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ISOMORPHISM AND MORITA EQUIVALENCE

OF GRAPH ALGEBRAS

GENE ABRAMS AND MARK TOMFORDE

Abstract. For any countable graph E, we investigate the relationship be-
tween the Leavitt path algebra LC(E) and the graph C∗-algebra C∗(E). For
graphs E and F , we examine ring homomorphisms, ring ∗-homomorphisms,
algebra homomorphisms, and algebra ∗-homomorphisms between LC(E) and
LC(F ). We prove that in certain situations isomorphisms between LC(E) and
LC(F ) yield ∗-isomorphisms between the corresponding C∗-algebras C∗(E)
and C∗(F ). Conversely, we show that ∗-isomorphisms between C∗(E) and
C∗(F ) produce isomorphisms between LC(E) and LC(F ) in specific cases.
The relationship between Leavitt path algebras and graph C∗-algebras is also
explored in the context of Morita equivalence.

Contents

1. Introduction 3734
2. Graph algebra preliminaries 3736
3. Viewing LC(E) as a dense ∗-subalgebra of C∗(E) 3739
4. Algebra ∗-homomorphisms of graph algebras 3745
4.1. Examples of dense ∗-subalgebras of C∗-algebras 3745
4.2. Extending algebra ∗-homomorphisms of Leavitt path algebras to

algebra ∗-homomorphisms of graph C∗-algebras 3746
4.3. ∗-homomorphisms that are algebraic 3747
5. Algebra homomorphisms of graph algebras 3748
6. Ring ∗-homomorphisms, ring homomorphisms,

and the isomorphism conjecture for graph algebras 3751
7. Isomorphisms of ultramatricial graph algebras 3752
8. Isomorphisms of simple graph algebras 3755
9. The Morita Equivalence Conjecture for Graph Algebras 3758
9.1. Morita equivalence of ultramatricial graph algebras 3762
9.2. Morita equivalence and classes closed under stabilization 3763
10. Converses to the Isomorphism Conjecture for Graph Algebra 3764
Acknowledgements 3765
References 3765

Received by the editors October 15, 2008 and, in revised form, December 8, 2009.
2010 Mathematics Subject Classification. Primary 16D70, 46L55.
Key words and phrases. Graph, Leavitt path algebra, graph C∗-algebra, Morita equivalence.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

3733

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3734 GENE ABRAMS AND MARK TOMFORDE

1. Introduction

For any directed graph E one can define the graph C∗-algebra C∗(E), which
is generated by partial isometries satisfying relations determined by E. These
graph C∗-algebras include many well-known classes of C∗-algebras (e.g., Cuntz-
Krieger algebras, stable AF-algebras, stable Kirchberg algebras, finite-dimensional
C∗-algebras, Mn(C(T))), and consequently they have been the focus of significant
investigation in functional analysis since their introduction in the late 1990s [30, 31].
Similarly, for any directed graph E and any field K, one can define the Leavitt path
algebra LK(E). Such K-algebras include many well-known classes of algebras and
have been studied intensely in the algebraic community since their introduction
in 2005 [6, 13]. The interplay between these two classes of “graph algebras” has
been extensive and mutually beneficial — graph C∗-algebra results have helped to
guide the development of Leavitt path algebras by suggesting what results are true
and in what direction investigations should be focused, and Leavitt path algebras
have given a better understanding of graph C∗-algebras by helping to identify those
aspects of C∗(E) that are algebraic, rather than C∗-algebraic, in nature.

It has also been found that there are amazing similarities between the two classes
of graph algebras. In fact, every theorem from each class seems to have a corre-
sponding theorem in the other. At the same time, however, the similarities be-
tween various structural properties of C∗(E) and LK(E) are as mysterious as they
are startling. For example, for nearly every graph-theoretic condition of E that
is known to be equivalent to a C∗-algebraic property of C∗(E), the same graph-
theoretic property of E is equivalent to the corresponding property of LK(E). For
instance, the graph-theoretic conditions for which C∗(E) is a simple algebra (re-
spectively, an AF-algebra, a purely infinite simple algebra, an exchange ring, and
a finite-dimensional algebra) in the category of C∗-algebras are precisely the same
graph-theoretic conditions for which LK(E) is a simple algebra (respectively, an
ultramatricial algebra, a purely infinite simple algebra, an exchange ring, and a
finite-dimensional algebra) in the category of K-algebras. Moreover, these Leavitt
path algebra results hold independent of the field K, and in particular for the field
K = C of complex numbers. These similarities might suggest that such structural
properties, once obtained on either the graph C∗-algebra side or on the Leavitt path
algebra side, might then be immediately translated via some sort of Rosetta stone
to the corresponding property on the other side. Nonetheless, a vehicle to transfer
information in this way remains elusive, and in fact, researchers seem uncertain
how to even formulate conjectures that would lead to such a vehicle.

The purpose of this article is to initiate a study for translating properties of Leav-
itt path algebras to graph C∗-algebras. We accomplish this by further examining
the relationship between these classes and posing two conjectures. We hope that
these results will be useful in their own right, as well as help to lay the groundwork
for future investigations.

Much of our focus will be on the Leavitt path algebra LC(E), where the un-
derlying field is the complex number C. This Leavitt path algebra has a natural
∗-algebra structure, and in fact it is isomorphic to a dense ∗-subalgebra of the
graph C∗-algebra C∗(E). Whereas most of the existing literature has focused on
the algebra structure of LK(E), we will examine LC(E) as a ∗-algebra, an algebra,
a ∗-ring, and a ring. What we find is that the ring structure of LC(E) emerges as
important in determining the C∗-algebra structure of C∗(E). In fact, we make two
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conjectures in this regard; the Isomorphism Conjecture for Graph Algebras: If E
and F are graphs, then LC(E) ∼= LC(F ) (as rings) implies that C∗(E) ∼= C∗(F )
(as ∗-algebras); and the Morita Equivalence Conjecture for Graph Algebras: If E
and F are graphs, then LC(E) is Morita equivalent to LC(F ) implies that C∗(E)
is strongly Morita equivalent to C∗(F ). We are able to verify these conjectures in
two important special cases: (1) when the graphs have no cycles (or equivalently,
when the C∗-algebras are AF and the algebras are ultramatricial); and (2) when
the graphs are row-finite and the associated algebras are simple.

This paper is organized as follows. We begin with some preliminaries in Section 2
to establish notation and basic facts. In Section 3 we give a proof of the well-known
result that LC(E) is isomorphic to a dense ∗-subalgebra of C∗(E). Furthermore,
we identify those situations in which LC(E) is equal to C∗(E). In Section 4 we
show that ∗-homomorphisms between Leavitt path algebras over C extend to ho-
momorphisms between the associated graph C∗-algebras. As a corollary, we obtain
the fact that if E and F are graphs, then LC(E) ∼= LC(F ) (as ∗-algebras) implies
C∗(E) ∼= C∗(F ) (as ∗-algebras). We also examine which isomorphisms between
graph C∗-algebras can be obtained in this way. In Section 5 we examine algebra
homomorphisms between Leavitt path algebras over C and show that these do not
necessarily extend to homomorphisms between the associated graph C∗-algebras.
We obtain necessary and sufficient conditions for an algebra homomorphism be-
tween Leavitt path algebras over C to be an algebra ∗-homomorphism. We also
examine some phenomena that motivate our conjectures. In Section 6 we present
the Isomorphism Conjecture for Graph Algebras. In Section 7 we show that the
Isomorphism Conjecture is true for graphs with no cycles, and in Section 8 we
prove that the Isomorphism Conjecture is true whenever the graphs in question are
row-finite and the associated algebras (equivalently, the associated C∗-algebras) are
simple. In Section 9 we state and investigate the Morita Equivalence Conjecture
for Graph Algebras. We conclude in Section 10 with some results which provide a
converse for the Isomorphism Conjecture in certain special situations.

Part of the beauty of the current investigation is that tools from both the alge-
braic and analytic sides are brought to bear. For example, along the way we will
use such analytic gems as the Kirchberg-Phillips Classification Theorem and the
Brown-Green-Rieffel Theorem, and such algebraic pearls as the Graded Uniqueness
Theorem and the Stephenson Theorem on infinite matrix rings.

Notation and conventions. In this paper we consider rings, algebras, ∗-algebras, and
C∗-algebras. Sometimes we will have objects that are simultaneously in more than
one of these classes, and our viewpoint may switch from one class to another. To
make statements precise, the term ring homomorphism will always mean a function
that is additive and multiplicative, and the term algebra homomorphism will mean
a ring homomorphism that is K-linear. A ring ∗-homomorphism (respectively, an
algebra ∗-homomorphism) will mean a ring homomorphism (respectively, an algebra
homomorphism) that is ∗-preserving. Likewise, for two objects A and B we write
A ∼= B (as rings) to mean there is a ring isomorphism from A to B, we write
A ∼= B (as algebras) to mean there is an algebra isomorphism from A to B, we
write A ∼= B (as ∗-rings) to mean there is a ring ∗-isomorphism from A to B, and
we write A ∼= B (as ∗-algebras) to mean there is an algebra ∗-isomorphism from A
to B.
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In addition, for a topological space X that is locally compact and Hausdorff, we
let C(X) denote the C∗-algebra consisting of continuous complex-valued functions
on X. We also let K = K(H) denote the C∗-algebra of compact operators on a
separable infinite-dimensional Hilbert space H. Given a set of elements S in an
algebra or a C∗-algebra, we let spanS denote the algebraic span of S consisting
of all finite linear combinations of elements of S. Given a set of elements S in a
C∗-algebra, we let spanS denote the closed linear span of S, which is equal to the
closure of spanS. We say that an algebra is ultramatricial if it is the direct limit
of a collection of finite-dimensional subalgebras. In the literature, ultramatricial
is sometimes also called locally matricial. We say that a C∗-algebra is an AF-
algebra if it is the direct limit of a sequence of finite-dimensional C∗-algebras (or
equivalently, if A is the closure of the increasing union of a countable collection
of finite-dimensional algebras). The abbreviation “AF” stands for “Approximately
Finite”.

Since we hope that this paper will be of interest to both functional analysts and
algebraists, we do our best to make the exposition clear and accessible to members
from either group. We give background and reference as much as we can, and we try
to be explicit when we use well-known results from functional analysis or algebra
that members of the other group may find unfamiliar.

2. Graph algebra preliminaries

Definition 2.1. A ∗-ring (also called an involutory ring) is a ring R together with
an involution ∗ satisfying

(1) (a∗)∗ = a for all a ∈ R,
(2) (a+ b)∗ = a∗ + b∗ for all a, b ∈ R,
(3) (ab)∗ = b∗a∗ for all a, b ∈ R.

A ∗-algebra is an algebra A over the complex numbers with an involution ∗ that is
also antilinear; i.e., a ring involution that also satisfies

(4) (λa)∗ = λa∗ for all λ ∈ C and a ∈ A.

Definition 2.2. Suppose that R is a ∗-ring (or a ∗-algebra) with involution ∗. We
call an element p ∈ R a projection if p = p2 = p∗. If p and q are projections we
say that p and q are orthogonal if pq = 0, and we say that p ≤ q if qp = p. We
call an element s ∈ R a partial isometry if ss∗s = s and s∗ss∗ = s∗. (Note that in
this case ss∗ and s∗s are projections.) We say two partial isometries s and t have
orthogonal ranges if s∗t = 0.

Definition 2.3. A graph (E0, E1, r, s) consists of a countable set E0 of vertices, a
countable set E1 of edges, and maps r : E1 → E0 and s : E1 → E0 identifying the
range and source of each edge.

Remark 2.4. We require our graphs to be countable for two reasons: First, we wish
to apply the Kirchberg-Phillips Classification Theorem to C∗-algebras associated
to graphs. In order for the hypothesis of separability to be satisfied, we need the
graph to be countable so that the C∗-algebra has a countable approximate unit.
Second, we wish to apply Proposition 9.10 to Leavitt path algebras of graphs, and
we need the countability of the graph to ensure that the algebra has a countable
set of enough idempotents (see Remark 2.10 and Definition 9.9).
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Definition 2.5. Let E := (E0, E1, r, s) be a graph. We say that a vertex v ∈ E0

is a sink if s−1(v) = ∅, and we say that a vertex v ∈ E0 is an infinite emitter
if |s−1(v)| = ∞. A singular vertex is a vertex that is either a sink or an infinite
emitter, and we denote the set of singular vertices by E0

sing. We also let E0
reg :=

E0 \E0
sing and refer to the elements of E0

reg as regular vertices ; i.e., a vertex v ∈ E0

is a regular vertex if and only if 0 < |s−1(v)| < ∞. A graph is row-finite if it has no
infinite emitters. A graph is finite if both sets E0 and E1 are finite (or equivalently,
when E0 is finite and E is row-finite).

Definition 2.6. If E is a graph, a path is a sequence α := e1e2 . . . en of edges with
r(ei) = s(ei+1) for 1 ≤ i ≤ n−1. We say the path α has length |α| := n, and we let
En denote the set of paths of length n. We consider the vertices in E0 to be paths of
length zero. We also let E∗ :=

⋃∞
n=0 E

n denote the paths of finite length in E, and
we extend the maps r and s to E∗ as follows: For α = e1e2 . . . en ∈ En with n ≥ 1,
we set r(α) = r(en) and s(α) = s(e1); for α = v ∈ E0, we set r(v) = v = s(v).
A cycle is a path α = e1e2 . . . en with r(α) = s(α) and s(ei) 
= s(ej) for all
1 ≤ i 
= j ≤ n. If α = e1e2 . . . en is a cycle, an exit for α is an edge f ∈ E1 such
that s(f) = s(ei) and f 
= ei for some i. We say that a graph satisfies Condition (L)
if every cycle has an exit. Note that a graph with no cycles vacuously satisfies
Condition (L). We denote by E∞ the set of infinite paths γ = γ1γ2 . . . of the graph
E, and we say that E is cofinal if for every v ∈ E0 and every γ ∈ E∞ there is a
vertex w on the path γ such that there is a finite path from v to w.

Definition 2.7. If E is a graph, the graph C∗-algebra C∗(E) is the universal C∗-
algebra generated by mutually orthogonal projections {pv : v ∈ E0} and partial
isometries with mutually orthogonal ranges {se : e ∈ E1} satisfying

(1) s∗ese = pr(e) for all e ∈ E1,

(2) pv =
∑

{e∈E1:s(e)=v} ses
∗
e for all v ∈ E0

reg,

(3) ses
∗
e ≤ ps(e) for all e ∈ E1.

(In this definition universal means that if A is any C∗-algebra containing a family
of mutually orthogonal projections {qv : v ∈ E0} and a family of partial isometries
with mutually orthogonal ranges {te : e ∈ E1} satisfying Conditions (1)–(3) above,
then there exists a unique algebra ∗-homomorphism φ : C∗(E) → A with φ(pv) = qv
for all v ∈ E0 and φ(se) = te for all e ∈ E1.) We mention that when E is row-finite,
Condition (2) implies Condition (3).

Definition 2.8. We call Conditions (1)–(3) in Definition 2.7 the Cuntz-Krieger
relations. For any ∗-ring R, a collection of mutually orthogonal projections {Pv :
v ∈ E0} and partial isometries with mutually orthogonal ranges {Se : e ∈ E1} in
R which satisfy (1)–(3) is called a Cuntz-Krieger E-family in R.

Definition 2.9. Let E be a graph, and let K be a field. We let (E1)∗ denote
the set of formal symbols {e∗ : e ∈ E1}, and for α = e1 . . . en ∈ En we define
α∗ := e∗ne

∗
n−1 . . . e

∗
1. We also define v∗ = v for all v ∈ E0. We call the elements of

E1 real edges and the elements of (E1)∗ ghost edges. The Leavitt path algebra of E
with coefficients in K, denoted LK(E), is the free associative K-algebra generated
by a set {v : v ∈ E0} of pairwise orthogonal idempotents, together with a set
{e, e∗ : e ∈ E1} of elements, modulo the ideal generated by the following relations:

(1) s(e)e = er(e) = e for all e ∈ E1,
(2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1,
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(3) e∗f = δe,f r(e) for all e, f ∈ E1,

(4) v =
∑

{e∈E1:s(e)=v}
ee∗ whenever v ∈ E0

reg.

For any Leavitt path algebra LK(E), there is a K-linear involution x �→ x∧ with
e∧ = e∗ and v∧ = v for all e ∈ E1, v ∈ E0. Hence for a general element we
have (

∑
λiαiβ

∗
i )

∧ =
∑

λiβiα
∗
i . In addition, LK(E) is Z-graded, with the grading

induced by requiring that αβ∗ is in the homogeneous component of degree |α|−|β|.

Remark 2.10. The Leavitt path algebra LK(E) is unital if and only if E0 is finite;
in this case, 1 =

∑
v∈E0 v. When E0 is infinite, LK(E) contains a set of enough

idempotents consisting of finite sums of distinct elements of E0.

Remark 2.11. Leavitt path algebras also have a universal property: If A is a K-
algebra and there is a set of elements {av, be, ce : v ∈ E0, e ∈ E1} satisfying

(1) the av’s are pairwise orthogonal idempotents,
(2) as(e)be = bear(e) = be for all e ∈ E1,

(3) ar(e)ce = ceas(e) = ce for all e ∈ E1,

(4) cebf = δe,f ar(e) for all e, f ∈ E1,

(5) av =
∑

{e∈E1:s(e)=v}
bece whenever v ∈ E0

reg,

then there exists a unique algebra homomorphism φ : LK(E) → A satisfying φ(v) =
av for all v ∈ E0, φ(e) = be for all e ∈ E1, and φ(e∗) = ce for all e ∈ E1. We
will call a collection {av, be, ce : v ∈ E0, e ∈ E1} satisfying (1)–(5) above a Leavitt
E-family.

Throughout the sequel we will be investigating the relationship between various
graph C∗-algebras and Leavitt path algebras. We will use the term graph algebra
to refer to either a graph C∗-algebra or a Leavitt path algebra.

Much of our analysis in this paper will involve Leavitt path algebras over the field
C of complex numbers. The Leavitt path algebra LC(E) is special in several regards.
First, in addition to the linear involution x �→ x∧ described in Definition 2.9, there
also exists a conjugate linear involution x �→ x∗ given by (

∑
λiαiβ

∗
i )

∗ =
∑

λi βiα
∗
i .

Note that v∗ = v and (e)∗ = e∗ for all v ∈ E0, e ∈ E1. With this involution, LC(E)
is a complex ∗-algebra. Furthermore, in addition to the universal property of LC(E)
in the category of algebras and algebra homomorphisms (described in Remark 2.11),
LC(E) also has a universal property in the category of complex ∗-algebras: If A is a
complex ∗-algebra and {av, be : v ∈ E0, e ∈ E1} ⊆ A is a set of elements satisfying

(1) the av’s are pairwise orthogonal and av = a2v = a∗v for all v ∈ E0,
(2) as(e)be = bear(e) = be for all e ∈ E1,

(3) b∗ebf = δe,f ar(e) for all e, f ∈ E1,

(4) av =
∑

{e∈E1:s(e)=v}
beb

∗
e whenever v ∈ E0

reg,

then there exists a unique algebra ∗-homomorphism φ : LC(E) → A satisfying
φ(v) = av for all v ∈ E0 and φ(e) = be for all e ∈ E1.

Remark 2.12. We see that for a given graph E, the C∗-algebra C∗(E) is uni-
versal for Cuntz-Krieger E-families in the category of C∗-algebras and algebra
∗-homomorphisms, the K-algebra LK(E) is universal for Leavitt E-families in
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the category of K-algebras and K-algebra homomorphisms, and LC(E) is uni-
versal for Leavitt E-families in the category of complex ∗-algebras and algebra
∗-homomorphisms. (We note that in these categories, morphisms are not required
to preserve identity elements.)

Definition 2.13. If E is a graph and {pv, se} is a Cuntz-Krieger E-family gener-
ating C∗(E), then for any z ∈ T (the complex numbers having norm 1) we see that
{pv, zse} is a Cuntz-Krieger E-family in C∗(E). By the universal property of C∗(E)
there exists an algebra ∗-homomorphism γz : C∗(E) → C∗(E) with γz(pv) = pv for
all v ∈ E0 and γz(se) = zse for all e ∈ E1. Since γz is an inverse for γz we have
that γz is a ∗-automorphism. Thus we obtain an action γ : T → AutC∗(E) given
by z �→ γz. We call γ the gauge action on C∗(E), and for any z ∈ T we refer to γz
as the gauge ∗-automorphism determined by z.

Likewise, if {pv, se} is a generating Leavitt E-family in LC(E), then for any z ∈ T

we may use the universal property of LC(E) to obtain an algebra ∗-automorphism
γz : LC(E) → LC(E) with γz(v) = pv for all v ∈ E0 and γz(e) = zse for all e ∈ E1.

In analogy with the graph C∗-algebras, if E is a graph and {v, e, e∗} is a Leavitt
E-family generating LK(E), then for any a ∈ K× (here K× denotes the invert-
ible elements in the field K) we see that {v, ae, a−1e∗} is a Leavitt E-family in
LK(E). By the universal property of LK(E) there exists a K-algebra homomor-
phism γa : LK(E) → LK(E) with γa(v) = v for all v ∈ E0 and with γa(e) = ae and
γa(e

∗) = a−1e∗ for all e ∈ E1. Since γa−1 is an inverse for γa we have that γa is an
automorphism. Thus we obtain an action γ : K× → AutLK(E) given by a �→ γa.
We call γ the scaling action on LK(E), and for any a ∈ K× we refer to γa as the
scaling automorphism determined by a.

We close this section by reminding the reader of two fundamental structures. We
let Rn denote the “rose with n petals” graph, namely, the graph with one vertex v
and edges e1, . . . , en each beginning and ending at v.

Example 2.14. For any n ≥ 2 and any field K, the Leavitt K-algebra of order
n, denoted by LK(1, n) or often simply by Ln, is the free associative K-algebra in
the 2n variables {X1, ..., Xn, Y1, ..., Yn}, modulo the relations XiYj = δi,j1K (for
1 ≤ i, j ≤ n) and

∑n
i=1 YiXi = 1K (see [32]). Equivalently, LK(1, n) = LK(Rn),

under the correspondence ei �→ Yi and e∗i �→ Xi.
For any n ≥ 2, the Cuntz algebra of order n, denoted On, is the unital C∗-

algebra generated by n partial isometries S1, . . . , Sn satisfying 1 =
∑n

i=1 SiS
∗
i .

(This definition is independent of the choice of partial isometries; see [19].) In
addition, On = C∗(Rn), under the correspondence sei �→ Si.

3. Viewing LC(E) as a dense ∗-subalgebra of C∗(E)

Let E = (E0, E1, r, s) be a graph. Since the generators of LC(E) satisfy the same
relations as the generators of C∗(E), people will often nonchalantly say that LC(E)
sits as a dense ∗-subalgebra of C∗(E). However, this is not immediately obvious and
there are some subtleties to be aware of. Since the elements {se, pv : e ∈ E1, v ∈ E0}
satisfy the Cuntz-Krieger relations, the universal property of LC(E) gives us an
algebra homomorphism ιE : LC(E) → C∗(E) with ιE(e) = se and ιE(v) = pv.
Thus we have a homomorphic copy of LC(E) inside C∗(E). To see that ιE is
injective, and thus that ιE(LC(E)) is isomorphic to LC(E), one needs more than
just the universal property. Indeed, this fact relies on the Graded Uniqueness
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Theorem, which is a fairly deep result. We make this precise and give a proof of
the injectivity of ιE in the following proposition.

Proposition 3.1 ([44, Theorem 7.3]). Let E = (E0, E1, r, s) be a graph. Then there
exists an injective algebra ∗-homomorphism ιE : LC(E) → C∗(E) with ιE(v) = pv
and ιE(e) = se for all v ∈ E0 and e ∈ E1. Consequently, LC(E) is canonically
isomorphic to the dense ∗-subalgebra

ιE(LC(E)) = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}
of C∗(E).

Proof. Using the universal property of LC(E) we obtain an algebra ∗-homomorph-
ism ιE : LC(E) → C∗(E) with ιE(v) = pv and ιE(e) = se. In addition, the universal
property of C∗(E) implies that there exists a gauge action γ : T → Aut(C∗(E))
with γz(pv) = pv for all v ∈ E0 and γz(se) = zse for all e ∈ E1. (See Definition 2.13
for details.) Set

A := ιE(LC(E)) = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}.

For n ∈ Z we may then define An := {a ∈ A :
∫
T
z−nγz(a) dz = a}, where the

integration dz is done with respect to a normalized Haar measure on T. (For
details on what this “C∗-algebra-valued integral over T” means, we refer the reader
to [35, Lemma 3.1].)

We see that for an element λsαs
∗
β , we have

∫

T

λsαs
∗
β dz =

{
λsαs

∗
β if |α| − |β| = n,

0 otherwise.

Thus an element x :=
∑N

k=1 λksαk
s∗βk

∈ A is in An if and only if |αk| − |βk| = n

for all 1 ≤ k ≤ N . One can then see that A =
⊕

n∈Z
An as abelian groups.

Furthermore, if x :=
∑M

k=1 λksαk
s∗βk

∈ Am and y :=
∑N

l=1 κlsγl
s∗δl ∈ An, we have

that

xy =
∑

k,l

ηk,lsμk,l
s∗νk,l

,

for some ηk,l ∈ C and with |μk,l| − |νk,l| = |αk| − |βk| + |γl| − |δl| = m + n. Thus
xy ∈ Am+n, and A is Z-graded. Because ιE(v) = pv ∈ A0, ιE(e) = se ∈ A1, and
ιE(e

∗) = s∗e ∈ A−1, we see that ιE is a graded algebra homomorphism. Because
we also have ιE(v) = pv 
= 0 for all v ∈ E0, it follows from the Graded Uniqueness
Theorem for Leavitt path algebras (see [44, Theorem 4.8]) that ιE is injective. �

Remark 3.2. In view of Proposition 3.1, whenever we have a graph E we may
identify LC(E) with a dense ∗-subalgebra of C∗(E) via the embedding ιE : LC(E) →
C∗(E). (In particular, for each n ≥ 2 we may view the Leavitt algebra LC(1, n)
as a dense ∗-subalgebra of the Cuntz algebra On.) Because of this, we will often
write pv, se, and s∗e for the generators of LC(E), rather than using the notation
v, e, and e∗ common for Leavitt path algebras. This helps us to view LC(E) as a
∗-subalgebra of C∗(E) and to identify the respective generators.

In addition, we may consider the norm on LC(E) obtained by restricting the norm
on C∗(E). We will, without comment, make reference to this norm throughout the
sequel, and when we write ‖x‖ for x ∈ LC(E), we of course mean the norm of
x when viewed as an element in C∗(E). Note that this norm on LC(E) is the
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restriction of a C∗-norm and therefore satisfies ‖x∗x‖ = ‖x‖2 and ‖x∗‖ = ‖x‖ for
all x ∈ LC(E).

We now consider when LC(E) is the same as C∗(E). It follows from [9, Propo-
sition 3.5] and [30, Corollary 2.3] that if E is a finite graph with no cycles, then

C∗(E) ∼= LC(E) ∼=
⊕k

i=1 Mn(vi)(C), where v1, . . . , vk are the sinks of E and n(vi)
is the number of paths in E ending at vi (including the trivial path vi itself). In
this particular case we have that the map ιE : LC(E) → C∗(E) is surjective. In
Proposition 3.4 we show that the surjectivity of ιE occurs precisely in this situation.

Lemma 3.3. If A and B are unital C∗-algebras and φ : A → B is a unital ring ∗-
homomorphism (n.b. φ is not necessarily C-linear) that is injective, then ‖φ(a)‖ =
‖a‖ for all a ∈ A.

The above lemma follows from [45, Corollary 2.8], and a self-contained proof of
the result can be found in [45].

Proposition 3.4. If E is a graph, then the following are equivalent:

(1) ιE : LC(E) → C∗(E) is surjective;
(2) LC(E) ∼= C∗(E) (as ∗-algebras);
(3) LC(E) ∼= C∗(E) (as ∗-rings);
(4) E is a finite graph with no cycles;
(5) LC(E) is finite dimensional; and
(6) C∗(E) is finite dimensional.

Moreover, when the above hold we have that LC(E) and C∗(E) are both isomorphic
to Mn(v1)(C)⊕ . . .⊕Mn(vk)(C), where v1, ..., vk are the sinks of E and n(vi) is the
number of directed paths in E ending at vi for each 1 ≤ i ≤ k.

Proof. (2) =⇒ (3). This is trivial since any algebra ∗-isomorphism is a ring
∗-isomorphism.

(3) =⇒ (1). Let φ : C∗(E) → LC(E) be a ring ∗-isomorphism. We shall first
show that E has a finite number of vertices. Suppose, for the sake of contradiction
that E has an infinite number of vertices, and let v1, v2, . . . be a sequence of distinct
vertices in E. Let pk := φ−1(vk) for each k. Since φ (and hence also φ−1) is a ring ∗-
homomorphism, {pk : k ∈ N} is a set of mutually orthogonal projections in C∗(E).
Consider the element p :=

∑∞
k=1(1/2

k)pk ∈ C∗(E). (This infinite sum converges
since the pk’s are mutually orthogonal projections.) Let P := φ(p) ∈ LC(E). We
may write P =

∑n
j=1 λjαjβ

∗
j for αj , βj ∈ E∗. Hence for a large enough N we have

that vNP = 0. But then

vN = φ(pN ) = φ(2NpNp) = 2Nφ(pN)φ(p) = 2NvNP = 0,

which is a contradiction. Hence E has a finite number of vertices, and it follows that
C∗(E) and LC(E) are unital and that the ring ∗-isomorphism φ : C∗(E) → LC(E) is
unital. Consequently, since LC(E) is contained in a C∗-algebra, Lemma 3.3 implies
that φ is isometric; i.e. ‖φ(a)‖ = ‖a‖ for all a ∈ C∗(E). It follows that LC(E) is
complete in the norm it inherits as a subalgebra of C∗(E): If {ai}∞i=1 ⊆ LC(E) is a
Cauchy sequence in LC(E), then {φ−1(ai)}∞i=1 in a Cauchy sequence in C∗(E) and
x = limφ−1(ai) for some x ∈ C∗(E). But then the fact that φ is isometric implies
that lim ai = φ(x) ∈ LC(E). Since LC(E) has a C∗-norm in which it is complete,
LC(E) is a C∗-algebra.
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Because LC(E) is a C∗-algebra containing the Cuntz-Krieger E-family {v, e :
v ∈ E0, e ∈ E1}, by the universal property of C∗(E) there exists an algebra ∗-
homomorphism ψ : C∗(E) → LC(E) such that ψ(pv) = v and ψ(se) = e for all
v ∈ E0, e ∈ E1. We then see that ιE ◦ ψ is the identity on C∗(E) (simply check on
generators), and thus ιE is surjective.

(1) =⇒ (4). Since ιE : LC(E) → C∗(E) is surjective, and thus an isomorphism
by Proposition 3.1, we will identify LC(E) with C∗(E) and take the generating
Cuntz-Krieger E-family for both to be {se, pv : e ∈ E1, v ∈ E0}. We also have that

C∗(E) = LC(E) = span{sαs∗β : α, β ∈ E∗ and r(α) = r(β)}.
We shall first show that E has a finite number of vertices. Suppose to the

contrary that E has an infinite number of vertices, and list these elements as E0 =
{v1, v2, . . .}. Then

∑∞
n=1

1
n2 pvn converges to an element in C∗(E). On the other

hand, since LC(E) = C∗(E), any element of C∗(E) may be written as a finite C-
linear combination of terms sαs

∗
β, and hence every element of C∗(E) is orthogonal

to all but a finite number of projections in the set {pv : v ∈ E0}. But
∑∞

n=1
1
n2 pvn

is not orthogonal to any pv with v ∈ E0. Hence we have a contradiction.
Next we shall show that each vertex emits a finite number of edges. To the

contrary, suppose that there exists v ∈ E0 with s−1(v) infinite. List the edges that
v emits as s−1(v) = {e1, e2, e3, . . .}. Since the sens

∗
en ’s are mutually orthogonal

projections, the sum
∑∞

n=1
1
n2 sens

∗
en converges to an element in C∗(E). Since

C∗(E) = LC(E), we may write this element as a finite C-linear combination of
terms sαs

∗
β . By grouping terms, we may write

∞∑

n=1

1

n2
sens

∗
en =

r∑

k=1

λksαk
s∗βk

+

q∑

k=1

μkpvk

for some αk, βk ∈ E∗, vk ∈ E0, and λk, μk ∈ C with the pvk ’s mutually orthogonal
and with either |αk| ≥ 1 or |βk| ≥ 1 for all k. Since there are an infinite number
of elements in s−1(v), we may choose m large enough that em ∈ s−1(v) is not an
edge appearing in any αk or βk, and 1/m2 < |μk| for all 1 ≤ k ≤ q. Then

1

m2
pr(em) = s∗em

( ∞∑

n=1

1

n2
sens

∗
en

)

sem

= s∗em

(
r∑

k=1

λksαk
s∗βk

+

q∑

k=1

μkpvk

)

sem

=

{
0 if vk 
= s(em) for all k,

μkpr(em) if vk = s(em) for some k,

which is a contradiction. Thus each vertex in E emits a finite number of edges.
Since E has a finite number of vertices and each vertex emits a finite number

of edges, it follows that E is a finite graph. We will now show that E contains no
cycles. We consider two cases and show that we are led to a contradiction in both.

Case I. E contains cycles, and at least one cycle μ has an exit e.

Without loss of generality we may assume that s(μ) = s(e) = v. Then we
have pv > sμs

∗
μ. The existence of the exit e for μ implies that pv 
= sμs

∗
μ, since

otherwise 0 = sμs
∗
μse = pvse = se, a contradiction. In a similar manner we get that
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pv > sμs
∗
μ > sμμs

∗
μμ > sμμμs

∗
μμμ . . ., with no equality occurring in the chain. For

each n ∈ N let Sn := sμμ...μ, where the μ appears n times. Let P0 := pv − S1S
∗
1 ,

and for each n ∈ N let

Pn := SnS
∗
n − Sn+1S

∗
n+1.

Then the Pn’s are nonzero mutually orthogonal projections in C∗(E). As such,
the sum

∑∞
n=1

1
n2 Pn converges to an element in C∗(E). On the other hand, since

LC(E) = C∗(E), we may write this element as a finite C-linear combination of
terms sαs

∗
β. Since E is row-finite (in fact, finite) by the previous paragraph, and

none of the vertices on the cycle μ are sinks, we may use the Cuntz-Krieger relation
pw =

∑
s(e)=w ses

∗
e as needed at each vertex w of μ to write the element in the

following form:
∞∑

n=1

1

n2
Pn =

r∑

k=1

λksαk
s∗βk

+

q∑

k=1

μksγk
s∗δk ,

where for each k either αk or βk has the form μjε for some ε ∈ E∗ such that ε
is not an initial segment of μ, and for each k we have that γk and δk are powers
of μ. If α = μjε and ε is not an initial segment of μ, then for n ≥ j + 1 we have
Pnsα = s∗αPn = 0. Furthermore, if α = μi and β = μj , then for n ≥ max{i+1, j+1}
we have

Pnsαs
∗
βPn =

{
Pn if i = j,

0 if i 
= j.

Thus for N sufficiently large, we have that m ≥ N implies

1

m2
Pm = Pm

( ∞∑

n=1

1

n2
Pn

)

Pm

= Pm

(
r∑

k=1

λksαk
s∗βk

+

q∑

k=1

μksγk
s∗δk

)

Pm

=
∑

{k : |γk|=|δk|}
μkPik ,

and hence 1
m2 =

∑
{k : |γk|=|δk|} μk for all m ≥ N , which is a contradiction.

Case II. E contains cycles, but no cycle in E has an exit.

To show that this case cannot occur, we let μ be any cycle in E. Since μ has
no exits, we have sμs

∗
μ = pv and sμ is a unitary. Let Cμ := C∗(sμ) be the C∗-

subalgebra of C∗(E) generated by sμ. Since sμ is a unitary, it follows from spectral
theory that Cμ

∼= C(σ(sμ)), where σ(sμ) denotes the spectrum of μ. We shall show
that σ(sμ) = T. Because sα is a unitary in Bv, it follows that σ(sα) ⊆ T. In
addition, since the spectrum of an element in a C∗-algebra is always a nonempty
set (see [18, Theorem VII.3.6]), there exists w ∈ σ(sα)∩T. Choose any x ∈ T, and
let z be an element of T with the property that zn = wx, where n = |μ|. We see
that {zse, pv : e ∈ E1, v ∈ E0} is also a Cuntz-Krieger E-family generating C∗(E),
and hence by the universal property there exists a ∗-homomorphism γz : C∗(E) →
C∗(E) with γz(se) = zse and γ(pv) = pv. Moreover, since γz is an inverse for γz,
we have that γz is an automorphism. Since γz(sμ) = znsμ, we see that γz restricts
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to an automorphism γz : Cμ → Cμ. Thus

w ∈ σ(sμ) ⇐⇒ sμ − w1Cμ
is not invertible in Cμ

⇐⇒ sμ − wpv is not invertible in Cμ

⇐⇒ γz(sμ − wpv) is not invertible in Cμ

⇐⇒ znsμ − wpv is not invertible in Cμ

⇐⇒ wxsμ − w1Cμ
is not invertible in Cμ

⇐⇒ xsμ − 1Cμ
is not invertible in Cμ

⇐⇒ sμ − x1Cμ
is not invertible in Cμ

⇐⇒ x ∈ σ(sμ).

Because x was an arbitrary element of T, it follows that σ(sα) = T.
By spectral theory we have that Bv = C∗(sα) ∼= C(σ(sα)) = C(T). However, if

a ∈ LC(E) ∩ Cμ, then a =
∑n

k=1 λksαk
s∗βk

. Since pv is the identity of Cμ we have

a = pvapv =
∑n

k=1 λkpvsαk
s∗βk

pv, so without loss of generality we may assume

that s(αk) = r(αk) = v for all k. Since μ is a cycle based at v and having no
exits, it follows that each αk and βk has the form μμ . . . μ. Hence a has the form
a =

∑n
k=1 λksμmk formk ∈ Z. Thus Cμ

∼= C(T) and LC(E)∩Cμ is a ∗-subalgebra of
this C∗-algebra isomorphic to C[x, x−1]. Hence LC(E)∩Cμ 
= Cμ, which contradicts
the fact that LC(E) = C∗(E).

It follows from the two cases considered above that E has no cycles. Thus E is
a finite graph with no cycles.

(4) =⇒ (5). If E is finite with no cycles, then there are a finite number of paths
in E. Since LC(E) = span{sαs∗β : α, β ∈ E∗}, we see that LC(E) is spanned by a
finite set and therefore finite dimensional.

(5) =⇒ (6). Since LC(E) is a finite-dimensional space, all norms on LC(E) are
equivalent and LC(E) is closed in any norm. Since C∗(E) is the closure of LC(E),
we have that C∗(E) = LC(E).

(6) =⇒ (2). Since C∗(E) is a finite-dimensional space and LC(E) is a subspace,
it follows that LC(E) is finite dimensional. For any finite-dimensional space, all
norms on this space are equivalent and the space is closed in each norm. Since
C∗(E) is the closure of LC(E), it follows that LC(E) = C∗(E).

Moreover, if any (and hence all) of the above conditions are satisfied, then Con-
dition (4), together with [30, Corollary 2.3] and [9, Proposition 3.5], shows that
LC(E) ∼= C∗(E) ∼= Mn(v1)(C)⊕ . . .⊕Mn(vk)(C), where v1, ..., vk are the sinks of E
and n(vi) is the number of directed paths in E ending at vi for each 1 ≤ i ≤ k. �

Remark 3.5. Here is an alternate (although less straightforward) verification of
Case II in the proof of (1) =⇒ (4) in Proposition 3.4, using an argument which
directly addresses the relationship between LC(E) and C∗(E). If E is a finite graph
which contains cycles, but for which no cycle has an exit, then the stable rank of
C∗(E) equals 1 by [20, Theorem 3.4]. On the other hand, in this same situation,
the stable rank of LC(E) is greater than 1 by [14, Theorem 2.8]. Thus C∗(E) is
not isomorphic to LC(E) in this case, so that the injection ιE : LC(E) → C∗(E)
cannot be surjective.
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4. Algebra ∗-homomorphisms of graph algebras

In the remainder of this paper we will be concerned with isomorphisms between
graph C∗-algebras and between Leavitt path algebras over C. To see that many
of our results are exceptional in the context of general isomorphisms between C∗-
algebras and dense ∗-subalgebras, we consider a few examples here that show how
unwieldy things can be in the general situation. We will refer to these examples
throughout the remainder of our paper to make it clear that specific results for
graph algebras are truly special.

4.1. Examples of dense ∗-subalgebras of C∗-algebras. In general, if A is a
C∗-algebra with a dense ∗-subalgebra A0 and B is a C∗-algebra with a dense ∗-
subalgebra B0, then there is no relationship between isomorphisms of A and B and
between isomorphisms of A0 and B0. For instance, there are examples where A and
B are isomorphic, but A0 is not isomorphic to B0. In particular, if φ : A → B is
an algebra ∗-isomorphism, then φ does not necessarily restrict to an isomorphism
between A0 and B0 — in fact, there is no reason the restriction φ|A0

must even take
values in B0. Similarly, there are examples where A0 and B0 are isomorphic (and
even ∗-isomorphic), but A is not isomorphic to B. Here there are two things that
can go wrong: (1) If φ : A0 → B0 is an isomorphism, then φ may not be bounded
with respect to the norms on A and B, and hence does not necessarily extend to
a map from A to B; or (2) even when φ does extend to a map from A to B, this
extension may not be bijective.

Let us consider a few examples to see how these phenomena can occur.

Example 4.1. Suppose that X := [0, 1] ⊆ R and that Y := [0, 1] ∪ [2, 3] ⊆ R. Let
A := C(X) and let A0 denote the ∗-algebra of polynomials with complex coefficients
viewed as functions on X. Likewise, let B := C(Y ), and let B0 denote the ∗-algebra
of polynomials with complex coefficients viewed as functions on Y . Then A0 is a
dense ∗-subalgebra of A and B0 is a dense ∗-subalgebra of B. If we let φ : A0 → B0

be the function which takes a polynomial p(x) viewed as a function on X and sends
it to the same polynomial p(x) viewed as a function on Y , then clearly φ is an
algebra ∗-isomorphism from A0 onto B0. On the other hand, A = C(X) is not
isomorphic to B = C(Y ) (as ∗-algebras) since X and Y are not homeomorphic. In
particular, φ does not extend to an algebra ∗-isomorphism from A to B.

Example 4.2. Let A = B = B0 = C([0, 1]). Also let A0 be the ∗-algebra of
polynomials with complex coefficients viewed as functions on [0, 1]. Then A0 is a
dense ∗-subalgebra of A and B0 is a dense ∗-subalgebra of B. However, we see that
A is isomorphic to B (as ∗-algebras), while A0 is not isomorphic to B0. (To see this,
note that A0 has a countable Hamel basis while B0 does not, so the two are not even
isomorphic as vector spaces.) Thus an algebra ∗-isomorphism between C∗-algebras
need not restrict to an algebra ∗-isomorphism between dense ∗-subalgebras of the
C∗-algebras.

Example 4.3. Let X := [0, 1] and Y := [0, 2]. Also let A := C(X) and let A0

denote the ∗-algebra of polynomials with complex coefficients viewed as functions
on X. Likewise, let B := C(Y ), and let B0 denote the ∗-algebra of polynomials with
complex coefficients viewed as functions on Y . Then A0 is a dense ∗-subalgebra
of A and B0 is a dense ∗-subalgebra of B. Let φ : A0 → B0 be the function
which takes a polynomial p(x) viewed as a function on X and sends it to the
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same polynomial p(x) viewed as a function on Y ; then clearly φ is an algebra ∗-
isomorphism. However, we see that φ is not bounded with respect to the norm on
A0 inherited from A and the norm on B0 inherited from B. In particular, if we
let pn(x) = xn, then we see that in A0 we have ‖pn‖ = sup{xn : x ∈ [0, 1]} = 1,
while in B0 we have ‖φ(pn)‖ = sup{xn : x ∈ [0, 2]} = 2n. Thus it is possible
for an algebra ∗-isomorphism between dense ∗-subalgebras of C∗-algebras to be
unbounded. We contrast this with the situation for C∗-algebras: It is well known
that if φ : A → B is an algebra ∗-homomorphism between C∗-algebras, then ‖φ‖ ≤ 1
(see [33, Theorem 2.1.7]), and it is also known that if ψ : A → B is an algebra
isomorphism between C∗-algebras, then ψ is bounded (see [21, Exercise #5, Ch.1,
p. 14]).

4.2. Extending algebra ∗-homomorphisms of Leavitt path algebras to al-
gebra ∗-homomorphisms of graph C∗-algebras. Here we show that the sit-
uation for Leavitt path algebras and graph C∗-algebras is exceptional with re-
gards to the isomorphism properties described above. In particular, we now show
that if E and F are graphs, then LC(E) ∼= LC(F ) (as ∗-algebras) implies that
C∗(E) ∼= C∗(F ).

Theorem 4.4. Let E and F be graphs. If φ : LC(E) → LC(F ) is an algebra ∗-
homomorphism, then there exists a unique algebra ∗-homomorphism φ : C∗(E) →
C∗(F ) making the diagram

C∗(E)
φ

�� C∗(F )

LC(E)

ιE

��

φ
�� LC(F )

ιF

��

commute. Moreover, if φ : LC(E) → LC(F ) is an algebra ∗-isomorphism, then
φ : C∗(E) → C∗(F ) is an algebra ∗-isomorphism.

Proof. Let {se, pv : e ∈ E1, v ∈ E0} be a generating Cuntz-Krieger E-family in
C∗(E), and let {te, qv : e ∈ F 1, v ∈ F 0} be a generating Cuntz-Krieger F -family
in C∗(F ). Given φ : LC(E) → LC(F ), we see that {ιF (φ(e)), ιF (φ(v)) : e ∈
E1, v ∈ E0} is a Cuntz-Krieger E-family in C∗(F ). Hence, by the universal property
of C∗(E), there exists an algebra ∗-homomorphism φ : C∗(E) → C∗(F ) with
φ(pv) = ιF (φ(v)) and φ(se) = ιF (φ(e)) for all v ∈ E0, e ∈ E1. It is easy to see that
φ ◦ ιE = ιF ◦ φ, since the maps on either side of this equation agree on elements of
the form λαβ∗ and since these generate LC(E) as a C-algebra. (Here we are using
the fact that φ is a ∗-homomorphism.) Furthermore, φ is unique because any other
such algebra ∗-homomorphism would agree with φ on the generators of C∗(E) and
hence be equal to φ.

In addition, if φ is an algebra ∗-isomorphism, then

{ιE(φ−1(f)), ιE(φ
−1(w)) : f ∈ F 1, w ∈ F 0}

is a Cuntz-Krieger F -family in C∗(E), and hence by the universal property of
C∗(F ) there exists an algebra ∗-homomorphism ρ : C∗(F ) → C∗(E) with ρ(qw) =
ιE(φ

−1(w)) and ρ(tf ) = ιE(φ
−1(f)) for all w ∈ F 0, f ∈ F 1. One can easily see

that φ ◦ ρ = IdC∗(F ) and ρ ◦ φ = IdC∗(E) by checking on generators. Thus φ is an
algebra ∗-isomorphism. �
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Corollary 4.5. Let E and F be graphs. Then LC(E) ∼= LC(F ) (as ∗-algebras)
implies that C∗(E) ∼= C∗(F ) (as ∗-algebras).

We mention that Corollary 4.5 allows us to obtain [4, Theorem 5.1] directly from
[4, Theorem 4.14].

4.3. ∗-homomorphisms that are algebraic.

Definition 4.6. If φ : C∗(E) → C∗(F ) is an algebra ∗-homomorphism, we say φ is
algebraic if φ(ιE(LC(E))) ⊆ ιF (LC(F )). (Note that implicitly this requires a choice
of the generators for C∗(E) and C∗(F ), since the maps ιE and ιF depend on these
choices.)

Remark 4.7. Let E and F be graphs, and suppose that {se, pv : e ∈ E1, v ∈ E0} is a
chosen generating Cuntz-Krieger E-family in C∗(E) and {tf , qw : f ∈ F 1, w ∈ F 0}
is a chosen generating Cuntz-Krieger F -family in C∗(F ). If φ : C∗(E) → C∗(F )
is an algebra ∗-homomorphism, then φ is algebraic with respect to these choices
if and only if for each v ∈ E0 and each e ∈ E1 we have that every φ(pv) and
every φ(se) is equal to a finite linear combination of finite products of elements of
{tf , qw : f ∈ F 1, w ∈ F 0}.

For any two ∗-algebras A and B we will let HOM(A,B) denote the set of al-
gebra ∗-homomorphisms from A to B and let ISO(A,B) denote the set of alge-
bra ∗-isomorphisms from A to B. Also, if E and F are graphs, we then define
HOMalg(C

∗(E), C∗(F )) to be the subset of HOM(C∗(E), C∗(F )) consisting of the
algebra ∗-homomorphisms from C∗(E) to C∗(F ) that are algebraic (with respect
to the sets {se, pv : e ∈ E1, v ∈ E0} and {tf , qw : f ∈ F 1, w ∈ F 0}). Theorem 4.4
shows that there is a map

Ψ : HOM(LC(E), LC(F )) → HOM(C∗(E), C∗(F ))

given by Ψ(φ) = φ, so the image of Ψ is contained in HOMalg(C
∗(E), C∗(F )).

In addition, if we define ISOalg(C
∗(E), C∗(F )) to be the subcollection of

ISO(C∗(E), C∗(F )) consisting of the algebra ∗-isomorphisms from C∗(E) to C∗(F )
that are algebraic, then Theorem 4.4 shows that Ψ restricts to a map

Ψ| : ISO(LC(E), LC(F )) → ISO(C∗(E), C∗(F ))

and that the image of Ψ| is contained in ISOalg(C
∗(E), C∗(F )).

In general the map Ψ| is not surjective (and, furthermore, Ψ is also not surjec-
tive). The following example shows this.

Example 4.8. Let E be the graph

v0
e1 �� v1

e2 �� v2
e3 �� v3

e4 �� · · · .
Then C∗(E) ∼= K(H) for a separable infinite-dimensional Hilbert space H. (To see
this, note that if we define

eij :=

⎧
⎪⎨

⎪⎩

SiSi+1 . . . Sj−1 if i < j,

SiS
∗
i if i = j,

S∗
i−1S

∗
i−2 . . . S

∗
j if i > j,

then {eij}i,j∈N is an infinite set of matrix units generating C∗(E).)
Let {ξ1, ξ2, . . .} be an orthonormal basis for H. (We recall for our algebraist

readers that this means that the elements in this set are orthonormal and span a
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dense subset of H.) For i ≥ 0 we let Pvi be the projection onto span{ξi}, and for
i ≥ 1 we let Sei be the partial isometry with initial space span{ξi} and final space
span{ξi−1}. Then {Se, Pv : v ∈ E0, e ∈ E1} is a universal Cuntz-Krieger E-family
generating C∗(E) ∼= K(H).

Let η0 :=
∑∞

n=1
1
2n ξn ∈ H, and extend {η0} to an orthonormal basis {η0, η1, . . .}

for H. For i ≥ 0 define Qvi to be the projection onto span{ηi}, and for i ≥ 1 let
Tei be the partial isometry with initial space span{ηi} and final space span{ηi−1}.
Then {Te, Qv : v ∈ E0, e ∈ E1} is a Cuntz-Krieger E-family generating C∗(E) ∼=
K(H). Hence there exists an algebra ∗-homomorphism φ : C∗(E) → C∗(E) with
φ(Pv) = Qv and φ(Se) = Te. Since {Te, Qv : v ∈ E0, e ∈ E1} generates K(H),
we see that φ is surjective, and since K(H) is simple, φ is injective. Thus φ is
an algebra ∗-isomorphism. Furthermore, φ(Pv0)η0 = Qv0η0 = η0 =

∑∞
n=1

1
2n ξn.

But if T is any finite C-linear combination of products of the elements of {Se, Pv :
v ∈ E0, e ∈ E1}, then Tη0 is equal to a finite linear combination of ξn’s. Thus
Tη0 
= η0, and it follows that φ(Pv0) is not a finite C-linear combination of the
elements of {Se, Pv : v ∈ E0, e ∈ E1}. Hence φ is an algebra ∗-isomorphism that is
not algebraic with respect to the set {Se, Pv : v ∈ E0, e ∈ E1}.

Example 4.9. Here is another example of a ∗-isomorphism that is not algebraic,
and that has the advantage of coming from a finite graph. Let E be the graph
with one vertex and one edge. Then LC(E) = C[x, x−1], the algebra of Laurent
polynomials, and C∗(E) = C(T), the algebra of continuous functions on the unit
circle T. Then the map ιE : LC(E) → C∗(E) is the obvious inclusion. For every
g ∈ C(T) such that |g(z)| = 1 for all z ∈ T , there is a C∗ -algebra homomorphism
φ : C(T) → C(T) such that φ sends the identity function z �→ z on T to the function
g. Moreover, φ is an isomorphism whenever g is injective. There are many such
choices of g that are not in C[x, x−1]. (For example, we could choose g : T → C

defined by g(e2πit) = e2πit
2

, which satisfies the hypotheses but is not analytic and
hence not in C[x, x−1].)

Despite the fact that an algebra ∗-isomorphism between two graph C∗-algebras
need not be algebraic (and therefore need not restrict to an algebra ∗-isomorphism
between LC(E) and LC(F )), there are certain situations, which we discuss in Sec-
tion 10, when C∗(E) ∼= C∗(F ) (as ∗-algebras) implies LC(E) ∼= LC(F ) (as ∗-
algebras).

5. Algebra homomorphisms of graph algebras

In this section we consider algebra homomorphisms between graph algebras that
are not necessarily ∗-preserving. We saw in Example 4.3 that an algebra isomor-
phism between dense ∗-subalgebras of C∗-algebras need not be bounded. This can
also occur when the dense ∗-subalgebras are Leavitt path algebras. Let E be the
graph

•
��

consisting of a single vertex and a single edge. As noted in Example 4.9, LC(E) ∼=
C[x, x−1]. If we let pv := 1, se := 2x, and se∗ := 1

2x
−1, then this collection forms

a Leavitt E-family, and by the universal property of Leavitt path algebras there
is an algebra homomorphism ψ : LC(E) → LC(E) with ψ(1) = 1, ψ(x) = 2x, and
ψ(x−1) = 1

2x
−1. One can see that ψ is one-to-one and onto, and hence ψ is an
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algebra isomorphism. In addition, we have that the elements xn all have norm one,
however ψ(xn) = 2nxn has norm 2n. Hence ψ is an algebra isomorphism between
Leavitt path algebras that is not bounded.

Nonetheless, the following proposition shows that we are able to scale any algebra
automorphism of C[x, x−1] to obtain an algebra ∗-automorphism.

Proposition 5.1. If ψ : C[x, x−1] → C[x, x−1] is an algebra isomorphism, then
there exists z ∈ C

× and an algebra ∗-isomorphism φ : C[x, x−1] → C[x, x−1] such
that

ψ = φ ◦ γz,
where γz is the scaling automorphism corresponding to z.

Proof. Since ψ(x)ψ(x−1) = ψ(1) = 1, we have that ψ(x) is a unit of C[x, x−1].
However, the only units of C[x, x−1] are axk with a ∈ C

× and k ∈ Z. (To see this,
use the graded structure of this ring and the fact that the ring is a domain.) Thus
we must have ψ(x) = axk for some a ∈ C

× and k ∈ Z, and also ψ(x−1) = 1
ax

−k.

In addition, for any polynomial p(x, x−1) in C[x, x−1], we have that ψ(p(x, x−1)) =
p(axk, 1

ax
−k). Since ψ is onto, it must be the case that k = ±1.

If we let φ := ψ◦γa, then φ is an algebra isomorphism (since it is the composition
of algebra isomorphisms) and φ is ∗-preserving (simply check on the generators 1,
x, and x−1). If we let z := 1

a , then we see that ψ = φ ◦ γz. �
We are also able to characterize when an algebra homomorphism between com-

plex Leavitt path algebras is an algebra ∗-homomorphism.

Lemma 5.2. Let U , V , and P be elements in a C∗-algebra. Suppose that P is a
projection and that U and V are contractions with UV = P . Then V P is a partial
isometry with (V P )∗(V P ) = P .

Proof. Without loss of generality, we may assume that U , V , and P are operators
on a Hilbert space H. For any x ∈ imP , the fact that U and V are contractions
implies that

‖x‖ ≤ ‖P (x)‖ = ‖UV (x)‖ ≤ ‖V (x)‖ ≤ ‖x‖
so that ‖V (x)‖ = ‖x‖ and ‖V P (x)‖ = ‖x‖. In addition, if x ∈ (imP )⊥, then
V P (x) = V (Px) = 0. Consequently, V P is a partial isometry with initial space
imP . It follows that (V P )∗(V P ) = P . �
Proposition 5.3. If ψ : LC(E) → LC(F ) is an algebra homomorphism between
complex Leavitt path algebras, then ψ is an algebra ∗-homomorphism if and only if
the following two conditions are satisfied:

• ‖ψ(se)‖ ≤ 1 and ‖ψ(s∗e)‖ ≤ 1 for all e ∈ E1, and
• ‖ψ(pv)‖ ≤ 1 for each v ∈ E0 that is a source.

Proof. To see that the above conditions are necessary, suppose that ψ : LC(E) →
LC(F ) is an algebra ∗-homomorphism. Then Theorem 4.4 shows that ψ extends to
a ∗-homomorphism from C∗(E) to C∗(F ). Hence ψ must be contractive.

To see that the above conditions are sufficient, let v ∈ E0 and suppose v is not a
source. Then there exists e ∈ E1 such that r(e) = v. Since pv is an idempotent and
ψ is an algebra homomorphism, we have that ψ(pv) is an idempotent. Furthermore,
‖ψ(pv)‖ = ‖ψ(pr(e))‖ = ‖ψ(s∗e)ψ(se)‖ ≤ ‖ψ(s∗e)‖‖ψ(se)‖ ≤ 1 by hypothesis. Thus
ψ(pv) is a contractive idempotent and hence a projection [18, Proposition 3.3].
Likewise, if v ∈ E0 is a source, then ψ(pv) is an idempotent, which is contractive
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by hypothesis and hence a projection. We therefore have that ψ(pv) is a projection
for all v ∈ E0.

Fix e ∈ E1. We have that ses
∗
e is an idempotent and hence ψ(ses

∗
e) is also an

idempotent. Furthermore,

‖ψ(ses∗e)‖ = ‖ψ(se)ψ(s∗e)‖ ≤ ‖ψ(se)‖‖ψ(s∗e)‖ ≤ 1

by hypothesis. Thus ψ(ses
∗
e) is a contractive idempotent and hence a projection

(again using [18, Proposition 3.3]). Since ψ(se)ψ(s
∗
e) = ψ(ses

∗
e), we may take

adjoints of each side of this equation to obtain

ψ(s∗e)
∗ψ(se)

∗ = ψ(ses
∗
e),

and because ψ(se) and ψ(s∗e) are contractions by hypothesis, Lemma 5.2 implies
that ψ(se)

∗ψ(ses
∗
e) = ψ(se)

∗ is a partial isometry with

(5.1) ψ(se)ψ(se)
∗ = ψ(ses

∗
e).

Thus

ψ(se)
∗ = [ψ(se)ψ(pr(e))]

∗ = ψ(pr(e))ψ(se)
∗

= ψ(s∗e)ψ(se)ψ(se)
∗ = ψ(s∗e)ψ(ses

∗
e) by (5.1)

= ψ(s∗e).

Hence ψ(p∗v) = ψ(pv)
∗ for all v ∈ E0 and ψ(s∗e) = ψ(se)

∗ for all e ∈ E1. Since
{se, pv : e ∈ E1, v ∈ E0} generates LC(E) as a ∗-algebra, it follows that ψ(x∗) =
ψ(x)∗ for all x ∈ LC(E) and ψ is an algebra ∗-homomorphism. �
Corollary 5.4. An algebra isomorphism ψ : LC(E) → LC(F ) is an algebra ∗-
isomorphism if and only if the following two conditions are satisfied:

• ‖ψ(se)‖ = ‖ψ(s∗e)‖ = 1 for all e ∈ E1, and
• ‖ψ(pv)‖ = 1 for each v ∈ E0 that is a source.

Proof. If ψ : LC(E) → LC(F ) is an algebra ∗-isomorphism, then by Theorem 4.4
ψ extends to an algebra ∗-isomorphism ψ : C∗(E) → C∗(F ) between C∗-algebras.
Hence ψ is isometric, and the displayed conditions hold. The converse follows from
Proposition 5.3. �
Remark 5.5. It is well known that there are algebra isomorphisms between C∗-
algebras that are not algebra ∗-isomorphisms. For example, if W is an invertible
operator on a Hilbert space H, then the function ψ : B(H) → B(H) given by
ψ(X) = WXW−1 is an algebra isomorphism that is not in general an algebra ∗-
isomorphism. Despite this fact, it was shown by Gardner in 1965 that if A and B are
C∗-algebras, then A ∼= B (as algebras) if and only if A ∼= B (as ∗-algebras) [26, 27].
Furthermore, Gardner showed in [26, Corollary 4.2] that an algebra isomorphism
ψ : A → B is an algebra ∗-isomorphism if and only if ‖ψ‖ = 1. (Compare this with
Corollary 5.4.)

In view of Gardner’s result that for C∗-algebras A and B one has that A ∼= B
(as algebras) implies A ∼= B (as ∗-algebras), it is natural to make the following
conjecture for complex Leavitt path algebras.

Conjecture 1. If E and F are graphs, then LC(E) ∼= LC(F ) (as algebras) implies
that LC(E) ∼= LC(F ) (as ∗-algebras).

Along these lines, we can also make the following conjecture.
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Conjecture 2. If E and F are graphs, then LC(E) ∼= LC(F ) (as algebras) implies
that C∗(E) ∼= C∗(F ) (as ∗-algebras).

Note that Corollary 4.5 shows that an affirmative answer to Conjecture 1 implies
an affirmative answer to Conjecture 2.

Unfortunately, we are unable to make progress on Conjecture 1, and we are also
unable to give a complete answer to Conjecture 2. Here we offer some remarks on
how one might approach a solution. Whenever we have an algebra isomorphism
ψ : LC(E) → LC(F ), then if ψ is bounded it will extend (by continuity) to an
algebra isomorphism on the completions ψ : C∗(E) → C∗(F ), and an application
of Gardner’s result shows that C∗(E) ∼= C∗(F ) (as ∗-algebras). However, as we have
seen at the beginning of this section, isomorphisms between complex Leavitt path
algebras need not be bounded, and hence need not be continuous, and therefore
need not extend to the completion. With the Laurent polynomials, we saw in
Proposition 5.1 that any isomorphism—although not necessarily bounded—can be
composed with a scaling automorphism to produce a bounded isomorphism. If
a similar result holds for general complex Leavitt path algebras, then using the
argument of this paragraph, we would have a positive solution to Conjecture 2. It
is unclear to the authors at this time whether such a result holds.

In the next section we consider a conjecture that is stronger than Conjecture 2;
i.e., that LC(E) ∼= LC(F ) (as rings) implies C∗(E) ∼= C∗(F ) (as ∗-algebras). This
conjecture clearly implies Conjecture 2, and remarkably, even though we are unable
to make general progress on Conjecture 2, we are able to answer this stronger
conjecture in some special cases.

6. Ring ∗-homomorphisms, ring homomorphisms,

and the isomorphism conjecture for graph algebras

Up to this point we have considered algebra homomorphisms and algebra ∗-
homomorphisms between complex Leavitt path algebras. In the remainder of this
paper we will focus on the ring structure of complex Leavitt path algebras.

Proposition 6.1. If ψ : LC(E) → LC(F ) is a ring ∗-homomorphism, then there
exists an algebra ∗-homomorphism φ : LC(E) → LC(F ) with φ(pv) = ψ(pv) and
φ(se) = ψ(se) for all v ∈ E0, e ∈ E1.

Proof. Note that since ψ is a ring ∗-homomorphism, {ψ(pv), ψ(se) : v ∈ E0, e ∈ E1}
is a Leavitt E-family in LC(F ). Thus by the universal property of LC(E) there
exists an algebra ∗-homomorphism φ : LC(E) → LC(F ) with φ(pv) = ψ(pv) and
φ(se) = ψ(se) for all v ∈ E0, e ∈ E1. �

Remark 6.2. Note that even though the maps ψ and φ of Proposition 6.1 agree
on the elements {pv, se : v ∈ E0, e ∈ E1}, the two maps are not necessarily equal.
This is because the Leavitt E-family {pv, se : v ∈ E0, e ∈ E1} generates LC(E) as
a ∗-algebra but not as a ∗-ring. For example, if we take E to be the graph with
one vertex and no edges, then LC(E) ∼= C and the generating Leavitt E-family is
the singleton set {1}. If we define ψ : C → C by ψ(z) = z and φ : C → C by
φ(z) = z, then ψ is a ring ∗-homomorphism and φ is an algebra ∗-homomorphism
with ψ(1) = φ(1), but we see that ψ and φ are not equal.
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Corollary 6.3. If ψ : LC(E) → LC(F ) is a ring ∗-homomorphism, then there
exists an algebra ∗-homomorphism φ : C∗(E) → C∗(F ) with φ(pv) = ψ(pv) and
φ(se) = ψ(se) for all v ∈ E0, e ∈ E1.

Proof. Apply Proposition 6.1 followed by Theorem 4.4. �

Corollary 6.3 shows that for any ring ∗-homomorphism ψ : LC(E) → LC(F ) we
may find an algebra ∗-homomorphism φ : C∗(E) → C∗(F ) that agrees with ψ on
the generating Leavitt E-family. However, it is unclear if having ψ as a ring ∗-
isomorphism implies that φ is an algebra ∗-isomorphism. (In fact, both injectivity
and surjectivity are in question.) If such a result were obtained it would show
that LC(E) ∼= LC(F ) (as ∗-rings) implies that C∗(E) ∼= C∗(F ) (as ∗-algebras).
(Compare this with Theorem 4.4 and Corollary 4.5.) Although we are unable to
obtain this result, we make the following stronger conjecture.

The isomorphism conjecture for graph algebras. If E and F are graphs,
then LC(E) ∼= LC(F ) (as rings) implies that C∗(E) ∼= C∗(F ) (as ∗-algebras).

Although we cannot verify weaker versions of the Isomorphism Conjecture in
general (e.g., when our hypothesis is LC(E) ∼= LC(F ) (as ∗-rings) or when our
hypothesis is LC(E) ∼= LC(F ) (as algebras)), we are able to show that the Isomor-
phism Conjecture holds for some very important classes of graph algebras. We show
in Section 7 that we have an affirmative answer when the graphs have no cycles
(so that the associated algebras are ultramatricial). We also show in Section 8 that
there is an affirmative answer when the graph algebras are simple and come from
row-finite graphs. In both cases we accomplish our results by using classification
theorems from the Elliott Classification Program for C∗-algebras

7. Isomorphisms of ultramatricial graph algebras

In this section we prove that the Isomorphism Conjecture for Graph Algebras has
an affirmative answer when the graphs have no cycles (equivalently, the Leavitt path
algebras are ultramatricial; equivalently, the graph C∗-algebras are AF). Before we
do so, we need to establish some K-theory notation and give a formulation of
Elliott’s classification for direct limits of semisimple algebras that is useful for our
situation.

If R is a ring with unit, K0(R) is the Grothendieck group of the semigroup of
finitely generated projective right R-modules under the operation of direct sum.
The group K0(R) is abelian and consists of expressions [X]− [Y ], where X and Y
are finitely generated projective right R-modules. Two such expressions [X] − [Y ]
and [Z] − [W ] are equal in K0(R) if and only if there exists a finitely generated
projective right R-module V such that X ⊕W ⊕ V ∼= Z ⊕ Y ⊕ V , and the sum of
two expressions [X]− [Y ] and [Z] − [W ] is equal to [X ⊕ Z] − [Y ⊕W ]. We write
[X] for the expression [X]− [0] and define

K0(R)+ := {[X] : X is a finitely generated projective right R-module}.
One can show (K0(R),K0(R)+) is a preordered group with order unit [R].

Given a unital ring homomorphism φ : R → S we make S into a left R-module via
φ, and use the functor (−)⊗R S to map right R-modules to right S-modules. This
induces a homomorphism K0(φ) : (K0(R),K0(R)+, [R]) → (K0(S),K0(S)

+, [S])
via K0(φ)([X]−[Y ]) := [X⊗RS]−[Y ⊗RS]. Furthermore, K0(φ) is an isomorphism
whenever φ is an isomorphism. The assignments R �→ (K0(R),K0(R)+, [R]) and
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φ �→ K0(φ) define a functor from the category of rings with unit to the category of
preordered abelian groups with order unit.

If R is a C-algebra, the unitization of R is the C-algebra R1 which as a vector
space is equal to R ⊕ C and has multiplication defined as (r, λ)(s, μ) := (r + μr +
λs, λμ). There is a natural algebra homomorphism ν : R1 → C given by ν(r, λ) :=
λ, and one sees that the kernel of ν is isomorphic to R.

There is then a positive unital group homomorphism K0(ν) : K0(R
1) → K0(C).

When R is unital we have that K0(R) ∼= kerK0(ν) [28, Proposition 12.1]. When
R is nonunital, we define K0(R) := kerK0(ν). In this case we also view kerK0(ν)
as equipped with the preordered abelian group structure inherited from K0(R

1).
To take the place of the order unit, we define the scale of K0(R) to be Σ(R) :=
{x ∈ K0(R) : 0 ≤ x ≤ [R1]}. When R and S are both unital, a positive group
homomorphism α : K0(R) → K0(S) is scale preserving if and only if it is unital.

Given two C-algebras R and S and an algebra homomorphism φ : R → S we
obtain an algebra homomorphism φ1 : R1 → S1 given by φ1(r, λ) := (φ(r), λ). The
induced map K0(φ

1) : K0(R
1) → K0(S

1) restricts to a positive homomorphism
from K0(R) to K0(S) that preserves scales. We denote this homomorphism by
K0(φ). The assignments R �→ (K0(R),K0(R)+,Σ(R)) and φ �→ K0(φ) define
a functor from the category of C-algebras to the category of preordered abelian
groups with specified sets of positive elements. This functor preserves direct limits
[28, Proposition 12.2] and so also preserves finite direct sums. In addition, when R
is an ultramatricial C-algebra, (K0(R),K0(R)+) is an ordered abelian group.

If A is a C∗-algebra, one may define a topological K0 group Ktop
0 (A) as the

Grothendieck group of Murray-von Neumann equivalence classes of projections in
matrices over A (see [39] or [47] for details). One also defines a preorder and scale

for Ktop
0 (A). When A⊗K has an approximate unit consisting of projections (which

occurs, for example, if A is an AF-algebra), then

Ktop
0 (A) = {[p]− [q] : p and q are projections in A⊗K},

Ktop
0 (A)+ = {[p] : p is a projection in A⊗K},
Σtop(A) = {[p] : p is a projection in A}.

For any algebra ∗-homomorphism φ : A → B between C∗-algebras, we ob-
tain algebra ∗-homomorphisms φn : Mn(A) → Mn(B) for each n ∈ N, where φn

is obtained by applying φ to each entry in the matrix. We let φ∞ : A ⊗ K →
B ⊗ K be the algebra ∗-homomorphism induced on the direct limit. The alge-
bra ∗-homomorphism φ : A → B then induces a group homomorphism Ktop

0 (φ) :

Ktop
0 (A) → Ktop

0 (B) given by Ktop
0 (φ)([p] − [q]) = [φ∞(p)] − [φ∞(q)]. This as-

signment defines a functor from the category of C∗-algebras to the category of
preordered abelian groups with specified sets of positive elements. This functor
preserves direct limits [39, Theorem 6.3.2] and so also preserves finite direct sums.

In addition, when A is an AF-algebra, (Ktop
0 (A),Ktop

0 (A)+) is an ordered abelian
group.

It turns out that for a C∗-algebra A the algebraic K0-group of A agrees with the
topological K0-group of A [40, Theorem 1.1]; that is,

(K0(A),K0(A)+,Σ(A)) = (Ktop
0 (A),Ktop

0 (A)+,Σtop(A)).

Therefore, when A is a C∗-algebra we will, without ambiguity, simply write (K0(A),
K0(A)+,Σ(A)) for the scaled ordered K0-group.
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Lemma 7.1. Let A be an AF C∗-algebra, and let R be a dense ultramatricial ∗-
subalgebra of A. If φ : R ↪→ A is the inclusion map, then K0(φ) : K0(R) → K0(A)
is an isomorphism of scaled ordered groups.

Proof. If A and R are unital, the result is [28, Proposition 1.5]. If one of A or R
is nonunital, consider the unitizations A1 and R1, let φ1 : R1 → A1 be the induced
unital algebra homomorphism, let νR : R1 → C and νA : A1 → C be the canonical
homomorphisms, and observe that the diagram

R1 φ1

��

νR
���

��
��

��
� A1

νA

��

C

commutes. Applying the functor K0 we obtain a commutative diagram

K0(R
1)

K0(φ
1)
��

K0(νR)
����

���
���

��
K0(A

1)

K0(νA)

��

K0(C).

It follows that K0(φ
1) restricts to a group isomorphism between kerK0(νR) and

K0(νA) that preserves order and scale. Thus K0(φ) : K0(R) → K0(A) is a group
isomorphism of scaled ordered groups. �

The following theorem follows from various results in Elliott’s work on direct
limits of semisimple finite-dimensional algebras. The version that we state here can
be obtained by piecing together various formulations in the existing literature.

Theorem 7.2. Let A and B be AF C∗-algebras, let R be a dense ultramatricial
∗-subalgebra of A, and let S be a dense ultramatricial ∗-subalgebra of B. Then the
following are equivalent:

(1) A ∼= B (as ∗-algebras),
(2) R ∼= S (as ∗-algebras),
(3) R ∼= S (as algebras),
(4) R ∼= S (as rings),
(5) (K0(A),K0(A)+,Σ(A)) ∼= (K0(B),K0(B)+,Σ(B)), and
(6) (K0(R),K0(R)+,Σ(R)) ∼= (K0(S),K0(S)

+,Σ(S)).

Moreover, if

α : (K0(A),K0(A)+,Σ(A)) → (K0(B),K0(B)+,Σ(B))

is an isomorphism, then there exists an algebra ∗-isomorphism φ : A → B such that
K0(φ) = α. Likewise, if

α : (K0(R),K0(R)+,Σ(R)) → (K0(S),K0(S)
+,Σ(S))

is an isomorphism, then there exists an algebra ∗-isomorphism φ : R → S such that
K0(φ) = α.

Proof. The result follows from the following equivalences:
(1) ⇐⇒ (5) is Elliott’s Theorem for AF C∗-algebras [38, Theorem 1.3.3].
(5) ⇐⇒ (6) follows from Lemma 7.1.
(6) ⇐⇒ (3) is a theorem of Elliott [28, Theorem 12.5].
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(3) ⇐⇒ (2) follows from [23, Theorem 4.3, Appendix].
(3) ⇐⇒ (4) follows from [23, Remark 4.4].

The fact that isomorphisms on K-groups lift to ∗-isomorphisms of the associated
algebras follows from [38, Theorem 1.3.3], [28, Theorem 12.5], and [23, Theorem 4.3,
Appendix]. �
Remark 7.3. The equivalence (3) ⇐⇒ (4) of Theorem 7.2 is one consequence of a
deep result of Elliott ([23, Theorem 4.3]). This connection between the structure of
a dense subalgebra R of an AF-algebra A viewed as an algebra, versus the structure
of R viewed simply as a ring, is for us a crucial bridge between the analytic and
algebraic sides of our investigation.

We are now in a position to present a solution to the Isomorphism Conjecture
for Graph Algebras in case the graphs are acyclic.

Proposition 7.4. Let E and F be graphs with no cycles. Then the following are
equivalent.

(1) C∗(E) ∼= C∗(F ) (as ∗-algebras),
(2) LC(E) ∼= LC(E) (as ∗-algebras),
(3) LC(E) ∼= LC(F ) (as algebras), and
(4) LC(E) ∼= LC(F ) (as rings).

Proof. Since E and F have no cycles, it follows from [30, Theorem 2.4] that C∗(E)
and C∗(F ) are AF-algebras. Also, since E and F have no cycles, it follows that
LC(E) and LC(F ) are ultramatricial algebras. (This is shown in [46, §3.3, p. 106] for
row-finite graphs, and an application of desingularization [8, Theorem 5.2] gives the
result for countably infinite graphs. The result is also shown directly, for arbitrary
sized graphs, in [10].) Proposition 3.1 implies that LC(E) is isomorphic to a dense
∗-subalgebra of C∗(E) and LC(F ) is isomorphic to a dense ∗-subalgebra of C∗(F ).
The result then follows from Theorem 7.2. �
Remark 7.5. Proposition 7.4 shows that the Isomorphism Conjecture for Graph
Algebras of Section 6, Conjecture 1 of Section 5, and Conjecture 2 of Section 5 all
have affirmative answers in the case that E and F have no cycles.

8. Isomorphisms of simple graph algebras

In this section we prove that the Isomorphism Conjecture for Graph Algebras has
an affirmative answer when the graph algebras are simple and come from row-finite
graphs. To do this we will need to make use of K-theory and the Kirchberg-
Phillips Classification Theorem for purely infinite, simple, separable, nuclear C∗-
algebras. Throughout we let K1(R) denote the algebraic K1-group of a ring R,

and we let Ktop
1 denote the topological K1-group of a C∗-algebra A. Recall that

with K0-groups, we have that K0(A) ∼= Ktop
0 (A) whenever A is a C∗-algebra [40,

Theorem 1.1].

Definition 8.1. If G is an abelian group, then an element g ∈ G is divisible by n
if there exists x ∈ G such that nx = g. We call g divisible if g is divisible by n for
all n ∈ N. We say an abelian group G is divisible if every element of G is divisible.

Remark 8.2. If G is a free abelian group, then the only divisible element of G is
the identity 0. This is because G is isomorphic to a (possibly infinite) direct sum
of copies of Z.
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The following result is well known in the abelian group community; we include
a proof for completeness.

Lemma 8.3. Suppose that D1 and D2 are divisible abelian groups and that F1 and
F2 are free abelian groups. If D1 ⊕ F1

∼= D2 ⊕ F2, then D1
∼= D2 and F1

∼= F2.

Proof. Let φ : D1 ⊕ F1 → D2 ⊕ F2 be an isomorphism. If d ∈ D1, then since D1 is
a divisible group, the element (d, 0) is a divisible element of D1⊕F1. Thus φ(d1, 0)
is a divisible element of D2 ⊕ F2. Suppose φ(d1, 0) = (d2, f2). Then for any n ∈ N

there exists (x, y) ∈ D2 ⊕ F2 such that n(x, y) = (d2, f2). Hence for any n ∈ N

there exists y ∈ F2 such that ny = f2. Thus f2 is divisible in F2, and since F2 is a
free abelian group we may conclude that f2 = 0. Therefore φ(D1 ⊕ 0) ⊆ D2 ⊕ 0. A
similar argument using φ−1 shows that φ(D1 ⊕ 0) = D2 ⊕ 0. In particular, we get
D1

∼= D2. It follows that (D1 ⊕ F1)/(D1 ⊕ 0) ∼= (D2 ⊕ F2)/φ(D1 ⊕ 0), and hence
(D1 ⊕ F1)/(D1 ⊕ 0) ∼= (D2 ⊕ F2)/(D2 ⊕ 0); thus F1

∼= F2. �

Recall that C
× denotes the multiplicative group of nonzero complex numbers.

For a natural number m ∈ N let (C×)m denote the direct sum of m copies of C×

and let (C×)∞ denote the direct sum of a countably infinite number of copies of
C

×.

Theorem 8.4. Let E and F be row-finite graphs with no sinks. Then the following
two implications hold:

(1) If K0(LC(E)) ∼= K0(LC(F )), then Ktop
0 (C∗(E)) ∼= Ktop

0 (C∗(F )). Fur-
thermore, if the isomorphism from K0(LC(E)) to K0(LC(F )) preserves the

(pre)order and scale, then there exists an isomorphism from Ktop
0 (C∗(E))

to Ktop
0 (C∗(F )) that preserves the (pre)order and scale. In addition, if

LC(E) and LC(F ) are unital and the isomorphism from K0(LC(E)) to
K0(LC(F )) preserves the class of the unit, then there exists an isomor-

phism from Ktop
0 (C∗(E)) to Ktop

0 (C∗(F )) that preserves the class of the
unit.

(2) If K1(LC(E)) ∼= K1(LC(F )), then Ktop
1 (C∗(E)) ∼= Ktop

1 (C∗(F )).

Proof. The result of (1) follows from [13, Theorem 7.1], where it is shown that for a
row-finite graph E the inclusion ι : LC(E) ↪→ C∗(E) induces an isomorphism from

K0(LC(E)) onto Ktop
0 (C∗(E)).

To obtain (2), let AE be the vertex matrix of E and consider the matrix At
E − I

(where M t denotes the transpose of a matrix M). Since E is a row-finite graph,
AE is a row-finite matrix and At

E−I is a column-finite matrix. When |E0| is finite,
it follows from [12, Corollary 7.7] that

K1(LC(E)) ∼= coker(At
E − I : (C×)n → (C×)n)⊕ ker(At

E − I : Zn → Z
n),

where n := |E0|. In addition, the same formula holds when E0 is infinite, provided
we allow n = ∞. (To see this, we must use the computation, also proven in [12,
Corollary 7.7], for the K1 group for the Leavitt path algebra of a finite graph with
sinks. In particular,

K1(LC(E)) ∼= coker(Bt
E − I : (C×)r → (C×)n)⊕ ker(Bt

E − I : Zr → Z
n),

where BE is the nonsquare matrix obtained from the vertex matrix AE by deleting
the zero rows corresponding to sinks and r is the number of vertices that are not
sinks. One can then take a direct limit representation in terms of finite graphs,
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which may involve graphs with sinks even if the original infinite graph had no sinks.
The direct limit argument then gives the above result in the infinite case, because
the vertices in the infinite graph will eventually be nonsinks in some approximation.)

A similar result holds, mutatis mutandis, for F . Since K1(LC(E)) ∼= K1(LC(F )),
we have

coker(At
E − I : (C×)n → (C×)n)⊕ ker(At

E − I : Zn → Z
n)

∼= coker(At
F − I : (C×)m → (C×)m)⊕ ker(At

F − I : Zm → Z
m),

where we define n andm to be the (possibly infinite) values n := |E0| andm := |F 0|.
Since C× is a divisible group, it is not hard to show directly that any direct sum

(C×)k is divisible (including the case k = ∞). Because coker(At
E − I : (C×)n →

(C×)n) and coker(At
F − I : (C×)m → (C×)m) are quotients of divisible groups,

they are themselves divisible groups. Furthermore, since any direct sum Z
k is a

free abelian group, we see that ker(At
E − I : Zn → Z

n) and ker(At
F − I : Zm → Z

m)
are subgroups of free abelian groups and are therefore free abelian groups themselves
(by a standard result in abelian groups). It follows from Lemma 8.3 that

coker(At
E − I : (C×)n → (C×)n) ∼= coker(At

F − I : (C×)m → (C×)m)

and

ker(At
E − I : Zn → Z

n) ∼= ker(At
F − I : Zm → Z

m).

It is proven in [35, Theorem 7.16] that Ktop
1 (C∗(E)) ∼= ker(At

E − I : Zn → Z
n) and

Ktop
1 (C∗(F )) ∼= ker(At

F − I : Zn → Z
n). Thus Ktop

1 (C∗(E)) ∼= Ktop
1 (C∗(F )). �

We are now in a position to establish another case of the Isomorphism Conjecture
for Graph Algebras.

Proposition 8.5. Let E and F be row-finite graphs that are each cofinal, satisfy
Condition (L), and contain at least one cycle. If LC(E) ∼= LC(F ) (as rings), then
C∗(E) ∼= C∗(F ) (as ∗-algebras).

Proof. Note that since E and F are each cofinal and contain a cycle, neither graph
can contain a sink. Thus E and F are both row-finite graphs with no sinks.

In addition, since LC(E) ∼= LC(F ) (as rings) we have that either LC(E) and
LC(F ) are both unital (and hence C∗(E) and C∗(F ) are both unital) or LC(E) and
LC(F ) are both nonunital (and hence C∗(E) and C∗(F ) are both nonunital).

Moreover, since LC(E) ∼= LC(F ) (as rings), it follows from previous remarks that
K0(LC(E)) ∼= K0(LC(F )) as groups. Furthermore, in the unital case this isomor-
phism may be chosen to preserve the class of the unit (i.e., [LC(E)] �→ [LC(F )]).
Likewise, since LC(E) ∼= LC(F ) (as rings), it follows that K1(LC(E)) ∼= K1(LC(F ))

as groups. Theorem 8.4 then implies that Ktop
0 (C∗(E)) ∼= Ktop

0 (C∗(F )) (and in the
unital case this isomorphism may be chosen to preserve the class of the unit) and

also Ktop
1 (C∗(E)) ∼= Ktop

1 (C∗(F )).
Because E and F are cofinal, satisfy Condition (L), and contain at least one

cycle, it follows from [16, Theorem 5.1, Remark 5.6] that C∗(E) and C∗(F ) are
each purely infinite and simple. Since all graph C∗-algebras of countable graphs
are separable, nuclear, and satisfy the UCT [42, Remark A.11.13], the hypotheses
of the Kirchberg-Phillips Classification Theorem [34, Theorem 4.2.4] are satisfied.
Therefore, C∗(E) ∼= C∗(F ) (as ∗-algebras). �
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The two previously established cases of the Isomorphism Conjecture blend nicely
to produce the following result.

Theorem 8.6. Let E and F be row-finite graphs such that LC(E) and LC(F ) are
simple. If LC(E) ∼= LC(F ) (as rings), then C∗(E) ∼= C∗(F ) (as ∗-algebras).

Proof. It follows from the dichotomy for simple Leavitt path algebras [8, Theo-
rem 4.4] that LC(E) and LC(F ) are either both ultramatricial (in the case that E
and F contain no cycles) or are both purely infinite (in the case that E and F each
contain at least one cycle). If LC(E) and LC(F ) are both ultramatricial, then the
result follows from Proposition 7.4. If LC(E) and LC(F ) are both purely infinite,
then E and F are each cofinal graphs satisfying Condition (L) and containing a
cycle, so the result follows from Proposition 8.5. �

9. The Morita Equivalence Conjecture for Graph Algebras

Two unital rings are said to be Morita equivalent if and only if their categories
of left modules are equivalent if and only if there exists an equivalence bimodule
between the rings (see [11, Ch. 6] for details). The notion of Morita equivalence
has also been extended to various classes of nonunital rings (see, for example, [3]),
including rings with enough idempotents (see Definition 9.9). Any Leavitt path
algebra is a ring with enough idempotents, and consequently there is a notion of
Morita equivalence for the class of Leavitt path algebras. Given two rings R and
S, we will write R ∼ME S to indicate that R and S are Morita equivalent.

Rieffel was the first to extend the notion of Morita equivalence to C∗-algebras,
and in the past 25 years these ideas have proven extremely fruitful and developed
into a standard set of tools for C∗-algebraists (see [37] for details). When ex-
tending the definition from rings to C∗-algebras, there are two ways to proceed:
Rieffel defined two C∗-algebras to be Morita equivalent if their categories of Her-
mitian modules are equivalent (and this equivalence is also required to preserve
the ∗-operation on the morphisms of these categories) [37, pp. 295–296]. Rieffel
also defined two C∗-algebras to be strongly Morita equivalent if there exists an
equivalence C∗-bimodule between them [37, pp. 295–296]. It turns out that for
C∗-algebras strong Morita equivalence implies Morita equivalence. The converse,
in general, does not hold.

In addition, two unital C∗-algebras are algebraically Morita equivalent (i.e.,
Morita equivalent as rings) if and only if they are strongly Morita equivalent [37,
pp. 295–296]. In the development of C∗-algebras, strong Morita equivalence has
emerged as the most useful notion and is what most C∗-algebraists focus on. We
will do the same here, and for two C∗-algebras A and B we write A ∼SME B to
indicate that A and B are strongly Morita equivalent. (We warn the reader that
since strong Morita equivalence is the predominant notion in much of C∗-algebra
theory, in the more recent literature many authors have taken to simply writing
“Morita equivalent” to mean strongly Morita equivalent, an inconsistency with Ri-
effel’s early definition of Morita equivalences.)

In this section we examine Morita equivalence for graph algebras, and consider
the following conjecture, which we call the Morita Equivalence Conjecture for Graph
Algebras.

The Morita Equivalence Conjecture for Graph Algebras. If E and F are
graphs, then LC(E) ∼ME LC(F ) implies that C∗(E) ∼SME C∗(F ).
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In this section we shall prove an affirmative answer to the Morita Equivalence
Conjecture for Graph Algebras for simple graph algebras coming from row-finite
graphs as well as for graph algebras of graphs with no cycles. We also prove
that an affirmative answer to the Isomorphism Conjecture for Graph Algebras (see
Section 6) for all graphs implies an affirmative answer for all graphs to the Morita
Equivalence Conjecture for Graph Algebras. We accomplish this by considering
stabilization of graphs and their associated algebras.

Definition 9.1. Given a graph E, let MnE be the graph formed from E by taking
each v ∈ E0 and attaching a “head” of length n− 1 of the form

vn−1

evn−1
�� . . .

ev3 �� v2
ev2 �� v1

ev1 �� v

to E.

Example 9.2. If E is the graph

•

��
��

��
��

� •

•

		�������
�� •




then M3E is the graph

• �� • �� •

��
��

��
��

� • •�� •��

• �� • �� •

		�������
�� •




•�� •��

The following result generalizes [7, Proposition 13] to all graph algebras.

Proposition 9.3. If E is a graph, then for any n ∈ N it is the case that C∗(MnE) ∼=
Mn(C

∗(E)) (as ∗-algebras) and LC(MnE) ∼= Mn(LC(E)) (as ∗-algebras). In addi-
tion, if K is any field, then LK(MnE) ∼= Mn(LK(E)) (as algebras).

Proof. We will first prove that C∗(MnE) ∼= Mn(C
∗(E)) (as ∗-algebras). For 1 ≤

i, j ≤ n, we let Ei,j denote the matrix in Mn(C) with a 1 in the (i, j)th position and
0’s elsewhere. For a ∈ C∗(E) we let Ei,j⊗a denote the matrix in Mn(C

∗(E)) with a
in the (i, j)th position and 0’s elsewhere. Note that (Ei,j⊗a)(Ek,l⊗b) = Ei,jEk,l⊗ab
in Mn(C

∗(E)).
Let {se, pv : e ∈ E1, v ∈ E0} be a generating Cuntz-Krieger E-family for C∗(E).

For each v ∈ E0 and e ∈ E1 define

Pv := E1,1 ⊗ pv and Se := E1,1 ⊗ se.

Also for v ∈ E0 and k ∈ {1, . . . , n− 1} define

Pvk := Ek+1,k+1 ⊗ pv and Sevk
:= Ek+1,k ⊗ pv.

It is straightforward to verify that {Se, Sevk
: v ∈ E0, e ∈ E1, 1 ≤ k ≤ n − 1} ∪

{Pv, Pvk : v ∈ E0, 1 ≤ k ≤ n − 1} is a Cuntz-Krieger MnE-family in Mn(C
∗(E)).

Thus there exists a canonical algebra ∗-homomorphism φ : C∗(MnE)→Mn(C
∗(E)).

To see that φ is onto, it suffices to show that for all v ∈ E0, e ∈ E1, and 1 ≤ i, j ≤ n
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it is the case that Ei,j ⊗ se and Ei,j ⊗ pv are in the ∗-subalgebra of Mn(C
∗(E))

generated by {Se, Pv : e ∈ MnE
1, v ∈ MnE

0}. For i = j we have

Ei,j ⊗ pv = Ei,i ⊗ pv =

{
Pv if i = 1,

Pvi−1
if i ≥ 2,

for i > j we have

Ei,j ⊗ pv = (Ei,i−1 ⊗ pv)(Ei−1,i−2 ⊗ pv) . . . (Ej+1,j ⊗ pv) = Sevi−1
Sevi−2

. . . Sevj
,

and for i < j we have

Ei,j ⊗ pv = (Ei,i+1 ⊗ pv)(Ei+1,i+2 ⊗ pv) . . . (Ej−1,j ⊗ pv) = S∗
evi
S∗
evi+1

. . . S∗
evj−1

.

Finally, for any e ∈ E1 and 1 ≤ i, j ≤ n we have

Ei,j ⊗ se = (Ei,1 ⊗ ps(e))(E1,1 ⊗ se)(E1,j ⊗ pr(e)) = Sevi−1
. . . Sev1

SeS
∗
ev1

. . . S∗
evj−1

.

Thus φ is onto.
To see that φ is injective, we use the Gauge-Invariant Uniqueness Theorem [15,

Theorem 2.1]. Let γE be the canonical gauge action on C∗(E), and let β be the
gauge action on Mn(C) defined by βz(Ei,j) = zi−jEi,j . Then there is a gauge action
γ on Mn(C

∗(E)) given by γz(Ei,j ⊗ a) = βz(Ei,j)γ
E
z (a). If one lets γMnE denote

the canonical gauge action on C∗(MnE), then one can verify that φ◦γMnE = γ ◦φ.
(Simply check the equality on generators.) Since the Pv’s are also nonzero, the
Gauge-Invariant Uniqueness Theorem implies that φ is injective. Thus φ is an
algebra ∗-isomorphism, and C∗(MnE) ∼= Mn(C

∗(E)) (as ∗-algebras).
The same proof can be applied mutatis mutandis (and, in particular, by applying

the Graded Uniqueness Theorem [44, Theorem 4.8] in place of the Gauge-Invariant
Uniqueness Theorem) to show that LC(MnE) ∼= Mn(LC(E)) (as ∗-algebras) and
that LK(MnE) ∼= Mn(LK(E)) (as algebras), for any field K. We mention that
specifically we are using the following grading on the matrix ring: If x ∈ LK(E)t,
then the degree of the element in Mn(LK(E)) having x in the (i, j) entry and zeros
elsewhere is equal to t+ (i− j). �

Definition 9.4. Given a graph E, let SE be the graph formed from E by taking
each v ∈ E0 and attaching an infinite “head” of the form

. . .
ev4 �� v3

ev3 �� v2
ev2 �� v1

ev1 �� v

to E. We call SE the stabilization of E.

Example 9.5. If E is the graph

•

��
��

��
��

� •

•

		�������
�� •




then SE is the graph

· · · �� • �� • �� •

��
��

��
��

� • •�� •�� · · ·��

· · · �� • �� • �� • �� •

		�������
�� •




•�� •�� · · ·��
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Definition 9.6. For any ring R we let M∞(R) denote the ring of finitely sup-
ported, countably infinite square matrices with coefficients in R. If R is an algebra
(respectively, a ∗-algebra), then M∞(R) inherits an algebra structure (respectively,
a ∗-algebra structure) in the usual way.

In general, if G is a subgraph of the graph E, then the inclusion G ↪→ E does
not necessarily induce homomorphisms ρL : LK(G) → LK(E) and ρC : C∗(G) →
C∗(E). This is due to the fact that the Cuntz-Krieger relation at a vertex v, when
v is viewed in G, need not be compatible with the corresponding Cuntz-Krieger
relation at v, when v is viewed in the larger graph E. However, in certain situations
the inclusion G ↪→ E does induce natural homomorphisms ρL : LK(G) → LK(E)
and ρC : C∗(G) → C∗(E), which are necessarily injective, so that LK(G) can be
viewed as a subalgebra of LK(E) and C∗(G) can be viewed as a C∗-subalgebra of
C∗(E). Specifically, this happens when G is a complete subgraph of E.

Definition 9.7. A subgraph G of a graph E is called complete in case, for each
regular vertex v ∈ G0, we have s−1

G (v) = s−1
E (v). (In other words, a subgraph G of

E is complete if, whenever v ∈ G0 emits a nonzero, finite number of edges in G,
then necessarily the subgraph G contains all of the edges in E emitted by v.)

Proposition 9.8. If E is a graph, then

(1) LC(SE) ∼= M∞(LC(E)) (as ∗-algebras),
(2) LK(SE) ∼= M∞(LK(E)) (as K-algebras) for any field K, and
(3) C∗(SE) ∼= C∗(E)⊗K (as ∗-algebras), where K = K(H) denotes the compact

operators on a separable infinite-dimensional Hilbert space H.

Proof. For each n we see that MnE sits as a complete subgraph of Mn+1E. Thus
the inclusion in : MnE ↪→ Mn+1E induces an algebra ∗-homomorphism (in)∗ :
Mn(LC(E)) ↪→ Mn+1(LC(E)) takingA �→(A 0

0 0 ). We also see that SE =
⋃∞

n=1 MnE.
Furthermore, since the functor E �→ LC(E) is continuous with respect to algebraic
direct limits [13, Lemma 3.2], we have that LC(SE) is isomorphic (as a ∗-algebra)
to the algebraic direct limit

⋃∞
n=1 LC(MnE), and using Proposition 9.3 we obtain⋃∞

n=1 LC(MnE) =
⋃∞

n=1 Mn(LC(E)) = M∞(LC(E)). Thus LC(SE) ∼= M∞(LC(E))
(as ∗-algebras). A similar argument with K in place of C, and using algebra ho-
momorphisms, shows that (2) holds.

The result in (3) is proven in [43, Theorem 4.2], using the characterization of
stability of graph C∗-algebras obtained in [43, Theorem 3.2]. However, we can give
a short direct proof as in the previous paragraph. Since SE =

⋃∞
n=1 MnE and the

functor E �→ C∗(E) is continuous with respect to C∗-algebraic direct limits [13,
Lemma 3.3], C∗(SE) is isomorphic (as a ∗-algebra) to the C∗-algebraic direct limit
⋃∞

n=1 C
∗(MnE) =

⋃∞
n=1 Mn(C∗(E)) = C∗(E) ⊗ K. Thus C∗(SE) ∼= C∗(E) ⊗ K

(as ∗-algebras). �

The following definition was first given in [25].

Definition 9.9. A ring R is said to have a set of enough idempotents in case there
exists a set of orthogonal idempotents {ei|i ∈ I} in R for which RR =

⊕
i∈I Rei.

In particular, any unital ring is a ring with enough idempotents, with set {1}.
It is then clear that for any graph E, the Leavitt path algebra LK(E) has a set of
enough idempotents, specifically, the set of vertices E0.
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The following result provides a bridge between isomorphism and Morita equiv-
alence. The proof in the unital case is Stephenson’s Theorem on infinite matrix
rings [41, Theorem 3.6] (with an explicit description of the isomorphism given in
[1, Lemma 1.2]). In the case that A and B each have countable sets of enough
idempotents, the proof in this more general setting is given in [3, Theorem 5 and
Remarks 1 and 2, p. 412].

Proposition 9.10. Let A and B be rings with countable sets of enough idempotents.
Then A ∼ME B if and only if M∞(A) ∼= M∞(B) (as rings).

Corollary 9.11. Let E and F be graphs. Then LK(E) ∼ME LK(F ) if and only if
M∞(LK(E)) ∼= M∞(LK(F )) (as rings).

Proof. By our standing hypothesis (see Remark 2.4), the vertex sets E0 and F 0

are countable. Thus the algebras LK(E) and LK(F ) have countable sets of enough
idempotents. Now apply Proposition 9.10. �

In the following two subsections we give two important applications of Proposi-
tion 9.10. First, we give Morita equivalence results for ultramatricial algebras and
AF C∗-algebras paralleling the isomorphism results of Section 7. These results are
interesting in their own right, and they also imply that the Morita Equivalence
Conjecture for Graph Algebras holds for graphs with no cycles. Second, we show
that if C is a class of graphs for which the Isomorphism Conjecture holds and which
is closed under the stabilization operation given in Definition 9.4, then the Morita
Equivalence Conjecture holds for all graphs in C as well. This implies, in partic-
ular, that the Morita Equivalence Conjecture for Graph Algebras holds whenever
the algebras are simple and come from row-finite graphs, and it also shows that an
affirmative answer to the Isomorphism Conjecture for Graph Algebras implies an
affirmative answer to the Morita Equivalence Conjecture for Graph Algebras.

9.1. Morita equivalence of ultramatricial graph algebras. In this subsection
we prove Morita equivalence versions of the results in Section 7.

Theorem 9.12 (cf. Theorem 7.2). Let A and B be AF C∗-algebras, let R be a dense
ultramatricial ∗-subalgebra of A, and let S be a dense ultramatricial ∗-subalgebra of
B. Then the following are equivalent:

(1) A ∼SME B,
(2) R ∼ME S,
(3) (K0(A),K0(A)+) ∼= (K0(B),K0(B)+), and
(4) (K0(R),K0(R)+) ∼= (K0(S),K0(S)

+).

Proof. The result follows from the following equivalences:
(1) ⇐⇒ (3) is part of Elliott’s Theorem for AF C∗-algebras [47, Theorem 12.1.3].
(3) ⇐⇒ (4) follows from Lemma 7.1.
(1) ⇐⇒ (2) is obtained via the following argument. We first note that A ⊗

K = M∞(A), and since R is a dense ∗-subalgebra of A, it follows that M∞(R)
is a dense ∗-subalgebra of A ⊗ K. Similarly M∞(S) is a dense ∗-subalgebra of
B ⊗ K. Furthermore, since A and B are AF-algebras, each contains a countable
approximate identity and the hypotheses of the Brown-Green-Rieffel Theorem [17,
Theorem 1.2] are satisfied. This theorem then gives A ∼SME B if and only if
A ⊗ K ∼= B ⊗ K (as ∗-algebras). In addition, A ⊗ K ∼= B ⊗ K (as ∗-algebras) if
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and only if M∞(R) ∼= M∞(S) (as rings) by [(1) ⇐⇒ (4)] of Theorem 7.2. Finally,
M∞(R) ∼= M∞(S) (as rings) if and only if R ∼ME S by Proposition 9.10. �

Proposition 9.13. Let E and F be graphs with no cycles. Then the following are
equivalent:

(1) C∗(E) ∼SME C∗(F ) and
(2) LC(E) ∼ME LC(F ).

In particular, the Morita Equivalence Conjecture for Graph Algebras holds for the
class of graphs with no cycles.

Proof. Since E and F have no cycles, it follows from [30, Theorem 2.4] that C∗(E)
and C∗(F ) are AF-algebras. Also, as noted in the proof of Proposition 7.4, since E
and F have no cycles it follows that LC(E) and LC(F ) are ultramatricial algebras.
Proposition 3.1 implies that LC(E) is isomorphic to a dense ∗-subalgebra of C∗(E)
and LC(F ) is isomorphic to a dense ∗-subalgebra of C∗(F ). The result then follows
from Theorem 9.12. �

9.2. Morita equivalence and classes closed under stabilization. We now
show that if we have a class of graphs for which: (1) the Isomorphism Conjecture
for Graph Algebras has an affirmative answer for all graphs in the class, and (2)
the class is closed under stabilization, then the Morita Equivalence Conjecture for
Graph Algebras has an affirmative answer as well for all graphs in that class.

Theorem 9.14. Let C be a collection of graphs with the following two properties:

(1) If E and F are graphs in C, then LC(E) ∼= LC(F ) (as rings) implies that
C∗(E) ∼= C∗(F ) (as ∗-algebras) and

(2) if E is a graph in C, then SE is also in C.
Then for any E and F in C it is the case that LC(E) ∼ME LC(F ) implies that
C∗(E) ∼SME C∗(F ).

Proof. Let E and F be in C with LC(E) ∼ME LC(F ). Then Proposition 9.10 implies
that M∞(LC(E)) ∼= M∞(LC(F )) (as rings). It follows from Proposition 9.8 that
LC(SE) ∼= LC(SF ) (as rings). By Condition (2) on C we have that SE and SF
are in C, and then by Condition (1) on C we have that C∗(SE) ∼= C∗(SF ) (as
∗-algebras). It then follows from Proposition 9.8 that C∗(E) ⊗ K ∼= C∗(F ) ⊗ K
(as ∗-algebras). Since C∗(E) and C∗(F ) are stably isomorphic, it follows that
C∗(E) ∼SME C∗(F ) [36, Corollary 3.39]. �

We note that the only implication used in the above proof that is in fact not
a biconditional is the statement that LC(SE) ∼= LC(SF ) (as rings) implies that
C∗(SE) ∼= C∗(SF ) (as ∗-algebras). (In particular, the converse of the final impli-
cation follows from the Brown-Green-Rieffel Theorem [17, Theorem 1.2].)

Corollary 9.15. If the Isomorphism Conjecture for Graph Algebras (see Section 6)
is true for all graphs, then the Morita Equivalence Conjecture for Graph Algebras
(see the beginning of Section 9) holds for all graphs.

Corollary 9.16. Let E and F be row-finite graphs such that LC(E) and LC(F ) are
simple. If LC(E) ∼ME LC(F ), then C∗(E) ∼SME C∗(F ).

Proof. Let

C := {E : E is a row-finite graph and LC(E) is simple}.
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It follows from Theorem 8.6 that if E and F are in C, then LC(E) ∼= LC(F ) (as
rings) implies C∗(E) ∼= C∗(F ) (as ∗-algebras). Furthermore, if E is a graph in C,
then E is row-finite, cofinal, satisfies Condition (L), and has the property that every
vertex can reach every sink. By considering the definition of the stabilization, we
see that SE is also row-finite, cofinal, satisfies Condition (L), and has the property
that every vertex can reach every sink. Thus LC(SE) is simple by [8, Theorem 3.1],
and SE is in C. The result then follows from Theorem 9.14. �

Remark 9.17. Here is an alternate way to see that the class C of Corollary 9.16 is
closed under stabilization: Straightforward computations with matrices show that
for any ring R with enough idempotents, one has that R is simple if and only if
M∞(R) is simple. Thus C is closed under stabilization by Proposition 9.8.

10. Converses to the Isomorphism Conjecture for Graph Algebra

In this final section we identify two important classes of graphs for which the
converse of the Isomorphism Conjecture for Graph Algebras holds. (We note that
there are no known counterexamples to the converse of this conjecture.) For the
first class, we have already seen that the converse holds for graphs with no cycles
(see Proposition 7.4). Here is the second class.

Theorem 10.1. Let E and F be finite graphs for which C∗(E) and C∗(F ) are
purely infinite simple, and for which det(I − At

E) and det(I − At
F ) have the same

sign (where AE and AF denote the vertex matrices of E and F , respectively). If
C∗(E) ∼= C∗(F ) (as ∗-algebras), then LC(E) ∼= LC(F ) (as rings; in fact, as ∗-
algebras).

Proof. For any finite graph E, C∗(E) is purely infinite simple (as a C∗-algebra)
if and only if LC(E) is purely infinite simple (as a ring), since, as indicated pre-
viously, each condition is equivalent to E being cofinal, satisfying Condition (L),
and containing at least one cycle. (See e.g. [7, Theorem 11] and [16, Proposi-
tion 5.1 and Proposition 5.3].) If φ : C∗(E) → C∗(F ) is a ∗-algebra isomorphism,
then K0(φ) : K0(C

∗(E)) → K0(C
∗(F )) is an isomorphism of groups for which

K0(φ)([1C∗(E)]) = [1C∗(F )]. It then follows from [13, Theorem 7.1] that there is an
isomorphism ψ : K0(LC(E)) → K0(LC(F )) with ψ([1LC(E)]) = [1LC(F )]. Now [5,
Corollary 2.7] applies to yield the result. �

We note that [5, Theorem 2.5], and the resulting [5, Corollary 2.7] used in the
previous proof, follow from deep results in symbolic dynamics; see e.g. [24] and
[29].

We close the article by presenting examples of specific classes of graphs to which
Theorem 10.1 applies.

Example 10.2 (Matrix rings over Leavitt and Cuntz algebras). For positive inte-
gers n and k with n ≥ 2, let Rk

n be the graph

vk−1
�� . . . �� v2 �� v1 �� v

e1

��

e2


e3

��

e4
��

e5

��

en
��

. . .
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(So Rk
n is precisely the graph MkRn, where Rn is the rose with n petals graph; i.e.,

the graph with one vertex and n edges.)

Corollary 10.3. Let E and F be graphs in {Rk
n : n, k ∈ N, n ≥ 2}. If C∗(E) ∼=

C∗(F ) (as ∗-algebras), then LC(E) ∼= LC(F ) (as rings; in fact, as ∗-algebras).

Proof. It is well known that C∗(Rk
n) is purely infinite simple. It is trivial to show

that the graph E = Rk
n has det(I − At

E) = −(n − 1) < 0. Now apply Theorem
10.1. �

Corollary 10.4. Let E and F be graphs for which:

• E is cofinal, satisfies Condition (L), and has at least one cycle,
• E has no parallel edges,
• |E0| ≤ 3.

If C∗(E) ∼= C∗(F ) (as ∗-algebras), then LC(E) ∼= LC(F ) (as rings; in fact, as
∗-algebras).

Proof. It is shown in [2] that there are (up to isomorphism) three graphs of the
given type having |E0| = 2 and thirty-four graphs of the given type having |E0| =
3. (There are no such graphs having just one vertex.) The first indicated set of
conditions yields that C∗(E) and C∗(F ) are purely infinite simple. For each of
these thirty-seven graphs, one checks that det(I − At

E) < 0. Now apply Theorem
10.1. �
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