ISOMORPHISM OF GENERALIZED TRIANGULAR MATRIX-RINGS AND RECOVERY OF TILES

R. KHAZAL, S. DĂSCĂLESCU, and L. VAN WYK

Received 5 May 2002

We prove an isomorphism theorem for generalized triangular matrix-rings, over rings having only the idempotents 0 and 1, in particular, over indecomposable commutative rings or over local rings (not necessarily commutative). As a consequence, we obtain a recovery result for the tile in a tiled matrix-ring.

2000 Mathematics Subject Classification: 16S50, 15A33, 16D20.

Matrix-rings play a fundamental role in mathematics and its applications. A difficult question is to decide whether a given ring is isomorphic to a matrixring or one of its variants. Several "hidden matrix-rings" have been shown in the literature (see [5]). These rings did not appear as being matrix-rings at the first sight, nevertheless they proved out to be isomorphic to matrix-rings. Another type of problem concerned to matrices is to decide whether two rings of matrices are isomorphic or not. For instance, it is known that for commutative rings *R* and *S*, the matrix-rings $M_2(R)$ and $M_2(S)$ are isomorphic if and only if the rings R and S are isomorphic, for the simple reason that R is isomorphic to the center of $M_2(R)$. However, if R and S are not commutative, this is not true anymore. Examples have been given in [7], also in [6] for simple Noetherian integral domains R, S, or in [2] for prime Noetherian R, S. A different but related problem is the recovery of the tile in a triangular matrix-ring. More precisely, if *R* is a ring and *I*, *J* are two-sided ideals of *R* such that the rings $\begin{pmatrix} R & I \\ 0 & R \end{pmatrix}$ and $\begin{pmatrix} R & J \\ 0 & R \end{pmatrix}$ are isomorphic, what can we say about *I* and *J*? Are they isomorphic as *R*-bimodules? If we do not impose any condition to the ring, then there is no hope to recover the tile. For instance, in [3] a ring R was constructed such that

$$\begin{pmatrix} R & R \\ 0 & R \end{pmatrix} \simeq \begin{pmatrix} R & 0 \\ 0 & R \end{pmatrix}.$$
 (1)

It was proved in [1] that if R satisfies a certain finiteness condition (in particular in the case where R is a left Noetherian), the above isomorphism cannot hold. For the situation where the tile is not necessarily 0 or the whole ring R, the situation behaves worse. Even when the ring is finite, the tile cannot be

recovered. It was proved in [4] that if $R = \begin{pmatrix} A & 0 & A \\ 0 & A & A \\ 0 & 0 & A \end{pmatrix}$, *A* is a ring, and

$$I = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & A \\ 0 & 0 & 0 \end{pmatrix}, \qquad J = \begin{pmatrix} 0 & 0 & A \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \tag{2}$$

then the rings $\begin{pmatrix} R & I \\ 0 & R \end{pmatrix}$ and $\begin{pmatrix} R & J \\ 0 & R \end{pmatrix}$ are isomorphic, while *I* and *J* are not isomorphic as *R*-bimodules.

The aim of this paper is to obtain a recovery result for the tile in the case where the underlying ring *R* has only trivial idempotents, that is, *R* has only two idempotents, 0 and 1. Relevant examples of such rings are for instance: indecomposable commutative rings and local rings (not necessarily commutative). In fact we can investigate the isomorphism among more general matrix-type rings. Recall that if *R* and *S* are two rings, and *M* is an *R*, *S*-bimodule (this means left *R* and right *S*), we can define the generalized triangular matrix-ring $\begin{pmatrix} R & M \\ 0 & S \end{pmatrix}$, with multiplication induced by the bimodule actions and the usual rule for matrix multiplication. With this notation we can prove the following theorem.

THEOREM 1. Let *R* and *S* be rings having only trivial idempotents, and let *M*, *N* be two *R*, *S*-bimodules. Then a map $\phi : \begin{pmatrix} R & M \\ 0 & S \end{pmatrix} \rightarrow \begin{pmatrix} R & N \\ 0 & S \end{pmatrix}$ is a ring isomorphism if and only if there exist $a \in N$, $f \in Aut(R)$, $g \in Aut(S)$, and an isomorphism $v : M \rightarrow N$ of additive groups satisfying v(rx) = f(r)v(x) and v(xs) = v(x)g(s) for any $x \in M$, $r \in R$, $s \in S$, such that

$$\phi \begin{pmatrix} r & x \\ 0 & s \end{pmatrix} = \begin{pmatrix} f(r) & f(r)a - ag(s) + v(x) \\ 0 & g(s) \end{pmatrix},$$
(3)

for any $r \in R$, $x \in M$, and $s \in S$.

In particular, we obtain a recovery result for the tile. This is not exactly an isomorphism, but an isomorphism relative to some automorphisms of the ring. We recall that if $f,g \in \operatorname{Aut}(R)$, and X,Y are two R,R-bimodules, then an additive map $v: X \to Y$ is called an f,g-morphism if v(rxr') = f(r)v(x)g(r'), for any $r,r' \in R, x \in X$.

COROLLARY 2 (recovery of the tile). Let *R* be a ring having only trivial idempotents, and *I*, *J* be ideals of *R*. Then the matrix-rings $\begin{pmatrix} R & I \\ 0 & R \end{pmatrix}$ and $\begin{pmatrix} R & J \\ 0 & R \end{pmatrix}$ are isomorphic if and only if *I* and *J* are *f*,*g*-isomorphic as the *R*,*R*-bimodules for some $f,g \in \operatorname{Aut}(R)$.

A complete recovery of the tile (up to isomorphism) is obtained in some special cases when the ring has only the trivial automorphism. **COROLLARY 3.** Let *R* be a ring having only trivial idempotents such that, the only automorphism of *R* is the identity. If *I*, *J* are ideals of *R*, then the matrix-rings $\begin{pmatrix} R & J \\ 0 & R \end{pmatrix}$ and $\begin{pmatrix} R & J \\ 0 & R \end{pmatrix}$ are isomorphic if and only if *I* and *J* are isomorphic as the *R*,*R*-bimodules.

PROOF OF THEOREM 1. An element $\binom{r \ x}{0 \ s} \in \binom{R \ M}{0 \ S}$ is idempotent if and only if $r^2 = r$, $s^2 = s$, and rx + xs = x. Since the only idempotents of R and S are 0 and 1, we have that any of r and s is either 0 or 1. If r = 0 and s = 0, we find x = 0. If r = 1 and s = 1, we find again x = 0. If r = 1 and s = 0, then x can be anything in M, and the same in the case where r = 0 and s = 1. Thus, apart from 0 and the identity element, the idempotents of $\binom{R \ M}{0 \ S}$ are the elements of the form

$$e_{x} = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix}, \quad x \in M,$$

$$f_{x} = \begin{pmatrix} 0 & x \\ 0 & 1 \end{pmatrix}, \quad x \in M.$$
(4)

It is easy to see that the following relations hold:

$$e_{x}e_{y} = e_{y}, \qquad f_{x}f_{y} = f_{x}, \qquad e_{x}f_{y} = \begin{pmatrix} 0 & x + y \\ 0 & 0 \end{pmatrix}, \qquad f_{x}e_{y} = 0,$$
(5)

for any $x, y \in M$. We denote by $e'_z, f'_z, z \in N$, the similar idempotents of $\binom{R}{0} \binom{N}{S}$. Let $\phi : \binom{R}{0} \binom{N}{S} \to \binom{R}{0} \binom{N}{S}$ be a ring isomorphism. Then $\phi(e_0)$ must be a nontrivial idempotent of $\binom{R}{0} \binom{N}{S}$. We distinguish two cases.

CASE 1. We have $\phi(e_0) = e'_a$ for some $a \in N$. Then if for some $x \in M$ we have $\phi(e_x) = f'_b$ for some $b \in N$, we see that

$$e'_{a} = \phi(e_{0}) = \phi(e_{x}e_{0}) = \phi(e_{x})\phi(e_{0}) = f'_{b}e'_{a} = 0,$$
(6)

a contradiction. Therefore, $\phi(e_x) = e'_{u(x)}$ for some $u(x) \in N$ for any $x \in M$. Then we have that

$$\phi(f_x) = \phi(I_2 - e_{-x}) = I_2 - e'_{u(-x)} = f'_{-u(-x)}.$$
(7)

Thus, for any $x \in M$ we have

$$\phi \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \phi(e_0 f_x) = \phi(e_0)\phi(f_x) = e'_a f'_{-u(-x)} = \begin{pmatrix} 0 & a - u(-x) \\ 0 & 1 \end{pmatrix}.$$
 (8)

Denote $v : M \to N$, v(x) = a - u(-x). Then clearly v is a morphism of additive groups. Moreover, v is an isomorphism. Indeed, if $\phi^{-1}(e'_z) = f_h$ for some $z \in N$, $h \in M$, then $\phi(f_h) = e'_z$, a contradiction. Thus $\phi(\{e_x \mid x \in M\}) = \{e'_z \mid z \in N\}$,

showing that u is surjective, so then v is also surjective. Obviously, v is injective.

Now

$$\phi\begin{pmatrix} r & 0\\ 0 & 0 \end{pmatrix} = \phi\left(e_0\begin{pmatrix} r & 0\\ 0 & 0 \end{pmatrix}\right) = e'_a \phi\begin{pmatrix} r & 0\\ 0 & 0 \end{pmatrix} \in \begin{pmatrix} R & N\\ 0 & 0 \end{pmatrix}$$
(9)

thus $\phi \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} f(r) & h(r) \\ 0 & 0 \end{pmatrix}$ for some additive maps $f : R \to R$, $h : R \to N$. Since ϕ is a ring morphism, we obtain that

$$f(r_1r_2) = f(r_1)f(r_2), \quad f(1) = 1,$$

$$h(r_1r_2) = f(r_1)h(r_2), \quad h(1) = a,$$
(10)

for any $r_1, r_2 \in R$. Similarly, one gets $\phi\begin{pmatrix} 0 & 0 \\ 0 & s \end{pmatrix} = \begin{pmatrix} 0 & p(s) \\ 0 & g(s) \end{pmatrix}$ for some additive maps $g: S \to S, p: S \to N$ satisfying

$$g(s_1s_2) = g(s_1)g(s_2), \quad g(1) = 1,$$

$$p(s_1s_2) = p(s_1)g(s_2), \quad p(1) = -a.$$
(11)

Then h(r) = h(r1) = f(r)h(1) = f(r)a for any $r \in R$, and similarly p(s) = -ag(s) for any $s \in S$. We obtain that

$$\phi \begin{pmatrix} r & x \\ 0 & s \end{pmatrix} = \phi \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} + \phi \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} + \phi \begin{pmatrix} 0 & 0 \\ 0 & s \end{pmatrix}$$

$$= \begin{pmatrix} f(r) & f(r)a \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & v(x) \\ 0 & g(s) \end{pmatrix} + \begin{pmatrix} 0 & -ag(s) \\ 0 & g(s) \end{pmatrix}$$

$$= \begin{pmatrix} f(r) & f(r)a - ag(s) + v(x) \\ 0 & g(s) \end{pmatrix},$$
(12)

for any $r \in R$, $s \in S$, and $x \in M$. By using the relation

$$\phi\left(\begin{pmatrix} r & x\\ 0 & s \end{pmatrix} \begin{pmatrix} r' & x'\\ 0 & s' \end{pmatrix}\right) = \phi\begin{pmatrix} r & x\\ 0 & s \end{pmatrix} \phi\begin{pmatrix} r' & x'\\ 0 & s' \end{pmatrix},$$
(13)

we obtain, by computing the (1,2)-slots in the two sides, that f(r)v(x') + v(x)g(s') = v(rx') + v(xs') for any $r \in R$, $x, x' \in M$, $s' \in S$. For s' = 0, we find v(rx') = f(r)v(x'), and for r = 0, we obtain v(xs') = v(x)g(s').

It remains to show that *f* and *g* are bijective. Clearly, ker(*f*) = 0 since *f*(*r*) = 0 implies $\phi\begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$, and then *r* must be 0. Also *f* is surjective since for any

536

 $b \in R$, there exists $\binom{r x}{0 s} \in \binom{R M}{0 S}$ with $\phi\binom{r x}{0 s} = \binom{b 0}{0 0}$, in particular, f(r) = b. Thus f is a ring isomorphism, and so is g.

CASE 2. We have $\phi(e_0) = f'_a$ for some $a \in N$. Then for any $x \in M$, we have that

$$f'_{a} = \phi(e_{0}) = \phi(e_{x}e_{0}) = \phi(e_{x})\phi(e_{0}) = \phi(e_{x})f'_{a}.$$
 (14)

If $\phi(e_x) = e'_z$ for some $x \in M$, $z \in N$, we obtain that

$$f'_{a} = e'_{z} f'_{a} = \begin{pmatrix} 0 & z+a \\ 0 & 0 \end{pmatrix},$$
(15)

a contradiction. Thus, $\phi(e_x) = f'_{u(x)}$ for any $x \in M$, where $u: M \to N$ is a map. Hence $\phi(f_x) = \phi(I_2 - e_{-x}) = I_2 - f'_{u(-x)} = e'_{-u(-x)}$, and then

$$\phi \begin{pmatrix} 0 & x \\ 0 & 0 \end{pmatrix} = \phi(e_0 f_x) = \phi(e_0)\phi(f_x) = f'_{u(0)}e'_{-u(-x)} = 0,$$
(16)

a contradiction, for $x \neq 0$. Therefore this case cannot occur.

For the other way around, it is straightforward to check that any map ϕ of the given form is an isomorphism of rings.

EXAMPLES. (1) Let *m* and *n* be two nonnegative integers, and let \mathbb{Z} be the ring of integers which has only 0 and 1 as idempotents. Then by Corollary 3 the rings $\begin{pmatrix} \mathbb{Z} & m\mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ and $\begin{pmatrix} \mathbb{Z} & n\mathbb{Z} \\ 0 & \mathbb{Z} \end{pmatrix}$ are isomorphic if and only if m = n.

(2) Let $\mathbb{Z}[i]$ be the ring of Gauss integers which is a principal ideal domain (PID), in particular, it also has only trivial idempotents. If $x, y \in \mathbb{Z}[i]$, then the rings $\begin{pmatrix} \mathbb{Z}[i] & x\mathbb{Z}[i] \\ 0 & \mathbb{Z}[i] \end{pmatrix}$ and $\begin{pmatrix} \mathbb{Z}[i] & y\mathbb{Z}[i] \\ 0 & \mathbb{Z}[i] \end{pmatrix}$ are isomorphic if and only if either x = uy or $x = u\overline{y}$ for some $u \in \{1, -1, i, -i\}$, where \overline{y} denotes the complex conjugate of y. Indeed, this follows from Corollary 2 and the fact that the only automorphisms of $\mathbb{Z}[i]$ are the identity and the complex conjugation.

ACKNOWLEDGMENT. The second author was supported by grant SM 10/01 of the Research Administration of Kuwait University.

REFERENCES

- G. Abrams, J. Haefner, and A. del Río, *The isomorphism problem for incidence rings*, Pacific J. Math. 187 (1999), no. 2, 201–214.
- [2] A. W. Chatters, Nonisomorphic rings with isomorphic matrix rings, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 2, 339–348.
- [3] S. Dăscălescu and L. van Wyk, Do isomorphic structural matrix rings have isomorphic graphs?, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1385-1391.
- [4] _____, *The recovery of the non-diagonal tile in a tiled triangular matrix ring*, Indian J. Math. **42** (2000), no. 2, 167–173.
- [5] L. S. Levy, J. C. Robson, and J. T. Stafford, *Hidden matrices*, Proc. London Math. Soc. (3) 69 (1994), no. 2, 277–308.

- [6] S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra A₁, J. Algebra 73 (1981), no. 2, 552–555.
- [7] R. G. Swan, *Projective modules over group rings and maximal orders*, Ann. of Math.
 (2) 76 (1962), 55-61.

R. Khazal: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait *E-mail address*: khazal@mcs.sci.kuniv.edu.kw

S. Dăscălescu: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait *E-mail address*: sdascal@mcs.sci.kuniv.edu.kw

L. Van Wyk: Department of Mathematics, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa

E-mail address: lvw@land.sun.ac.za

538

Advances in **Operations Research**

The Scientific World Journal

Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

International Journal of Mathematics and Mathematical Sciences

Journal of **Function Spaces**

International Journal of Stochastic Analysis

