ISOMORPHISM OF GENERALIZED TRIANGULAR MATRIX-RINGS AND RECOVERY OF TILES

R. KHAZAL, S. DĂSCĂLESCU, and L. VAN WYK

Received 5 May 2002

Abstract

We prove an isomorphism theorem for generalized triangular matrix-rings, over rings having only the idempotents 0 and 1 , in particular, over indecomposable commutative rings or over local rings (not necessarily commutative). As a consequence, we obtain a recovery result for the tile in a tiled matrix-ring.

2000 Mathematics Subject Classification: 16S50, 15A33, 16D20.

Matrix-rings play a fundamental role in mathematics and its applications. A difficult question is to decide whether a given ring is isomorphic to a matrixring or one of its variants. Several "hidden matrix-rings" have been shown in the literature (see [5]). These rings did not appear as being matrix-rings at the first sight, nevertheless they proved out to be isomorphic to matrix-rings. Another type of problem concerned to matrices is to decide whether two rings of matrices are isomorphic or not. For instance, it is known that for commutative rings R and S, the matrix-rings $M_{2}(R)$ and $M_{2}(S)$ are isomorphic if and only if the rings R and S are isomorphic, for the simple reason that R is isomorphic to the center of $M_{2}(R)$. However, if R and S are not commutative, this is not true anymore. Examples have been given in [7], also in [6] for simple Noetherian integral domains R, S, or in [2] for prime Noetherian R, S. A different but related problem is the recovery of the tile in a triangular matrix-ring. More precisely, if R is a ring and I, J are two-sided ideals of R such that the rings $\left(\begin{array}{l}R \\ R \\ 0\end{array}\right)$ and $\left(\begin{array}{l}R \\ 0 \\ R\end{array}\right)$ are isomorphic, what can we say about I and J ? Are they isomorphic as R-bimodules? If we do not impose any condition to the ring, then there is no hope to recover the tile. For instance, in [3] a ring R was constructed such that

$$
\left(\begin{array}{ll}
R & R \tag{1}\\
0 & R
\end{array}\right) \simeq\left(\begin{array}{ll}
R & 0 \\
0 & R
\end{array}\right)
$$

It was proved in [1] that if R satisfies a certain finiteness condition (in particular in the case where R is a left Noetherian), the above isomorphism cannot hold. For the situation where the tile is not necessarily 0 or the whole ring R, the situation behaves worse. Even when the ring is finite, the tile cannot be
recovered. It was proved in [4] that if $R=\left(\begin{array}{ccc}A & 0 & A \\ 0 & A & A \\ 0 & 0 & A\end{array}\right), A$ is a ring, and

$$
I=\left(\begin{array}{ccc}
0 & 0 & 0 \tag{2}\\
0 & 0 & A \\
0 & 0 & 0
\end{array}\right), \quad J=\left(\begin{array}{ccc}
0 & 0 & A \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

then the rings $\left(\begin{array}{cc}R & I \\ 0 & R\end{array}\right)$ and $\left(\begin{array}{cc}R & J \\ 0 & R\end{array}\right)$ are isomorphic, while I and J are not isomorphic as R-bimodules.

The aim of this paper is to obtain a recovery result for the tile in the case where the underlying ring R has only trivial idempotents, that is, R has only two idempotents, 0 and 1 . Relevant examples of such rings are for instance: indecomposable commutative rings and local rings (not necessarily commutative). In fact we can investigate the isomorphism among more general matrix-type rings. Recall that if R and S are two rings, and M is an R, S-bimodule (this means left R and right S), we can define the generalized triangular matrix-ring $\left(\begin{array}{c}R \\ 0 \\ \hline\end{array}\right)$, with multiplication induced by the bimodule actions and the usual rule for matrix multiplication. With this notation we can prove the following theorem.

Theorem 1. Let R and S be rings having only trivial idempotents, and let M, N be two R, S-bimodules. Then a map $\phi:\left(\begin{array}{ll}R & M \\ 0 & S\end{array}\right) \rightarrow\left(\begin{array}{cc}R & N \\ 0 & S\end{array}\right)$ is a ring isomorphism if and only if there exist $a \in N, f \in \operatorname{Aut}(R), g \in \operatorname{Aut}(S)$, and an isomorphism v : $M \rightarrow N$ of additive groups satisfying $v(r x)=f(r) v(x)$ and $v(x s)=v(x) g(s)$ for any $x \in M, r \in R, s \in S$, such that

$$
\phi\left(\begin{array}{ll}
r & x \tag{3}\\
0 & s
\end{array}\right)=\left(\begin{array}{cc}
f(r) & f(r) a-a g(s)+v(x) \\
0 & g(s)
\end{array}\right)
$$

for any $r \in R, x \in M$, and $s \in S$.
In particular, we obtain a recovery result for the tile. This is not exactly an isomorphism, but an isomorphism relative to some automorphisms of the ring. We recall that if $f, g \in \operatorname{Aut}(R)$, and X, Y are two R, R-bimodules, then an additive map $v: X \rightarrow Y$ is called an f, g-morphism if $v\left(r x r^{\prime}\right)=f(r) v(x) g\left(r^{\prime}\right)$, for any $r, r^{\prime} \in R, x \in X$.

Corollary 2 (recovery of the tile). Let R be a ring having only trivial idempotents, and I, J be ideals of R. Then the matrix-rings $\left(\begin{array}{cc}R \\ 0 & R\end{array}\right)$ and $\left(\begin{array}{ll}R & J \\ 0 & R\end{array}\right)$ are isomorphic if and only if I and J are f, g-isomorphic as the R, R-bimodules for some $f, g \in \operatorname{Aut}(R)$.

A complete recovery of the tile (up to isomorphism) is obtained in some special cases when the ring has only the trivial automorphism.

COROLLARY 3. Let R be a ring having only trivial idempotents such that, the only automorphism of R is the identity. If I, J are ideals of R, then the matrixrings $\left(\begin{array}{cc}R & I \\ 0 & R\end{array}\right)$ and $\left(\begin{array}{ll}R & J \\ 0 & R\end{array}\right)$ are isomorphic if and only if I and J are isomorphic as the R, R-bimodules.

Proof of Theorem 1. An element $\left(\begin{array}{cc}r & x \\ 0 & s\end{array}\right) \in\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ is idempotent if and only if $r^{2}=r, s^{2}=s$, and $r x+x s=x$. Since the only idempotents of R and S are 0 and 1 , we have that any of r and s is either 0 or 1 . If $r=0$ and $s=0$, we find $x=0$. If $r=1$ and $s=1$, we find again $x=0$. If $r=1$ and $s=0$, then x can be anything in M, and the same in the case where $r=0$ and $s=1$. Thus, apart from 0 and the identity element, the idempotents of $\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ are the elements of the form

$$
\begin{array}{ll}
e_{x}=\left(\begin{array}{ll}
1 & x \\
0 & 0
\end{array}\right), & x \in M \\
f_{x}=\left(\begin{array}{ll}
0 & x \\
0 & 1
\end{array}\right), & x \in M \tag{4}
\end{array}
$$

It is easy to see that the following relations hold:

$$
e_{x} e_{y}=e_{y}, \quad f_{x} f_{y}=f_{x}, \quad e_{x} f_{y}=\left(\begin{array}{cc}
0 & x+y \tag{5}\\
0 & 0
\end{array}\right), \quad f_{x} e_{y}=0
$$

for any $x, y \in M$. We denote by $e_{z}^{\prime}, f_{z}^{\prime}, z \in N$, the similar idempotents of $\left(\begin{array}{cc}R & N \\ 0 & S\end{array}\right)$. Let $\phi:\left(\begin{array}{ll}R & M \\ 0 & S\end{array}\right) \rightarrow\left(\begin{array}{ll}R & N \\ 0 & S\end{array}\right)$ be a ring isomorphism. Then $\phi\left(e_{0}\right)$ must be a nontrivial idempotent of $\left(\begin{array}{cc}R & N \\ 0 & S\end{array}\right)$. We distinguish two cases.

CASE 1. We have $\phi\left(e_{0}\right)=e_{a}^{\prime}$ for some $a \in N$. Then if for some $x \in M$ we have $\phi\left(e_{x}\right)=f_{b}^{\prime}$ for some $b \in N$, we see that

$$
\begin{equation*}
e_{a}^{\prime}=\phi\left(e_{0}\right)=\phi\left(e_{x} e_{0}\right)=\phi\left(e_{x}\right) \phi\left(e_{0}\right)=f_{b}^{\prime} e_{a}^{\prime}=0 \tag{6}
\end{equation*}
$$

a contradiction. Therefore, $\phi\left(e_{x}\right)=e_{u(x)}^{\prime}$ for some $u(x) \in N$ for any $x \in M$. Then we have that

$$
\begin{equation*}
\phi\left(f_{x}\right)=\phi\left(I_{2}-e_{-x}\right)=I_{2}-e_{u(-x)}^{\prime}=f_{-u(-x)}^{\prime} . \tag{7}
\end{equation*}
$$

Thus, for any $x \in M$ we have

$$
\phi\left(\begin{array}{ll}
0 & x \tag{8}\\
0 & 0
\end{array}\right)=\phi\left(e_{0} f_{x}\right)=\phi\left(e_{0}\right) \phi\left(f_{x}\right)=e_{a}^{\prime} f_{-u(-x)}^{\prime}=\left(\begin{array}{cc}
0 & a-u(-x) \\
0 & 1
\end{array}\right) .
$$

Denote $v: M \rightarrow N, v(x)=a-u(-x)$. Then clearly v is a morphism of additive groups. Moreover, v is an isomorphism. Indeed, if $\phi^{-1}\left(e_{z}^{\prime}\right)=f_{h}$ for some $z \in$ $N, h \in M$, then $\phi\left(f_{h}\right)=e_{z}^{\prime}$, a contradiction. Thus $\phi\left(\left\{e_{x} \mid x \in M\right\}\right)=\left\{e_{z}^{\prime} \mid z \in N\right\}$,
showing that u is surjective, so then v is also surjective. Obviously, v is injective.

Now

$$
\phi\left(\begin{array}{ll}
r & 0 \tag{9}\\
0 & 0
\end{array}\right)=\phi\left(e_{0}\left(\begin{array}{ll}
r & 0 \\
0 & 0
\end{array}\right)\right)=e_{a}^{\prime} \phi\left(\begin{array}{ll}
r & 0 \\
0 & 0
\end{array}\right) \in\left(\begin{array}{cc}
R & N \\
0 & 0
\end{array}\right)
$$

thus $\phi\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{cc}f(r) & h(r) \\ 0 & 0\end{array}\right)$ for some additive maps $f: R \rightarrow R, h: R \rightarrow N$. Since ϕ is a ring morphism, we obtain that

$$
\begin{array}{ll}
f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right), & f(1)=1, \\
h\left(r_{1} r_{2}\right)=f\left(r_{1}\right) h\left(r_{2}\right), & h(1)=a, \tag{10}
\end{array}
$$

for any $r_{1}, r_{2} \in R$. Similarly, one gets $\phi\left(\begin{array}{ll}0 & 0 \\ 0 & s\end{array}\right)=\left(\begin{array}{ll}0 & p(s) \\ 0 & g(s)\end{array}\right)$ for some additive maps $g: S \rightarrow S, p: S \rightarrow N$ satisfying

$$
\begin{array}{ll}
g\left(s_{1} s_{2}\right)=g\left(s_{1}\right) g\left(s_{2}\right), & g(1)=1, \\
p\left(s_{1} s_{2}\right)=p\left(s_{1}\right) g\left(s_{2}\right), & p(1)=-a . \tag{11}
\end{array}
$$

Then $h(r)=h(r 1)=f(r) h(1)=f(r) a$ for any $r \in R$, and similarly $p(s)=$ $-a g(s)$ for any $s \in S$. We obtain that

$$
\begin{align*}
\phi\left(\begin{array}{ll}
r & x \\
0 & s
\end{array}\right) & =\phi\left(\begin{array}{ll}
r & 0 \\
0 & 0
\end{array}\right)+\phi\left(\begin{array}{ll}
0 & x \\
0 & 0
\end{array}\right)+\phi\left(\begin{array}{ll}
0 & 0 \\
0 & s
\end{array}\right) \\
& =\left(\begin{array}{cc}
f(r) & f(r) a \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & v(x) \\
0 & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -a g(s) \\
0 & g(s)
\end{array}\right) \tag{12}\\
& =\left(\begin{array}{cc}
f(r) & f(r) a-a g(s)+v(x) \\
0 & g(s)
\end{array}\right),
\end{align*}
$$

for any $r \in R, s \in S$, and $x \in M$. By using the relation

$$
\phi\left(\left(\begin{array}{ll}
r & x \tag{13}\\
0 & s
\end{array}\right)\left(\begin{array}{cc}
r^{\prime} & x^{\prime} \\
0 & s^{\prime}
\end{array}\right)\right)=\phi\left(\begin{array}{ll}
r & x \\
0 & s
\end{array}\right) \phi\left(\begin{array}{cc}
r^{\prime} & x^{\prime} \\
0 & s^{\prime}
\end{array}\right)
$$

we obtain, by computing the (1,2)-slots in the two sides, that $f(r) v\left(x^{\prime}\right)+$ $v(x) g\left(s^{\prime}\right)=v\left(r x^{\prime}\right)+v\left(x s^{\prime}\right)$ for any $r \in R, x, x^{\prime} \in M, s^{\prime} \in S$. For $s^{\prime}=0$, we find $v\left(r x^{\prime}\right)=f(r) v\left(x^{\prime}\right)$, and for $r=0$, we obtain $v\left(x s^{\prime}\right)=v(x) g\left(s^{\prime}\right)$.

It remains to show that f and g are bijective. Clearly, $\operatorname{ker}(f)=0$ since $f(r)=$ 0 implies $\phi\left(\begin{array}{ll}r & 0 \\ 0 & 0\end{array}\right)=\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)$, and then r must be 0 . Also f is surjective since for any
$b \in R$, there exists $\left(\begin{array}{cc}r & x \\ 0 & s\end{array}\right) \in\left(\begin{array}{cc}R & M \\ 0 & S\end{array}\right)$ with $\phi\left(\begin{array}{ll}r & x \\ 0 & s\end{array}\right)=\left(\begin{array}{ll}b & 0 \\ 0 & 0\end{array}\right)$, in particular, $f(r)=b$. Thus f is a ring isomorphism, and so is g.

CASE 2. We have $\phi\left(e_{0}\right)=f_{a}^{\prime}$ for some $a \in N$. Then for any $x \in M$, we have that

$$
\begin{equation*}
f_{a}^{\prime}=\phi\left(e_{0}\right)=\phi\left(e_{x} e_{0}\right)=\phi\left(e_{x}\right) \phi\left(e_{0}\right)=\phi\left(e_{x}\right) f_{a}^{\prime} \tag{14}
\end{equation*}
$$

If $\phi\left(e_{x}\right)=e_{z}^{\prime}$ for some $x \in M, z \in N$, we obtain that

$$
f_{a}^{\prime}=e_{z}^{\prime} f_{a}^{\prime}=\left(\begin{array}{cc}
0 & z+a \tag{15}\\
0 & 0
\end{array}\right)
$$

a contradiction. Thus, $\phi\left(e_{x}\right)=f_{u(x)}^{\prime}$ for any $x \in M$, where $u: M \rightarrow N$ is a map. Hence $\phi\left(f_{x}\right)=\phi\left(I_{2}-e_{-x}\right)=I_{2}-f_{u(-x)}^{\prime}=e_{-u(-x)}^{\prime}$, and then

$$
\phi\left(\begin{array}{ll}
0 & x \tag{16}\\
0 & 0
\end{array}\right)=\phi\left(e_{0} f_{x}\right)=\phi\left(e_{0}\right) \phi\left(f_{x}\right)=f_{u(0)}^{\prime} e_{-u(-x)}^{\prime}=0
$$

a contradiction, for $x \neq 0$. Therefore this case cannot occur.
For the other way around, it is straightforward to check that any map ϕ of the given form is an isomorphism of rings.

Examples. (1) Let m and n be two nonnegative integers, and let \mathbb{Z} be the ring of integers which has only 0 and 1 as idempotents. Then by Corollary 3 the rings $\left(\begin{array}{l}\mathbb{Z} \\ 0\end{array} \frac{\pi \mathbb{Z}}{\mathbb{Z}}\right)$ and $\left(\begin{array}{c}\mathbb{Z} \\ 0\end{array} \frac{\pi}{\mathbb{Z}}\right)$ are isomorphic if and only if $m=n$.
(2) Let $\mathbb{Z}[i]$ be the ring of Gauss integers which is a principal ideal domain (PID), in particular, it also has only trivial idempotents. If $x, y \in \mathbb{Z}[i]$, then the rings $\left(\begin{array}{c}\mathbb{Z}[i] \\ 0 \mathbb{Z}[i] \\ 0\end{array}\right)$ $\left.[i]\right)$ and $\left(\begin{array}{cc}\mathbb{Z}[i] & y \mathbb{Z}[i] \\ 0 & \mathbb{Z}[i]\end{array}\right)$ are isomorphic if and only if either $x=u y$ or $x=u \bar{y}$ for some $u \in\{1,-1, i,-i\}$, where \bar{y} denotes the complex conjugate of y. Indeed, this follows from Corollary 2 and the fact that the only automorphisms of $\mathbb{Z}[i]$ are the identity and the complex conjugation.

Acknowledgment. The second author was supported by grant SM 10/01 of the Research Administration of Kuwait University.

References

[1] G. Abrams, J. Haefner, and A. del Río, The isomorphism problem for incidence rings, Pacific J. Math. 187 (1999), no. 2, 201-214.
[2] A. W. Chatters, Nonisomorphic rings with isomorphic matrix rings, Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 2, 339-348.
[3] S. Dăscălescu and L. van Wyk, Do isomorphic structural matrix rings have isomorphic graphs?, Proc. Amer. Math. Soc. 124 (1996), no. 5, 1385-1391.
[4] - The recovery of the non-diagonal tile in a tiled triangular matrix ring, Indian J. Math. 42 (2000), no. 2, 167-173.
[5] L. S. Levy, J. C. Robson, and J. T. Stafford, Hidden matrices, Proc. London Math. Soc. (3) 69 (1994), no. 2, 277-308.
[6] S. P. Smith, An example of a ring Morita equivalent to the Weyl algebra A_{1}, J. Algebra 73 (1981), no. 2, 552-555.
[7] R. G. Swan, Projective modules over group rings and maximal orders, Ann. of Math. (2) 76 (1962), 55-61.
R. Khazal: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

E-mail address: khaza1@mcs.sci.kuniv.edu.kw
S. Dăscălescu: Department of Mathematics and Computer Science, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

E-mail address: sdasca1@mcs.sci.kuniv.edu.kw
L. Van Wyk: Department of Mathematics, Stellenbosch University, Private Bag X1, Stellenbosch 7602, South Africa

E-mail address: 7vw@7and. sun.ac.za

