 

As x centralizes Q, x centralizes yr, . . . , 3/5. So 

(4.3) y centralizes 3/1, . . . , ym. 

Moreover, 

(4.4) yQ* = xS" . . . ***<•> and (ylt ...,ym, <2*> = <y, y2, . . . , yWf <2*>. 

Let 4 = (y, 0(y), . . . , 0|-mCy)>. Since x G CP(Q*) and 0 fixes (2*, it follows 
that y G CP(Q*) and that 

(4.5) 4 £ Cp(<2*). 

Suppose that 0 ^ i â £ — m. By (4.4), 

0*(y)Ç* = xi+1
d^ . . . x ^ ' ) 

and 

(4.6) P = <y, * C y ) , . . . , 0 % ) , y«-i, . - • ,y*H»-i, ^ G v ) , . . . • **-*(y), <2*> 

= <i4, Ç*, yi+i, . . . , yt+mr-ÙJor i = 0, 1, . . . , t — m. 

By (4.3), ^ '(y) centralizes 3^+1, . . . , ;y<+w_i. So 

(4.7) P = {A, Q\ CAriy^fori = 0, 1, . . . , t- m. 

By (4.2), 0 ^ £ — w and v + m — 1 ^ u. Take i = » in (4.6); we have 

P = (AQ*, yv+1 y^m-i) Ç <^G*. y,+i. • • • . y»)-

By Lemma 2.4, Z(P /0*) = <*,+i, . . . , *.>. So P /Ç* = (AQ*/Q*)Z(P/Q*). 
Hence, J 4 Q * / Q * < P/Q* and QM = ^<2* < P. 
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Take any i such that 0 ^ i ^ t — m. By (4.5) and (4.7), 

P = CpWWXfA = CP(4>liy))A. 

Consequently, for every g Ç P there exists a £ A such that 

(0*00)* = (rwy. 
Since the elements 4>liy) generate A, it follows that A0 C 4̂ for every g £ P . 
Thus, 4 < P . Hence, .4' < P . The above argument also shows that, for each 
i, the coset#*0y)4' lies in the center of P/A'. Therefore, [A, Q] C [4, P] C 4 ' . 

Since y G P - Ç, P - 4 0 . By Lemma 2.3, 

(4.8) P, = AtQuforalli è 1. 

Since P/()* has nilpotence class c, ^4c+i C P c + 1 Ç Ç*. For i ^ c + 2, 

i ^ Ç i ^ ç [Q*,A] = 1. 

By (4.8), this proves (b). 
We now consider (c). Suppose that [P, Z((?)] £ Ç* or [P, Z(i^)] g Ç*. 

Replacing $ by $~\ if necessary, we may assume that [P, Z(Ç)] <£ <2*. Then 
P/<2* is not Abelian. So c è 2, w g J — 1, and z; ^ 1. We may assume that 
[P, <*>] 2= (?*• By (4.1) and Lemma 2.4, s = u + 1. Thus, 

(4.9) s = w + l , m = s — r+l = u + 2 — r, / — w = ^ + r — 2. 

By Lemma 2.4, Z(P/Q*) = (xv+1, . . . , xw>. Since P c + i C Ç*, 

(4.10) i c Ç P c Ç <y*+i, • • • , y«, <2*> 

Let i be an integer such that 0 S i ^ v — 1. Then 

(4.11) 2 + i g » + U t t ^ t t + i ^ . 

Since x centralizes 3/2, . . . , 3Vn, <2*, it follows that $z(x) centralizes 
}>*-„ . . . ,3^+i+i, G*. By (4.10) and (4.11), 

(4.12) #*(#) centralizes Ac, ifO^i^v — 1. 

Now choose an integer i such that 1 ̂  i g r - 1, We obtain, similarly, 
that l r g r — i S u + 1 — i ^ t, and that 

(4.13) </>~*C*0 centralizes (yr-u • • • , 3Vn-*, (?*)• 

Suppose that 1 ^ j ^ i - 1. Then 2 — r ^ j — (r — 1) S j — i ^ — 1. Since 
<2 centralizes x, <t>j~i(x) centralizes x. So 0~~*(x) centralizes <jrj(x). Thus, 

(4.14) 0~**(#) centralizes cfr^"^ (x), . . . , 0 - 1(x). 

By (4.9), 5 = w + 1. Hence, by (4.13), (4.14), and (4.1), 

CP (*-'(*)) 2 <:vr-*,..., y«+i-i, r a - 1 } ( x ) , . . . , r 1 ^ ) , <2*> 
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Therefore, 

(4.15) 0~*(x) centralizes Ac, if 1 ^ i S r — 1. 

By (4.1) and (4.9), x = 4>r~l(j) and / - m = (r - 1) + (v - 1)-
Consequently, (4.12) and (4.15) yield that 

CP{AC) 2 (0- ( r-1}(^), • • • , 4rl(x), *, *(*), • • • , 0^ (* )> 

Thus, ^ c + i = [Ae, A] = 1. By (4.8), P c + i = Çc+1. This completes the proof 
of (c) and of the theorem. 

PROPOSITION 4.2. Assume (1.1) and assume that Oi(Z(P)) ^ Qi(Z(Ç)) awd 
that CpiQ) £ <2*. rAew: 

(a) There exists x £ CP(Q) — Q* such that xv = 1. 
(b) i w l£i£p, P$l(P) = P&iQ) = P ^ ( P ) . 
(c) Ifp = 2, then PZV2(P) = P*V2(Q) = P302(P), and 

P&*(P) = P®*(Q) = PJ5*(R). 

(d) Ifp = 3andl£i£5, then PtU
2(P) = P^2(<2) = PJS2{R). 

Proof. Suppose that S2i(Z((?)) Ç <2*. By Theorem 4.1(a), P = (?CP ((?*). 
Hence, fli(Z(Ç)) £ Z(P) , and the hypothesis yields that 

Ûi(Z(Ç)) COi (Z(P) ) . 

Since Oi(Z(P)) Pi (? £ ûi(Z(Q)), there exists * G Ûi(Z(P)) - Q, which 
proves (a) in this case. Since (a) is obvious when Qi(Z(<2)) <2 (?*» w e obtain 
(a) in all cases. 

Take x as in (a) and take r ^ 0 maximal such that 4rT(x) is defined. Then 
<frr(x) has order p and P = (<£"~r(x), <2). Similarly, P is generated by R and 
0s(x), for some s. Now (b), (c), and (d) follow from Lemma 2.13. 

Since c/>(R^j(R)) = QiUj(Q), for all i,j ^ 1, Theorem 4.1 and Proposition 
4.2 yield the following result: 

THEOREM 4.3. Assume (1.1) and assume that 12i(Z(P)) F^ fli(Z(Ç)) and that 
CP{Q) £ G*. Le/ ^ = c + 1, if [P, Z(Ç)] g Q* or [P, Z(P)] g (2*, and to 
a7 = c + 2, otherwise. Suppose that d, m, and n satisfy (3.1). Then PmUn(P) = 
QtJFiQ) = PmOw(P), a»d tf>jto^ PJF{P). 

5. Case (iv). In this section, we consider the following hypotheses: 

(5.1) (a) (1.1) holds) 
(b) Z(P) C Z(Q) C (2*. 

(5.2) (a) (5.1) Ao&fc; 
(b) J ( P ) * J(Q). 

https://doi.org/10.4153/CJM-1971-107-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-107-9


1034 GEORGE GLAUBERMAN 

We first require a general lemma. 

LEMMA 5.1. Suppose that p is a prime and that T is a subgroup of index p in a 
p-group S. Let A Ç s/(S). Assume that Z(T) <£ Z{S) and that A £ T. Then: 

(a) Z(S) DT = Z{T) f\ A = CZ(T)(A), 
(b) (A Pi T)Z(T) £ s/(S), and 
(c) \Z(T)/(Z(S) O T)\ = p. 

Proof. Since [S:T] = p, T < S and 5 = AT. Therefore, \A/(A D T)\ = p 
andZ(S) Pl T = Z(T) f) C S(A) = Z(T) Pl A, by Lemma 2.1. Consequently, 
Z(T) £A, because Z(T) <£ Z(S). Let A* = {A C\ T)Z(T). Then A* is 
Abelian and 

M*| *P\A C\T\ = \A\. 

Since A £ s/(S), A* <G s/(S). So 

P\A n r| = MI = M*| = \A n r| |z(r)/(z(r) n ̂ )| 
= M n T\ \z(T)/(z(s) n ni-

Thus, \Z(T)/(Z(S) D T)\ = p. This completes the proof of Lemma 5.1. 

LEMMA 5.2. Assume (5.2). Then there exists A 6 s/(P) such that A <£ Q and 

\A/(A H <2*)l = \Z(QT)/CzlQ*M)\ = P-

Moreover, for every such A and every x £ A — <2*, |Z(<2*)/Cz(Q*)(x)| = p. 

Proof, By Lemma 2.1, J(P) £ Q. So / ( P ) £ G*. Take ^ 6 si\P) such 
that |̂ 4 fï (?*| is maximal subject to the condition that A ÇÈ Q*. Take r ^ 0 
maximal such that every element of A lies in the image of 4>r. Then <jrT (A) £ Q, 
by the maximal choice of r. Since 0 fixes Q*, \(lrr(A) H <2*| = \<trT(A D Q*)\ = 
1̂4 pj £?*|- Therefore, we may assume that A <£ Q. 

Let A* = (A Pl Q)Z(Q). By Lemma 5.1, 4 * G J ^ ( P ) . Moreover, 

14* n e i ^ K i n <2*)z(<2)i >\AD Q*\. 
By the maximal choice of A, A* C Q*. Thus, 4 Pl (? = -4 Pl <2*, and 

\Anor\ = \AC\Q\ = MI/*. 

Let X = Z(Q*) and 5 = AQ*. By (5.1), X 2 Z(Q) and X g i l . Since 
Z(5) Ç CS(A) = A,X £ Z(5). By Lemma 5.1, 

\X/CX(A)\ = \X/(AHX)\ =p. 

For every x £ A — Q*, we have A = (4 Pl (?*, #) and, hence, 

C*(i4) = Cx(x). 

This completes the proof of Lemma 5.2. 

LEMMA 5.3. Assume (5.1). r*e» CP(Z(Q*)) = Q*. 
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Proof. Let S = CP(Z (()*)). Then 5 Q CP(Z(Q)) = Q, by (5.1). So 
|0-i(5) | = |5 | . Since <t> fixes <2*, ̂ ( S ) £ 5. Hence, 0 fixes 5, and 5 C Q*. 
Obviously, Q* Q S. 

PROPOSITION 5.4. Assume (5.1). Suppose that there exists x Ç P such that 

(5.3) |£(G*)/Cz (g.)(*)| = £• 

77^w P/<2* w Abelian. 

Proof. Assume P/<2* is not Abelian. Let Z = Z (<?*). Take x to satisfy (5.3). 
Then x £ P — Ç*. Let r be the maximum integer such that <t>~r(x) is defined. 
Then <jrr(x) does not belong to Q; let #' = 0~r(x). T h e n P = (Q, x'). By (5.1), 

(5.4) x' does not centralize Z(Q). 

Define /, u, and Xi, . . . , xt Ç P/Q* as in Lemma 2.4. Let y be an element of 
the coset xu+\. Define xn = (x')y = y~lxry and s = (x ' )"1^ ' = \oc\y\. By 
Lemma 2.4, the coset zQ* generates ([x\, xu+{\). Now, {xf, x") = (xf, z) and 

\Z/Cz(z)\ ^ \Z/Cz((x',x")\ ^ \Z/Cz(x')\ \Z/Cz{x")\ = p\ 

By Lemma 5.3, \Z/Cz(z)\ > 1. If \Z/Cz(z)\ = £2, then 

C*«*',*">) = C*(s)2Z(<2), 

contrary to (5.4). Hence, \Z/Cz(z)\ = £. Thus, we may assume that our 
original element x satisfies 

(5.5) xQ* G <[*!, xu+1]) £ Z(P/Q*). 

Take r as above, and let w = <jrr(x). Therefore w £ P — Q. By (5.5), 
x<2* 6 Z(P/Q*). Let 5 be the maximum integer such that <t>s(x)Q* Ç Z(P/Q*). 
Then <ÊS+1(*) = 0 r + s + 1(^) and, by Lemma 2.4, 

for some e(v + 1), . . . , e(u + 1) Ç Zp such that e(u + 1 ) ^ 0 . By (5.5) and 
Lemma 2.4, 

(5.6) 1 * [w, <t>T+s+1(w)]Q* G ([xlt xu+1]) = <0 r(w)Q*>. 

Let Wi = <£*+1(w), for i = 1, 2 , . . . , r + 5 + 1. Since 

\Z/Cz(w)\ = £, |Z/Cz(w«)| = p, 
for each i. Let 

W(i) = (wi, . . . , w<), for i = 1, 2, . . . , r + s + 1. 

Then \Z/Cz{W(i))\ ^ p\ for each i. 
We claim that \Z/Cz(W(i))\ = p\ for each i. This is true for i = 1. Suppose 

that 1 ^ i ^ r + s and that the equality is true for i. Let W = W(i) and 
t7* = W(i + 1). Since 

p* = \Z/CZ{W)\ rg \Z/CZ(W*)\ ^ p*\ 

we have the equality for i + 1, unless \Z/CZ(W*)\ = p\ Assume that the 
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latter occurs. Then CZ(W*) = CZ(W). Since W* = (W, <f>(W)) and 

\Cz(*(W))\ = \Cz(W)\, 
we obtain 

CZ(W) = CZ(W*) = CZ(4>(W)) = <KCZ(W)). 

In particular, Z(Q) C CZ(4>(W)) = CZ(W) C Cz(w), which contradicts 
(5.1) because P = (Q, w). This contradiction proves our claim. 

In particular, \Z/Cz(W(r + s + 1))| = pr+s+\ By (5.6), 

W(r + s + 1) = (wi, . . . , w r+8+i) Ç (Wlt . . . , wr; wr+2, . . . , wr+*+i» (?*)• 

Hence, \Z/Cz(W(r + s + 1))| ^ £ r + s , which is a contradiction. This com-
pletes the proof of Proposition 5.4. 

Lemmas 5.2 and 5.3 and Proposition 5.4 yield the main result of this section: 

THEOREM 5.5. Assume (5.2). Then P/Q* is Abelian and Q* = CP(Z(Q*)). 

This yields case (iv) of Theorem 3.2 and thus completes the proof of 
Theorem 3.2. 

6. Proof of Theorem 3.3. In this section, we prove Theorem 3.3 and, 
therefore,, obtain Theorem 2. We will use the following sets of conditions. 

(6.1) (a) p is a prime; 
(b) P is a p -subgroup of a finite group G; 
(c) Q is a subgroup of index p in P\ 
(d) Q < G; 
(e) Q = fWutpQ"; 
(f) J^f is a subset of G that generates G; and 
(g) for every h G Jff, P is conjugate to Ph in (P, Ph). 

(6.2) (a) (6.1) holds\ 
(b) h G tf\ 
(c) H= {P,Ph); 
(d) k G H andP* = Ph. 

Suppose that (6.2) is satisfied. We will use the following notation. For every 
automorphism a of P, let 4>a be the isomorphism of Q*'1 onto Q given by 
*«(*) = (xa)\ for all x G Qa~\ 

LEMMA 6.1. Assume (6.2). Let a G Aut P. Then N(<t>a) < H, and a fixes 

Proof. Let <2* = # ( * ) and H = <P, Ph). Define fiP -> Ph by ^(x) = (xa)\ 
for all x G P. Clearly, \p extends <j>. By Lemma 2.5, we obtain Q* < H. Thus, 

(Q*)
a
 = «m-yy-1

 = wo*»*-
1
 = (e*r

l = e*. 
and a fixes Q*. 
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LEMMA 6.2. Assume (6.2). Suppose that a G Aut P and that P/N(<t>a) is 
Abelian. Then 

(a) [Q, k] C N(ct>a) < H, and 
(b) Q C tf(0tt) Ç Q«. 

P r ^ / . Let <2* = iV (<£«). By Lemma 6.1, Q* < H. Let C = CH(Q/Q*). Then 
C < i7 and C 3 P . Hence, C 2 <P, P*> = # , which proves (a). 

To obtain (b), let 5 = HQa\ where i ranges over the integers. Then a fixes S. 
Since Q* C Q and a fixes Q*, Q* C 5 C Q. By (a), 5 < ff. Thus, 5 = 
(5«)» = 0(5), and 5 C iV(0) = Q*. Therefore, 5 = ()*, which proves (b). 

Lemma 6.3. Assume (6.2). Suppose that P / N (<j>a) is Abelian for alla Ç Aut P . 

(a) £ < f f , 
(b) Q/QŒZ(H/Ç),and 
(c) A normalizes Q. 

Proof. By Lemma 6.2(b), the intersection of all the groups N(<pa) is equal to 
Q. Therefore, Q < H and [Ç, fe] C Q. Since P / Ç is Abelian, 

CB(Q/G)^(P,k) = H. 

As A&-1 Ç NG(P) and Q is a characteristic subgroup of P , /z&-1 and fe 
normalize Q. 

We may now easily prove Theorem 3.3. Assume that p is a prime, that P is a 
^-group, and that Q is a subgroup of index p in P . Assume that p, P , and (? 
violate conditions (i), (ii), and (hi) of Theorem 3.3. Suppose that J ^ and G 
satisfy (1.2) and, therefore, satisfy (6.1). By condition (iv) of Theorem 3.2 
and by Lemma 6.3, every element of J ^ normalizes Q. Since J ^ generates Gt 

Q < G. This completes the proof of Theorem 3.3. 

The following results can sometimes be used to improve upon the restrictions 
on nilpotence class and exponent given in condition (ii) of Theorem 3.3. 

LEMMA 6.4. Assume (6.2). Let a £ A u t P and let Q* = N(<j>a). Suppose that 
P/Q* is not Abelian, that CP(Q) £ (?*, and that [P, Z(Q)] C Ç*. Then 

(a) H = PCH(Z(Q)),and 
(b) h, k e NG(P)CG(Z(Q)) C NG{Z(P)). 

Proof. By Lemma 6.1, Ç* < H. Let C = CH{Q*) and F = Z(Ç) H (?*. 
Then C < H. By Theorem 4.1, P = (C H P)(? S CÇ. Since C<2 < IT, and 
H = (P, P*>, it follows that H = CQ. Thus, 

(6.3) Y = z(G) n <2* ^£ (# ) n c * ç z ( p ) . 
Since Z(Q) < H, the hypothesis yields that [P, Z(Ç)] C F. Hence, 

(6.4) Z ( < 2 ) / F Ç Z ( t f / F ) . 
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Suppose that Z(P) £ Q. Then P = Z(P)Q. So P' = Q'. Let R = (K 1 and 
<t> = 4>a. Since \R'\ = |*(i?')| = |<2'|, R' = P'. Hence, 0 fixes P' and 
P ' Ç N(4>) = Ç*, contrary to the assumption that P/Q* is not Abelian. 
Consequently, Z(P) Q Q and 

(6.5) Z(P) ç Z(Q). 

By (6.3), (6.4), and Lemma 2.6, H/CH(Z(Q)) is an Abelian group. Since 
H = (P, P»), 

H = PH' = PC*(Z(Ç)) . 

This yields (a). Now (b) follows by (6.5) and the fact that hk~l <E NG(P). 

THEOREM 6.5. Suppose that p is a prime, that P is a finite p-group, and that Q 
is a subgroup of index p in P. Then P satisfies at least one of the following con
ditions: 

(i)fl!(Z(P)) =0!(Z(<2)); 
(ii) (a) p = 2 and PJ0*(P) = Q&*(Q), or 

(b) p = 3 and Pi&(P) = Q&*(Q), or 
(c) p è handP^{P) = QJSHQ); 

( i i i ) J (P) =J(Q); 
(iv) whenever G, Jtif, and Q satisfy (6.1), then G = CG(Z(Q))NG(Q), and 

every element of ̂ f normalizes Z(P) or Q. 

Proof. Assume that (i), (ii), and (iii) are false. Assume (6.1). Let 

G* = C0(Z(Q))Na(Q). 

Take h G Jtf. If h normalizes Q, then h G G*. Suppose that h does not 
normalize Q. Take k and H as in (6.2). By Lemma 6.3, there exists a G Aut P 
such that P/N(<j>a) is not Abelian. Let <2* = iV(*«). By Theorem 3.2, 
CP((?) g <2*- Since (ii) is false, Theorem 4.3 yields that [P, Z(Q)] C £*. By 
Lemma 6.4, A G NG(P)CG(Z(Q)) C G*, and A normalizes Z{P). Since & is an 
arbitrary element of J ^ and G = ( ^ ) , we obtain (iv). 

Remark 6.6. Assume that (6.1) is satisfied. Suppose that Z{P) C Ç, that 
12X(Z(P)) is not normal in G, and that J ( P ) ^ / ((?) . Let Z = Qi(Z(Ç)). A 
slight extension of a result mentioned in the introduction shows that SL(2, p) 
is involved in G. Actually, a stronger result is true. 

Lemma 5.1 shows that some element x of P acts as a transvection on Z; i.e., 
that \Z/Cz(x)\ = p and [Z, x] Ç Cz(x). Let iV be the normal subgroup of G 
generated by all the conjugates of P in G. Let L be the largest normal 
^-subgroup of N/CN(Z) and let M = (N/CN(Z))/L. By two theorems of 
McLaughlin [5; 6], M is a direct product of classical linear groups over Z^, if p 
is odd, and is a direct product of known groups, if p = 2. Note that Jlf = i7/i£ 
for some H, K < G such that K C H. 
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7. Proof of Theorem 3.4. We may now derive Theorem 3.4. Suppose that 
p, P, Q, and Q satisfy the hypothesis of Theorem 3.4 and violate conditions 
(i), (ii), (iii) of Theorem 3.4. Let G be a group that satisfies (3.2). By Lemma 
2.7, P is conjugate to Ph in (P, Ph), for every h G G. Thus, G satisfies (6.1) 
with Jj? = G. 

Assume that Q is not normal in G. Let h £ G — NG(Q). Take k and i7 as in 
(6.2). By Lemma 6.3, there exists a £ Aut P such that P/N(<l>a) is not Abelian. 
Let Q* = N(4>a). By Theorem 3.2, CP((?) g <2* and Ûi(Z(P)) ^ Qi (£((?)). 
By Lemma 2.7, P /Ç* is weakly closed in some Sylow ^-subgroup of H/Q* 
with respect to H/Q*. Therefore, by Theorem 7.11 of I, c g 2, if p ^ 3. Since 
condition (ii) of Theorem 3.4 is false, Theorem 4.2 yields that [P, Z(P)] C Ç*. 
By Lemma 6.4, h normalizes Z(P). 

Thus, NG(Z(P)) contains G - NG(Q). Take h £ G - NG(Q). For every 
g € NG(Q), gift belongs to G — NG(Q), and, therefore, gh and g normalize 
Z{P). Hence, NG(Z(P)) = G. This completes the proof of Theorem 3.4. 

Remark 7.1. Assume the situation of Remark 6.6, and suppose further that 
P is weakly closed in some Sylow ^-subgroup of G. By McLaughlin's work and 
some additional arguments, there exist W, Y < G such that W is an elemen-
tary Abelian group of order p2, Y Ç Z(N), Z = W X F, and 

N/C„(W)ÇÈÊSL(2,P). 
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