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ISOMORPHISM PROBLEMS AND GROUPS OF
AUTOMORPHISMS FOR GENERALIZED WEYL ALGEBRAS

V. V. BAVULA AND D. A. JORDAN

Abstract. We present solutions to isomorphism problems for various gener-
alized Weyl algebras, including deformations of type-A Kleinian singularities
and the algebras similar to U(sl2) introduced by S. P. Smith. For the former,
we generalize results of Dixmier on the first Weyl algebra and the minimal
primitive factors of U(sl2) by finding sets of generators for the group of auto-
morphisms.

1. Introduction

Let k be an algebraically closed field of characteristic 0 and consider the Weyl al-
gebra A1(k) = k〈∂, x : ∂x−x∂ = 1〉. Dixmier [11] showed that the k-automorphism
group of A1(k) is generated by the automorphisms eλ ad xn and eλ ad ∂n where n ≥ 1
and λ ∈ k. Adapting his methods in [12], he found an analogous set of gener-
ators for the k-automorphism group of the infinite-dimensional primitive factor
Bλ := U(sl2)/(C − λ) of the universal enveloping algebra of the Lie algebra sl2,
where C is the Casimir element and λ ∈ k. He also showed that Bλ ' Bλ′ if and
only if λ = λ′.

Let a ∈ k[h] and let A(a) be the generalized Weyl algebra k[h](σ, a), where σ is
the k-automorphism of k[h] such that σ(h) = h − 1. Thus A(a) is the k-algebra
generated by h, x and y subject to the relations

xh = (h− 1)x, yh = (h+ 1)y, xy = a(h− 1), yx = a(h).

Both A1(k) and Bλ are of the form A(a) with deg(a) = 1 and 2 respectively. Rings
of the form A(a), with a of arbitrary degree, were studied by the first author [3]
and, under the name deformations of type-A Kleinian singularities, by Hodges [14].
The problem of when A(a1) ' A(a2) was raised in [14, §5 (1)].

Smith [31] gave a substantial analysis of a class of algebras, similar to U(sl2),
which can be interpreted as generalized Weyl algebras and which are closely related
to the algebras A(a). For f ∈ K[H ], let R(f) denote the k-algebra generated by
A,B and H subject to the relations

[H,A] = A, [H,B] = −B, [A,B] = f(H).

The isomorphism problem for these algebras was raised in [31, Remark (2)].
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770 V. V. BAVULA AND D. A. JORDAN

We shall adapt the methods of Dixmier to find a set of generators for the au-
tomorphism group of A(a) and to solve the isomorphism problems for A(a) and
R(f). Loosely speaking, we shall see that A(a1) ' A(a2) if and only if a2 can be
obtained from a1 by a combination of non-zero scalar multiplication, translation
a(h) 7→ a(h + τ) and a “flip” a(h) 7→ a(−h) corresponding to an interchange of
the roles of x and y. The situation for R(f) is analogous. In some cases, including
those of A1(k) and Bλ, the flip can be expressed in terms of translation and scalar
multiplication and there is an automorphism Ω, well-known for both A1(k) and
Bλ, interchanging the roles of x and y. We shall say that a(h) is reflective if there
exists ρ ∈ k such that a(ρ − h) = (−1)da(h), where d = deg a. Polynomials of
degree 1 and 2 must be reflective but cubics need not. When a(h) is reflective,
there is a k-automorphism Ω of A(a) such that Ω(x) = y, Ω(y) = (−1)dx and
Ω(h) = 1 + ρ − h. In general, there is an isomorphism Λ : A(a(h)) → A(a(−h))
such that Λ(x) = y,Λ(y) = x and Λ(h) = 1− h.

Let G denote the subgroup of the k-automorphism group Autk A(a) generated
by the k-automorphisms eλ ad xm and eλ ad ym , where λ ∈ k and m ≥ 1, and the
k-automorphisms Θµ such that Θµ(x) = µx,Θµ(y) = µ−1y and Θµ(h) = h, where
µ ∈ k∗. We shall prove:
• (Theorem 3.29) If a is reflective, then Autk A(a) is generated by G and Ω. If
a is not reflective, then Autk A(a) = G.
• (Theorem 3.28) For a1, a2 ∈ k[h], A(a1) ' A(a2) if and only if a2(h) =
ηa1(τ ± h) for some η, τ ∈ k with η 6= 0.
• (Theorem 4.2) For f1, f2 ∈ k[H ], R(f1) ' R(f2) if and only if f2(H) =
ηf1(τ ±H) for some η, τ ∈ k with η 6= 0.

Theorem 4.2 is deduced from Theorem 3.28 using the fact that each of the algebras
R(f) has a distinguished central element C such that R(f)/CR(f) ' A(a) for some
a. Notice that when a1 is reflective the condition for isomorphism in Theorem 3.28
becomes a2(h) = ηa1(h+ τ).

We shall also prove, in §5, an analogue of Theorem 4.2 for the algebras which
are similar to the quantized enveloping algebra Uq(sl2) in the way that the algebras
R(f) are similar to U(sl2).

Another isomorphism problem concerns two deformations of sl2 considered by
Witten [33, (5.2) and (5.12)] and a third deformation due to Woronowicz [34]. In
§6, we shall show that Witten’s second deformation and Woronowicz’s deforma-
tion are isomorphic. The background to this includes remarks in the literature of
mathematical physics [33, 10] suggesting at least that these two algebras become
isomorphic after localization or completion and a comment in [24], where a rigorous
algebraic relationship between Witten’s two deformations is explained, doubting the
existence of a connection with the Woronowicz algebra.

2. Generalized Weyl algebras and ambiskew polynomial rings

2.1. Generalized Weyl algebras. Let D be a ring, let σ be an automorphism
of D and let a be a central element of D. The generalized Weyl algebra (of degree
1) D(σ, a), introduced by the first author [3, 4, 5, 7, 8], is the ring extension of D
generated by two indeterminates x, y subject to the relations

xd = σ(d)x and yd = σ−1(d)y for all d ∈ D,(1)

xy = σ(a), yx = a.(2)
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These algebras were also studied, without a name, by the second author [18],
where D is assumed to be commutative, and, under the name hyperbolic ring, by
Rosenberg [28]. Generalized Weyl algebras of higher degree were introduced in [4]
and studied in [4, 7, 8, 9].

2.2. Ambiskew polynomial rings. The papers [3, 9, 15, 16, 17, 19, 20, 22] are
concerned with a class of iterated skew polynomial rings, now called ambiskew
polynomial rings [21], which can be viewed as important examples of generalized
Weyl algebras.

Let B be a ring, let σ be an automorphism of B, let v be a central element of
B and let p be a central unit in B. We denote by R(B, σ, v, p) the iterated skew
polynomial ring B[x;σ][y;σ−1, δ] where the automorphisms σ±1 are extended to
B[x;σ] by setting σ±1(x) = p∓1x and δ is the σ−1-derivation of B[x;σ] such that
δ(B) = 0 and δ(x) = v. Thus R(B, σ, v, p) is the ring extension of B generated by
x and y subject to the relations

xb = σ(b)x and yb = σ−1(b)y for all b ∈ B,(3)

xy − pyx = v.(4)

2.3. Example. The first Weyl algebra A1(k) = k〈∂, x | ∂x − x∂ = 1〉 over a field
k is a basic example for both constructions. To view A1(k) as a generalized Weyl
algebra, one first adjoins h = yx to obtain the polynomial ring k[h]. Then A1(k) =
k[h](σ, h), where σ is the k-automorphism of k[h] such that σ(h) = h − 1. Thus,
in k[h](σ, h), xy = h − 1, yx = h and yx − xy = 1. When viewing A1(k) as an
ambiskew polynomial ring, the base ring is k and A1(k) = R(k, id,−1, 1). This
illustrates the relationship between the two constructions.

2.4. Lemma. Every ambiskew polynomial ring R(B, σ, v, p) is a generalized Weyl
algebra B[w](σ,w), where w = yx and σ is extended to B[w] by setting σ(w) =
pw + v.

Proof. See [22, 2.6 Corollary] or [8, Lemma 1.2].

Every generalized Weyl algebra occurs as a homomorphic image of an ambiskew
polynomial ring, obtained by factoring out a normal element z which exists under
a certain condition on v. When this holds, the previous lemma can be sharpened
by replacing w by z, which is an eigenvector for σ.

2.5. Lemma. Let R = R(B, σ, v, p). Suppose that v has the form σ(u) − pu, for
some central element u of B, and let z = yx− u = p−1(xy − σ(u)).

(i) z is normal in R, with xz = pzx, yz = p−1zy and zb = bz for all b ∈ B, and
R/zR is the generalized Weyl algebra B(σ, u).

(ii) R is the generalized Weyl algebra B[z](σ, z + u), where σ is extended to B[z]
by setting σ(z) = pz.

2.6. Z-grading. Every generalized Weyl algebra A = D(σ, a) is Z-graded, A =⊕
n∈ZAn, where An = Dxn if n ≥ 0 and An = Dy−n if n < 0. It follows from the

defining relations that, for each positive integer n,

ynxn = aσ−1(a) · · ·σ−(n−1)(a) and xnyn = σ(a)σ2(a) · · ·σn(a).(5)

The next lemma gives details of some automorphisms and isomorphisms for
generalized Weyl algebras.
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2.7. Lemma. Let A = D(σ, a) be a generalized Weyl algebra and let τ be a ring
automorphism of D.

(i) A ' D(σ−1, σ(a)) with x 7→ y, y 7→ x and d 7→ d for all d ∈ D.
(ii) If λ is a central unit in D, then A ' D(σ, aλ), with x 7→ xλ−1, y 7→ y and

d 7→ d for all d ∈ D. In particular, if a is a unit then D(σ, a) ' D[x±1;σ].
(iii) With λ as in (ii), there is an automorphism Θλ of A with x 7→ xλ, y 7→ λ−1y

and d 7→ d for all d ∈ D.
(iv) The automorphism τ extends to isomorphisms τe+ : A → D(τστ−1, τ(a)),

with τe+(x) = x and τe+(y) = y, and τe− : A → D(τσ−1τ−1, τσ(a)), with
τe−(x) = y and τe−(y) = x.

(v) If τσ = στ , then τe+ : A→ D(σ, τ(a)).
(vi) If τσ = σ−1τ , then τe− : A→ D(σ, τσ(a)).

Proof. The proof is routine. In (iv), τe− is obtained from τe+ by composition with
the isomorphism D(τστ−1, τ(a))→ D(τσ−1τ−1, τσ(a)) given by (i).

The next lemma gives the details for the corresponding automorphisms and
isomorphisms for ambiskew polynomial rings.

2.8. Lemma. Let R = R(B, σ, v, p) be an ambiskew polynomial ring and let τ be
a ring automorphism of B.

(i) R ' R(B, σ−1,−p−1v, p−1) with x 7→ y, y 7→ x and b 7→ b for all b ∈ B.
(ii) If λ is a central unit in B and σ(λ) = λ, then R ' R(B, σ, vλ, p), with

x 7→ λ−1x, y 7→ y and b 7→ b for all b ∈ B.
(iii) With λ as in (ii), there is an automorphism of R with x 7→ λx, y 7→ λ−1y

and b 7→ b for all b ∈ B.
(iv) There are isomorphisms τe+ : R → R(B, τστ−1, τ(v), τ(p)) and τe− : R →

R(B, τσ−1τ−1, τ(p−1v), τ(p−1), extending τ , such that τe+(x) = x, τe+(y) =
y, τe−(x) = y and τe−(y) = −x.

(v) If τσ = στ , then τe+ : R→ R(B, σ, τ(v), τ(p)).
(vi) If τσ = σ−1τ , then τe− : R→ R(B, σ, τ(p−1v), τ(p−1)).

Proof. The proof is again routine, though here the construction of τe− from τe+

also involves (ii) with λ = −1.

Two points to note, in comparing Lemmas 2.7 and 2.8, are the extra condition
on λ in Lemma 2.8, which will be significant in §5, and the appearance of τ(p−1v)
rather than τσ(v) in 2.8(vi).

2.9. Notation. In the remainder of the paper, k will denote an algebraically closed
field and k∗ will denote the multiplicative group of k.

3. Deformations of type-A Kleinian singularities

In this section we concentrate on the case where D is the polynomial ring k[h]
and σ(h) = h − 1. We assume throughout the section that char k = 0. Let a =
a(h) ∈ k[h] and let A(a) = k[h](σ, a). Thus A(a) is the k-algebra generated by h, x
and y subject to the relations

xh = (h− 1)x, yh = (h+ 1)y, xy = a(h− 1), yx = a(h).

Examples include the Weyl algebra A1(k) and, for λ ∈ k, the algebra Bλ :=
U(sl2)/(C − λ), where C is the Casimir element and a = −h2 − h − λ

4 ; see 3.2
below.
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A lot is known about the algebras A(a) through studies by the first author
[3, 4, 5, 7, 9] and by Hodges [14]. The global dimension of A(a) was computed in
[3, 4, 14] generalizing a result of Stafford [32] for Bλ. The Krull dimension of A(a)
was determined in [4, 14] and the simple A(a)-modules were classified in [4, 7]. In
[3, 4], it was shown that the spaces Exti and Tori for simple A(a)-modules are finite
dimensional, generalizing a result of McConnell and Robson [25] on Exti in the case
of A1(k). When the defining polynomial a has no multiple root, the Grothendieck
group K0(A(a)) was computed in [14]. The two-sided ideals for certain generalized
Weyl algebras more general than A(a) were classified in [5, 6]. In [4, Theorem 7], it
was shown that if a 6∈ k and f ∈ A(a)\k, then the centralizer C(f) is commutative
and is a free k[f ]-module of finite rank and this was applied to determine the
structure of commutative subalgebras of A(a), generalizing a result of Amitsur [1]
for A1(k).

As observed in [14, Theorem 2.1(iii)], the algebra A(a) has a filtration by finite-
dimensional subspaces, with deg x = deg y = d and deg h = 2, such that grA(a)
is isomorphic to the commutative algebra k[X,Y, Z]/(XY − Zd). It follows from
[26, 8.2.14(i) and 8.6.5] or [23, Theorem 4.5 and Proposition 6.6] that the Gelfand-
Kirillov dimension GK(A(a)) = 2.

The isomorphism problem for the algebras A(a) was raised in [14, p. 289 (1)].
The solution to this will be given in Theorem 3.28 where it will be shown that
the only situations where A(a1) and A(a2) are isomorphic arise when a2 can be
obtained from a1 by a sequence of transformations of the three types specified in
the following lemma.

3.1. Lemma. (i) For all λ ∈ k∗, there is an isomorphism Γλ : A(a) → A(λa)
such that

Γλ(x) = λ−1x, Γλ(y) = y and Γλ(h) = h.

(ii) For all µ ∈ k there is an isomorphism trµ : A(a(h))→ A(a(h+ µ)) such that

trµ(x) = x, trµ(y) = y and trµ(h) = h+ µ.

(iii) There is an isomorphism Λ : A(a(h))→ A(a(−h)) such that

Λ(x) = y, Λ(y) = x and Λ(h) = 1− h.

Proof. Here (i) is a special case of Lemma 2.7(ii) while (ii) and (iii) follow from
Lemma 2.7(v,vi) with trµ = τe+ and Λ = ηe−, where τ(h) = h+µ, so that τσ = στ ,
and η(h) = 1− h, so that ησ(h) = −h = σ−1η(h). Note that Λ−1 : A(−h)→ A(h)
is defined by the same formulae as Λ: Λ−1(x) = y,Λ−1(y) = x, and Λ−1(h) =
1− h.

3.2. Example ([14, Example 4.7]). Taking a = −h2 − h − λ
4 , where λ ∈ k, and

making the change of variables x 7→ e, y 7→ f, h 7→ 2h, we obtain the infinite-
dimensional primitive factors Bλ of U(sl2) [12]. Since an arbitrary polynomial of
degree 2 can be written in the form µ((h+η)2 +(h+η)+ λ

4 ), it follows from Lemma
3.1 that if deg a = 2, then A(a) ' Bλ for some λ ∈ k. Similar calculations show
that if deg a = 1, then A(a) ' A1(k).

The fixed ring of A1(k) for the action of the cyclic group generated by the
automorphism y 7→ ωy, x 7→ ω−1x, where ω is a primitive nth root of unity, has
the form A(a) with deg a = n. See [14, Example 4.8] for details.
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The solution of the isomorphism problem for the algebras Bλ was given by
Dixmier [12] and our approach is based on his, which in turn was based on his
earlier analysis of the Weyl algebra A1(k) [11].

3.3. Classification of elements. The following definitions and notation are from
[11, 6.1] and [12, 3.1]. Let R be a k-algebra, let w ∈ R and let λ ∈ k. Denote by
adw the inner derivation of R defined by w, that is (adw)(z) = wz − zw. Let
D(w, λ) := {z ∈ R : (adw)(z) = λz} and let F(w, λ) := {z : (adw − λ)i(z) =
0 for sufficiently large i}. Let D(w) :=

⊕
λ∈k D(w, λ) and F(w) :=

⊕
λ∈k F(w, λ).

The elements z of F(w) are those for which the subspace
∑∞
n=0 k(adw)n(z) is

finite-dimensional. Let N (w) = F(w, 0) and observe that D(w, 0) is the centralizer
C(w) of w in R.

The element w is said to be strictly semisimple if D(w) = R in other words,
if the derivation adw is diagonalizable. In the generalized Weyl algebra A(a), for
each n ∈ Z, D(h, n) = An, the nth component of A(a) in the Z-grading of A(a) in
§2.6. Thus h is strictly semisimple. Note that C(h) = k[h] and it follows from the
formula xf(h) = f(h− 1)x that the centre of A(a) is k.

The element w is said to be strictly nilpotent (with respect to the adjoint action)
if N (w) = A, in other words, if adw is locally nilpotent. If w is strictly nilpotent,
then there is a well-defined k-automorphism eadw of R such that, for r ∈ R,

eadw(r) =
∑

i≥0 (adw)i(r)/i!.

The inverse of eadw is ead(−w).
We now aim to show that x and y are strictly nilpotent in A(a). For m ∈ N, let

∆m denote the linear map σm − 1 : k[h] → k[h], that is ∆m(f) = σm(f) − f for
all f ∈ k[h]. Then ∆m is a σm-derivation of the algebra k[h], that is ∆m(fg) =
∆m(f)g + σm(f)∆m(g), for all f, g ∈ k[h]. For i ∈ N, ker((∆m)i) = {f ∈ k[h] :
deg f < i}. Thus ∆m is locally nilpotent.

Let f ∈ k[h]. For m ∈ N, direct computations give

adxm : x 7→ 0, f 7→ ∆m(f)xm, h 7→ −mxm, y 7→ ∆m(a)xm−1.(6)

For i ≥ 0, (adxm)(∆i
m(a)xim−1) = ∆(i+1)

m (a)x(i+1)m−1. It follows by induction
that, for i ≥ 1,

(adxm)i(y) = ∆i
m(a)xim−1.(7)

Similarly,

ad ym : x 7→ −ym−1∆m(a), f 7→ −ym∆m(f), h 7→ mym, y 7→ 0,(8)

and, for i ≥ 1,

(ad ym)i(x) = (−1)iyim−1∆i
m(a).(9)

3.4. Lemma. Let d = deg a(h), let m ≥ 0 be an integer and let λ ∈ k. The
inner derivations adxm and ad ym of A(a) are locally nilpotent. Hence there are
k-automorphisms Ψm,λ := eλ ad xm and Φm,λ := eλ ad ym of A(a) such that

Ψm,λ : x 7→ x, h 7→ h−mλxm, y 7→ y +
d∑
i=1

λi

i!
∆i
m(a)xim−1(10)
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and

Φm,λ : x 7→ x+
d∑
i=1

(−λ)i

i!
yim−1∆i

m(a), h 7→ h+mλym, y 7→ y.(11)

Proof. As A(a) is generated by x, y and h, this is immediate from (6)–(9) and the
fact that, for m ≥ 1, ∆m is locally nilpotent.

3.5. Automorphisms. We denote by G the subgroup of Autk A(a) generated by
the k-automorphisms of the following three types:

(i) Θµ for 0 6= µ ∈ k (in the notation of Lemma 2.7(iii)),
(ii) Ψm,λ for an integer m ≥ 0 and λ ∈ k,
(iii) Φm,λ for an integer m ≥ 0 and λ ∈ k.

3.6. Notation. Let 0 6= a ∈ k[h]. For the remainder of this section, we write A
for A(a). By Lemma 3.1(i), we can assume that a is monic. We denote by d the
degree of a, and by β the coefficient in a of hd−1, thus

a = hd + βhd−1 + . . . .

3.7. Remark. When the algebra Bλ from 3.2 is written in the form A(a) with a
monic, a has the form h2 + h+µ, so that a(h− 1) = a(−h). It follows that, in this
case, the isomorphism Λ in Lemma 3.1(iii) is an automorphism. This automorphism
is denoted by Ω in [12] where it is frequently used to justify symmetry of arguments
involving x and y (e and f in [12]). In our more general situation, we can again
appeal to symmetry using Λ. Technical results established for x and y will hold in
A(a(−h)) and hence for y and x in A.

For some choices of a, there does exist an automorphism of A(a) generalizing the
above automorphism Ω. If there exists ρ ∈ k such that a(ρ − h) = (−1)da(h) we
shall say that a is reflective. This definition is independent of the generator h. In
particular, if t = h+τ , where τ ∈ k, and a = a(h) = b(t), then a(ρ−h) = (−1)da(h)
if and only if b(ρ+ 2τ − t) = (−1)db(t). Let τ = βd so that the coefficient of td−1 in
a = b(t) is 0. Then a is reflective with a(ρ−h) = (−1)da(h) if and only if ρ+2τ = 0
and b(−t) = (−1)db(t). Consequently, if d is even, then a is reflective if and only if
a ∈ k[t2] and, if d is odd, then a is reflective if and only if a ∈ tk[t2]. In particular,
all quadratics are reflective but a monic cubic h3 + µh2 + λh+ ξ is reflective if and
only if 27ξ = 9µλ− 2µ3.

3.8. Lemma. If a is reflective with a(ρ − h) = (−1)da(h), then there exists an
automorphism Ω of A(a) with Ω(x) = y, Ω(y) = (−1)dx and Ω(h) = 1 + ρ− h.

Proof. In the notation of Lemma 3.1,

Ω = Γ(−1)d Λ trρ : A(a)→ A((−1)da(ρ− h)) = A(a).

3.9. Filtrations. Let P(d) denote the set of all ordered pairs (i, j) where i and j
are non-negative integers such that i ≡ j mod d. Let f0(h) = 1 and, for n ≥ 1, let

fn(h) = hn + γnh
n−1, where γn :=

n(n+ 2β − d)
2d

.

Note that {fn(h) : n ≥ 0} is a k-basis for k[h]. It can be easily checked that, for all
i, j ≥ 0,

γi+j = γi + γj + ij/d.(12)
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If j > i, with j = i + md and m > 0, then set U(i,j) = fi(h)xm and if j ≤ i,
with i = j + md and m ≥ 0, then set U(i,j) = ymfj(h). It follows from §2.6 that
{Up : p ∈ P(d)} is a k-basis for A.

Let σ, ρ ∈ R be such that ρ+ σ > 0 and let Hρ,σ be the additive submonoid of
R generated by σ and ρ. For p = (i, j) ∈ P(d), let vρ,σ(Up) = ρi + σj ∈ Hρ,σ. For
h ∈ Hρ,σ, let Ah be the k-subspace of A spanned by {Up : vρ,σ(p) ≤ h}, and let
A<h =

⋃
j<h Aj . We shall see that {Ah}h∈Hρ,σ is a filtration of A by the ordered

monoid Hρ,σ; that is,
(i) A =

⋃
h∈Hρ,σ Ah,

(ii) Ah ⊂ Ak for all h < k ∈ Hρ,σ,
(iii) AhAk ⊆ Ah+k for all h, k ∈ Ah,
(iv)

⋂
h∈Hρ,σ Ah = 0.

This coincides with the definition in [29, 1.2.13] except for the reversal of > in
(ii). In the language of [27], where only filtrations by Z are considered, (i) and
(iv) would be omitted from the definition of filtration and would say that the
filtration is exhaustive and separated. The associated Hρ,σ-graded ring, grA :=⊕

h∈Hρ,σ Ah/A<h, of A with respect to this filtration can be constructed as for
filtrations by N or Z, [26, 27, 29]. For r ∈ Ah and s ∈ Ak, (r + A<h)(s +A<k) :=
rs+A<h+k. We shall use the following notation adapted from that used in [26] for
filtrations by N: for w ∈ A, w := w +A<h, where h = vρ,σ(w) := min{h ∈ H : w ∈
Ah}. Below we specify a commutative Hρ,σ-graded algebra which will turn out to
be isomorphic to grA.

3.10. Associated graded rings. Let P(d), σ, ρ and Hρ,σ be as in §3.9. Let C(d)

denote the k-subalgebra of the commutative polynomial algebra k[T, S] generated
by T d, Sd and TS. Then C(d) has a k-basis consisting of monomials of the form
T iSj where (i, j) ∈ P(d). For a monomial T iSj ∈ C(d), let vρ,σ(T iSj) = ρi + σj

and, for 0 6= q =
∑
αijT

iSj ∈ C(d), let vρ,σ(q) = supαij 6=0 vρ,σ(T iSj). Let vρ,σ(0)

= −∞. Then there is an Hρ,σ-grading on C(d) such that, for h ∈ Hρ,σ, C(d)
h is

spanned by those monomials T iSj with vρ,σ(q) = h. As indicated above, this will
be seen to be the associated Hρ,σ-graded ring of A for a filtration of A by Hρ,σ.
Furthermore, we shall see that commutation in A induces a Poisson bracket on
C(d).

3.11. Poisson bracket. Let C = C(1) = k[T, S]. The Poisson bracket on C,
{, } : C × C → C, is given by

{b, c} =
∂b

∂T

∂c

∂S
− ∂b

∂S

∂c

∂T
.

Thus

{T iSj, T pSq} = (iq − jp)T i+p−1Sj+q−1,(13)

from which it follows that, for d ≥ 1, the subalgebra C(d) is invariant under {, }
and there is an induced Poisson bracket on C(d). It will be convenient to normalize
this bracket and write, for b, c ∈ C(d),

{b, c}d =
1
d

(
∂b

∂T

∂c

∂S
− ∂b

∂S

∂c

∂T

)
.

For c ∈ C(d), we denote by pad c the Poisson-inner derivation of C(d) given by
(pad c)(b) = {c, b}d. Thus pad c = 1

d ( ∂c∂T
∂
∂S −

∂c
∂S

∂
∂T ).
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3.12. Lemma. In the notation of 3.9, let (i, j), (p, q) ∈ P(d). Then

U(i,j)U(p,q) ≡ U(i+p,j+q) −
jp

d
U(i+p−1,j+q−1) mod Aρ(i+p−2)+σ(j+q−2) ,(14)

and

[U(i,j), U(p,q)] ≡
iq − jp
d

U(i+p−1,j+q−1) mod Aρ(i+p−2)+σ(j+q−2) .(15)

Proof. As (15) is an immediate consequence of (14), it suffices to establish (14) and
this requires consideration of four cases, two of which split into subcases.

Case 1: j ≤ i and q > p, with i = j + dm and q = p+ dr.
Subcase 1A: r > m. Here j + q = (i + p) + d(r −m), U(i+p,j+q) = fi+p(h)xr−m

and

U(i,j)U(p,q) = ymfj(h)fp(h)xr

= ymxmfj(h+m)fp(h+m)xr−m

=

(
m−1∏
s=0

a(h+ s)

)
fj(h+m)fp(h+m)xr−m (by (5))

= g(h)xr−m,

where g(h) = (
∏m−1
s=0 a(h+ s))fj(h+m)fp(h+m) ∈ k[h] is monic of degree dm+

j + p = i+ p. To establish (14) in this case, it suffices to show that the coefficient
of hi+p−1 in g(h) is γi+p − jp/d. The coefficient of hi+p−1 in g(h) is(

m−1∑
s=0

(β + ds)

)
+ (jm+ γj) + (pm+ γp)

= mβ + dm(m− 1)/2 +m(j + p) + γj+p − jp/d (by (12))

= γdm + dm(j + p)/d+ γj+p − jp/d
= γdm+j+p − jp/d (by (12))

= γi+p − jp/d.
Subcase 1B: r ≤ m. Here U(i+p,j+q) = ym−rfj+q(h) and

U(i,j)U(p,q) = ymfj(h)fp(h)xr

= ym−rfj(h+ r)fp(h+ r)yrxr

= ym−r

(
r−1∏
s=0

a(h+ s)

)
fj(h+ r)fp(h+ r)

= ym−rg(h),

where g(h) = (
∏r−1
s=0 a(h+s))fj(h+r)fp(h+r) ∈ k[h] is monic of degree dr+j+p =

j + q. The same calculation as in 1A, with m replaced by r, shows that (14) again
holds.

Case 2: j ≤ i and q ≤ p, with i = j + dm and p = q + dr. Here U(i+p,j+q) =
ym+rfj+q(h) and

U(i,j)U(p,q) = ymfj(h)yrfq(h)

= ym+rfj(h− r)fq(h)

= ym+rg(h),
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where g(h)=fj(h−r)fq(h)∈k[h] is monic of degree j+q. The coefficient of hj+q−1

in g(h) is −jr + γj + γq = γj+q − (jp)/d by (12). Hence (14) holds in this case.
Case 3: j > i and q > p, with j = i + dm and q = p + dr. Here U(i+p,j+q) =

fi+p(h)xm+r and

U(i,j)U(p,q) = fi(h)xmfp(h)xr

= fi(h)fp(h− r)xm+r

= g(h)xm+r,

where g(h) = fi(h)fp(h− r) ∈ k[h] is monic of degree i+ p. The same calculation
as in Case 2, with the interchanges j ↔ p and i↔ q, shows that (14) holds again.

Case 4: j > i and q ≤ p, with j = i+ dm and p = q + dr.
Subcase 4A: m > r. Here j + q = (i + p) + d(m− r), U(i+p,j+q) = fi+p(h)xm−r

and

U(i,j)U(p,q) = fi(h)xmyrfq(h)

= fi(h)

(
r∏
s=1

a(h− s−m+ r)

)
fq(h−m+ r)xm−r (by (5))

= g(h)xm−r,

where g(h) = fi(h)(
∏r
s=1 a(h− s−m+ r))fq(h−m+ r) ∈ k[h] is monic of degree

i+ dr + q = i+ p. The coefficient of hi+p−1 in g(h) is(
r−1∑
s=0

(d(s−m) + β)

)
+ γi + γq + q(r −m)

= r(−dm+ β) + dr(r − 1)/2 + γi+q − iq/d+ q(r −m) (by (12))

= γdr − rdm+ (γi+q − iq/d) + q(r −m)

= γdr+i+q − dr(i + q)/d− rdm − iq/d+ q(r −m) (by (12))

= γi+p − rj − qj/d
= γi+p − jp/d,

whence (14) holds.
Subcase 4B: m ≤ r. Here i + p = (j + q) + d(r −m), U(i+p,j+q) = ym−rfj+q(h)

and

U(i,j)U(p,q) = fi(h)xmyrfq(h)

= yr−mfi(h− r +m)

(
r∏
s=1

a(h− s− r +m)

)
fq(h)

= yr−mg(h),

where g(h) = fi(h− r +m)(
∏r
s=1 a(h− s− r +m))fq(h) ∈ k[h] is monic of degree

i + dr + q = i + p. The same calculation as in 4A, with the interchanges m ↔ r,
i↔ q and j ↔ p, then shows that (14) holds again.

3.13. Remark. The proof of Lemma 3.12 shows that

U(i,j)U(p,q) = U(i+p,j+q) −
jp

d
U(i+p−1,j+q−1) +

∑
k≥2

λkU(i+p−k,j+q−k)

for some scalars λk = λk((i, j), (p, q)).
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3.14. Theorem. In the notation of 3.9,
(i) {Ah}h∈Hρ,σ is a filtration of A by Hρ,σ.
(ii) For this filtration, grA is isomorphic to C(d), with the Hρ,σ-grading on C(d)

specified in 3.10. An isomorphism, which we shall use to identify grA with
C(d), is given by ∑

(i,j)∈P(d)

α(i,j)U(i,j) ↔
∑

(i,j)∈P(d)

α(i,j)T
iSj .

(iii) Let w1, w2 ∈ A and let z = [w1, w2]. For i = 1, 2, let vi = vρ,σ(wi) and let
qi = wi. Then vρ,σ(w1w2) = v1 +v2 and vρ,σ(z) ≤ v1 +v2−(ρ+σ). Moreover,
vρ,σ(z) = v1 + v2 − (ρ+ σ)⇔ {q1, q2}d 6= 0, in which case z = {q1, q2}d.

Proof. This all follows directly from Lemma 3.12 and the fact that {Up : p ∈ P(d)}
is a k-basis for A.

The next few results, culminating in Lemma 3.19, are aimed at extending key
results, [11, Proposition 7.4] and [12, Proposition 3.3], for the cases d = 1, 2 to
higher degree and in particular to the case d = 4 which turns out to require special
attention.

3.15. Lemma. Let c = λT d+µSd ∈ C(d), where λ, µ ∈ k∗, and let n be a positive
integer. Let b ∈ C(d). If {cn, b}d = 0, then b ∈ k[c].

Proof. We use the H1,1-grading on C(d). Suppose that {c, b}d = 0 for some b ∈
C(d)\k[c] and choose such an element b with f := v1,1(b) minimal. Let I = {i ∈ Z :
0 ≤ i ≤ f, (f − i, i) ∈ P(d)} and let u be the leading term of b. Then

u =
∑
i∈I

αiT
f−iSi,

where αi ∈ k for each i ∈ I, and {c, u}d = 0. Thus

0 =
∑
i∈I

αi(iλT f+d−i−1Si−1 − (f − i)µT f−i−1Si+d−1).(16)

Let i ∈ I. Comparing coefficients of T f+d−i−1Si−1 in (16), if i − d /∈ I, then
iαiλ = 0 and if i− d ∈ I, then

iλαi = (f + d− i)µαi−d.(17)

It follows that if i is minimal such that i ∈ I and αi 6= 0, then i = 0 and that if
j 6≡ 0 mod d, then αj = 0. Hence f ≡ 0 mod d and we can assume that α0 = λm,
where m = f/d. By induction on r, it now follows from (17) that, for 0 ≤ r ≤ m,

αrd =
(
m

r

)
λm−rµr.

Thus u is the leading term of cm. Then {b − cm, c}d = 0, contradicting the mini-
mality of f . This completes the proof for the case n = 1.

For the general case, suppose that {cn, b}d = 0 and let δ be the derivation pad b
of C(d). Then ncn−1δ(c) = δ(cn) = 0, so, as C(d) is a domain and chark = 0,
δ(c) = 0 and, by the case n = 1, b ∈ k[c].

3.16. Lemma. Let c = λT 2 + µS2 ∈ C(2), where λ, µ ∈ k∗, and let n > 0 and
m ≥ 0 be integers. There does not exist b ∈ C(2) such that {cn, b}2 = ρcm for some
non-zero ρ ∈ k.
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Proof. Again we use the H1,1-grading on C(2). Suppose that {cn, b}2 = ρcm for
some non-zero ρ ∈ k. As cm and cn are homogeneous with v1,1(cn) = 2n and
v1,1(cm) = 2m, we can assume that b is homogeneous with v1,1(b) = 2(m − n) +
2 ≥ 2. Thus m ≥ n. With δ = − pad b, ρcm = δ(cn) = ncn−1δ(c), whence
ρ
nc
m−n+1 = δ(c) = {c, b}2 and we may assume that n = 1. Thus {c, b}2 = ρcm for

some non-zero ρ ∈ k and b is homogeneous with v1,1(b) = 2m. The ring C(2) has
a Z2-grading in which the even part, C+, is spanned by the monomials T iSj with
i and j both even and the odd part, C− is spanned by the monomials T iSj with i
and j both odd. Now c, cm ∈ C+, {c, C+}2 ⊆ C− and {c, C−}2 ⊆ C+, so we can
assume that b ∈ C−, that is b has the form

TS

(
m−1∑
i=0

αiT
2(m−i−1)S2i

)
, αi ∈ k.(18)

Then

{c, b}2 =λ
m−1∑
i=0

αi(2i+ 1)T 2(m−i)S2i

− µ
m−1∑
i=0

αi(2(m− i− 1) + 1)T 2(m−i−1)S2(i+1)

=λα0T
2m − µαm−1S

2m

+
m−1∑
i=1

(λαi(1 + 2i)− µαi−1(1 + 2(m− i))T 2(m−i)S2i.

Setting this equal to ρcm = ρ
∑m

i=0

(
m
i

)
(λT 2)m−i(µS2)i, we see that

(i) α0 = ρλm−1;
(ii) for 1 ≤ i ≤ m− 1, λαi(1 + 2i) = µαi−1(1 + 2(m− i)) + ρ

(
m
i

)
λm−iµi;

(iii) αm−1 = −ρµm−1.

From (i) and (ii), it follows inductively that, for 0 ≤ i ≤ m− 1, there exists qi ∈ Q,
with qi > 0, such that αi = ρqiλ

m−i−1µi. Here q0 = 1 and, for i > 0,

qi =
1 + 2(m− i)qi−1 +

(
m
i

)
1 + 2i

> 0.

In particular, αm−1 = ρqm−1µ
m−1, where qm−1 > 0, contradicting (iii).

3.17. Lemma. Let c = λT 2 + µS2 ∈ C(2), where λ, µ ∈ k∗, and let n > 0 and
m ≥ 0 be even integers.

(i) For b ∈ C(4), if {cn, b}4 = 0, then b ∈ k[c2].
(ii) There does not exist b ∈ C(4) such that {cn, b}4 = ρcm for some non-zero

ρ ∈ k.

Proof. Note that C(4) ⊂ C(2) and {cn, b}2 = 2{cn, b}4.
(i) Let b ∈ C(4) be such that {cn, b}4 = 0. Then {cn, b}2 = 0 and, by Lemma

3.15, b ∈ k[c] ∩ C(4) = k[c2].
(ii) If {cn, b}4 = ρcm, then {cn, b}2 = 2ρcm, which is impossible by Lemma

3.16.
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3.18. Lemma. Let d = 4 and let u = c2j for some j ≥ 1, where c = λT 2 + µS2

and λ, µ ∈ k∗. Let b ∈ C(4)\k[c2] be homogeneous in the H1,1-grading. Then
(padu)i(b) 6= 0 for all positive integers i.

Proof. Suppose not and choose the least positive integer i such that (padu)i(b) = 0.
By 3.17(i), i > 1. Let b1 = (padu)i−1(b) and b2 = (padu)i−2(b), which are non-zero
and homogeneous. Then {c2j , b1}4 = 0 so, by 3.17(i) and homogeneity, {c2j, b2}4 =
b1 = ρcm for some even positive integer m. By 3.17(ii), this is impossible.

3.19. Lemma. Let d = 4 and let c = λT 2 + µS2, where λ, µ ∈ k∗. Let w ∈ A
and let u = w ∈ grA = C(4). If u = cn for some even positive integer n, then
F(w) 6= A.

Proof. We use the H1,1-grading on C(4). Let z ∈ A be such that, in grA, z /∈ k[c2],
let b = z and let v = v1,1(z). For i ≥ 0, let zi = (adw)i(z) and bi = (padu)i(b). By
Lemma 3.18, bi 6= 0 for all i ≥ 0. Hence, by Theorem 3.14(iii), for each i, bi = zi
and v1,1(zi) = v + i(2n− 2)→∞ as i→∞. Thus z /∈ F(w).

3.20. Lemma. Let σ and ρ be positive integers. Let w ∈ A, let v = vρ,σ(w) and let
q = q(T, S) = w ∈ grA = C(d). Suppose that v > ρ + σ, that q is not a monomial
and that F(w) = A. Then one of the following holds:

(i) σ > ρ, σ is a multiple of ρ, and q = ξTα(T σ/ρ +µS)β for some ξ, µ ∈ k∗ and
some integers α ≥ 0 and β > 0.

(ii) σ < ρ, ρ is a multiple of σ, and q = ξSα(Sρ/σ + µT )β for some ξ, µ ∈ k∗ and
some integers α ≥ 0 and β > 0.

(iii) d = 1, σ = ρ and

q = ξ(µT + νS)α(µ′T + ν′S)β(19)

for some ξ, µ, ν, µ′, ν′ ∈ k, with ξ and at least three of µ, ν, µ′, ν′ non-zero,
and some integers α, β ≥ 0, with α+ β > 0.

(iv) d = 2, σ = ρ and q has the form in (19) with α+ β even.

Proof. As was observed in §3.3, the centre of A is k so F(w) 6= C(w). By the proofs
of [11, Lemme 7.3 and Proposition 7.4], either (i) holds or (ii) holds or ρ = σ and q
is as in (19). Note that the non-zero conditions on the parameters are consequences
of the fact that q 6= 0 and is not a monomial. An element of the form (19) is in C(2)

if and only if α+ β is even. Thus if d ≤ 2, then (iii) holds or (iv) holds. Therefore
we can assume that d > 2. To show that if ρ = σ, then either (iii) or (iv) holds,
it suffices to show that if q ∈ C(d) has the form (19), then d = 4, α is even and
q = γ(λT 2 + µS2)α for some γ, λ, µ ∈ k, with γ 6= 0 and, as q is not a monomial,
λ 6= 0 6= µ. Then, by Lemma 3.19, F(w) 6= A.

We can assume that ξ = 1. If all four of µ, ν, µ′, ν′ are non-zero, we can assume
that µ = 1 = µ′. In this case the coefficients in q of Tα+β−1S and TSα+β−1 are
αν+βν′ and ανα−1ν′β +βναν′β−1 respectively, and as d > 2 and q ∈ C(d), so that
d divides α+ β but not α+ β − 2, these must be 0. Thus

αν + βν′ = 0 = αν′ + βν.

As α and β cannot both be 0 and neither is negative, it follows that ν = −ν′
and β = α. Thus q = (T 2 − ν2S2)α, which has non-zero coefficients of T 2α and
T 2α−2S2. Hence d divides 2α and 2α − 4. As d > 2 it follows that d = 4 and α
is even. If only three of µ, ν, µ′, ν′ are non-zero, easy calculations show that either
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the coefficients of Tα+β and Tα+β−1S are non-zero or the coefficients of Sα+β and
TSα+β−1 are not zero and hence, in this case, that q /∈ C(d) if d > 2.

3.21. Automorphisms of grA. Let n be a positive integer and, for µ ∈ k, con-
sider the automorphism Φn,µ. By (11), this is a filtered automorphism for the
filtration of A by H1,dn−1, that is Φn,µ(Ah) = Ah for all h ∈ H1,dn−1. Conse-
quently, it induces an automorphism Φn,µ of the associated H1,dn−1-graded ring
C(d). As the leading term (in the usual grading of k[h]) of 1

i!∆
i
n(a) is (−n)i

(
d
i

)
, it

follows from (11) that Φn,µ acts as the restriction to C(d) of the automorphism of
k[T, S] such that

T 7→ T, S 7→ S + nµT dn−1.(20)

3.22. Lemma. Let w ∈ A be of the form

α0 + α1x+ α2x
2 + . . .+ αrx

r + αh

with 0 6= α ∈ k and each αj ∈ k. There exist Φ ∈ G and β, β0 ∈ k such that
Φ(w) = β0 + βh.

Proof. The proof is as for [12, Lemme 5.1]. For an appropriate value of µ, Φr,µ(w) =
α0 + α1x+ α2x

2 + . . .+ αr−1x
r−1 + αh and the result follows by induction.

3.23. Lemma. Let w =
∑
αi,jU(i,j) ∈ A. Let r be the least non-negative integer

such that αi,0 = 0 whenever i > r. Let s be the least non-negative integer such that
α0,j = 0 whenever j > s. Suppose that there exist integers i1, j1 such that:

(1) αi1,j1 6= 0;
(2) (i1, j1) 6= (1, 1);
(3) either si1 + rj1 > rs or r = s = 0 and (i1, j1) 6= (0, 0). Then F(w) 6= A.

Proof. The proof is an adaptation of the proof of [12, Lemme 5.2], which in turn
was adapted from the proof of [11, Lemme 8.7]. As in [12], by hypothesis (3),
i1 > 0, j1 > 0 and there exist positive real numbers ρ, σ, linearly independent over
Q, such that σi1 + ρj1 > ρs and σi1 + ρj1 > σr. There exist i2, j2 ≥ 0 such
that αi2,j2 6= 0, vρ,σ(w) = σi2 + ρj2 and, in grA for the filtration of A by Hρ,σ,
w = αi2,j2T

i2Sj2 . As in [12], i2 > 1 or j2 > 1. By symmetry (see Remark 3.7), we
can suppose that i2 ≤ j2.

For n ≥ 0, let xn = δn(x), where δ = adw. As in [12], one shows by induction on
n that xn = βnT

n(i2−1)Sd+n(j2−1), for some 0 6= βn ∈ k. This is true for n = 0 as
x = Sd. Supposing it to be true for some n ≥ 0 and applying Theorem 3.14(iii) to w
and xn, one finds that xn+1 = 1

d(di2 +nj2−ni2)αi2,j2βnT (n+1)(i2−1)Sd+(n+1)(j2−1).
It follows that vρ,σ(xn) = σn(i2 − 1) + ρ(d + n(j2 − 1)) → ∞ as n → ∞, whence
x /∈ F(w) and F(w) 6= A.

3.24. Remark. In the proofs of the next two lemmas, we can assume that d > 2 for
otherwise, as observed in §3.2, either A ' Bλ for some λ, in which case [12, Lemme
5.3 and Lemme 5.4] are applicable, or A ' A1(k), in which case we can apply [11,
Lemme 8.8, Théorème 9.2 and proof of Lemme 8.4].

3.25. Lemma. Let w ∈ A be such that F(w) = A. There exists Φ ∈ G such that
Φ(w) ∈ k[x] or Φ(w) ∈ k[y] or Φ(w) = λx+ ηh+ µy + τ for some λ, η, µ, τ ∈ k.

Proof. Again this is adapted from the proofs of [11, Lemme 8.8] and [12, Lemme
5.3]. Let r = r(w) and s = s(w) be as in Lemma 3.23. Write w =

∑
αi,jU(i,j).
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Applying Lemmas 3.22 and 3.23, the result is true if r = 0 or s = 0 so, by symmetry
(see Remark 3.7), it suffices to consider the case where r ≥ s ≥ d. Let n = r + s.
By induction, we can assume that the result is true whenever r(w) + s(w) < n. As
r ≥ s > 2, we have rs > r + s.

We work with the filtration of A by Hs,r. By Lemma 3.23, if αi,j 6= 0, then either
i = j = 1, in which case vs,r(U(i,j)) = s+ r < rs, or vs,r(U(i,j)) = is+ jr ≤ rs. As
αr,0 6= 0 and α0,s 6= 0, vs,r(w) = rs, and w has the form

q = β0T
r + . . .+ βsS

s where β0 6= 0, βs 6= 0.(21)

As q ∈ C(d), r = jd and s = td for some positive integers j, t.
By Lemma 3.20, the possibility that r = s only arises when either d = 1 or d = 2.

Thus we may suppose that r > s. By Lemma 3.20, s|r and q = λ(Tm + µS)s for
some λ, µ ∈ k∗, where m = r

s . As q ∈ C(d), d|s and, as the coefficient of TmSs−1 is
non-zero, d|s− 1−m. Thus d|m+ 1 and there exist positive integers n, t such that
s = dt, m = dn− 1 and r = (dn− 1)s = (dn− 1)dt. Thus q = λ(T dn−1 +µS)dt has
the form

q =
dt∑
i=0

βiT
(dn−1)(dt−i)Si.(22)

Let ν ∈ k. By (20), v1,dn−1(Φn,ν(q)) ≤ v1,dn−1(q) = dt(dn− 1) and the coefficients
of Sdt and T dt(dn−1) in Φn,ν(q) are βdt and

dt∑
i=0

βin
iνi(23)

respectively. We can choose ν so that (23) is 0. Then r(Φn,ν(w)) < r(w) and
s(Φn,ν(w)) = s(w) so, by induction there exists Φ1 ∈ G such that Φ1(Φn,ν(w)) ∈
k[y] or Φ1(Φn,ν(w)) = λx + ηh + µy + τ for some λ, γ, µ, τ ∈ k. The result follows
on setting Φ = Φ1Φn,ν ∈ G.

3.26. Proposition. Let w ∈ A. Then w is strictly semisimple if and only if there
exists Φ ∈ G such that Φ(w) = γh+ τ , for some γ, τ ∈ k with γ 6= 0.

Proof. Suppose that w is strictly semisimple. Then w is not strictly nilpotent so
w /∈ k[y] and, by Lemma 3.25, there exists an automorphism Φ1 ∈ G such that
w1 := Φ1(w) = λx+γh+µy+ τ for some λ, γ, µ, τ ∈ k. As d > 2, w1 = λT d+µSd.
By Lemma 3.20 with ρ = σ = 1, this must be a monomial so either λ = 0 or µ = 0.

Without loss of generality, suppose λ = 0. Thus Φ1(w) = γh+ µy + τ and, as y
is strictly nilpotent, γ 6= 0. Now let Φ = Φ1,ρΦ1 ∈ G, where ρ = −γ−1µ. By (10),
Φ1,ρ(y) = y and Φ1,ρ(h) = h+ ρy, so Φ(w) = γh+ τ .

Conversely, if w = Φ−1(γh+ τ), for some γ ∈ k∗, τ ∈ k and Φ ∈ G, then, as h is
strictly semisimple, so too is w.

3.27. Theorem. Let x1, y1, h1 ∈ A. Suppose that x1, y1 and h1 generate A and
satisfy the relations

x1h1 = (h1 − 1)x1, y1h1 = (h1 + 1)y1, x1y1 = a1(h1 − 1), y1x1 = a1(h1)

for some monic a1 ∈ k[h]. There exists Φ ∈ G such that, for some τ ∈ k, either
Φ(x1) = x,Φ(y1) = y, Φ(h1) = h+ τ and a1(h+ τ) = a(h), or Φ(x1) = y,Φ(y1) =
(−1)dx, Φ(h1) = τ − h and (−1)da1(τ − h− 1) = a(h).
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Proof. There is a surjection A(a1) � A(a) so, as GK(A(a1)) = 2 = GK(A(a)), it
follows from [23, Proposition 3.15] that A(a1) ' A(a).

As h1 is strongly semisimple, by Lemma 3.26, there exists Φ ∈ G such that
Φ(h1) = γh + τ , for some γ, τ ∈ k, with γ 6= 0. Let x2 = Φ(x1) and y2 = Φ(y1).
The set of eigenvalues for adh1 is Z and the set of eigenvalues for ad(γh+ τ) is γZ
so γ = ±1.

Suppose that γ = 1, that is Φ(h1) = h + τ . In this case [h, x2] = Φ([h1, x1]) =
Φ(x1) = x2 and similarly [h, y2] = −y2. The eigenspace for adh for the eigenvalues
1 and −1 are k[h]x and yk[h] respectively. Hence x2 = b(h)x and y2 = yc(h) for
some b, c ∈ k[h]. Then

x2y2 = b(h)xyc(h) = b(h)a(h− 1)c(h)(24)

and

y2x2 = yc(h)b(h)x = c(h+ 1)yxb(h+ 1) = c(h+ 1)a(h)b(h+ 1).(25)

But

x2y2 = Φ(x1y1) = Φ(a1(h− 1)) = a1(h+ τ − 1)(26)

and

y2x2 = Φ(y1x1) = Φ(a1(h)) = a1(h+ τ).(27)

Therefore a1(h+τ) = c(h+1)a(h)b(h+1). Hence deg a1 ≥ deg a and, by symmetry,
deg a ≥ deg a1, A(a1) being isomorphic to A(a). Thus deg a1 = deg a and deg c =
deg b = 0. By monicity, a1(h + τ) = a(h) and bc = 1. Applying an automorphism
from §3.5(i), we can assume that c = b = 1, whence Φ(x1) = x and Φ(y1) = y.

Now suppose that γ = −1, that is Φ(h1) = τ − h. Here [h, x2] = −x2 and
[h, y2] = y2 so x2 = yb(h) and y2 = c(h)x for some b, c ∈ k[h]. Then

x2y2 = yb(h)c(h)x = b(h+ 1)a(h)c(h+ 1)(28)

and

y2x2 = c(h)xyb(h) = c(h)a(h− 1)b(h).(29)

But x2y2 = a1(τ − h − 1) and y2x2 = a1(τ − h). Therefore a1(τ − h − 1) =
b(h + 1)a(h)c(h + 1) and deg a1 ≥ deg a. By symmetry, deg a1 = deg a = d and
deg c = deg b = 0. By monicity, a1(τ −h−1) = (−1)da(h) and bc = (−1)d. We can
assume that b = 1 and c = (−1)d, whence Φ(x1) = y and Φ(y1) = (−1)dx.

3.28. Theorem. For a1, a2 ∈ k[h], A(a1) ' A(a2) if and only if a2(h) =
ηa1(τ ± h) for some η, τ ∈ k with η 6= 0.

Proof. If a1 and a2 are monic, then this is immediate from Theorem 3.27. The
general case reduces to the monic case on application of isomorphisms of the form
given in Lemma 3.1(i).

3.29. Theorem. If a is reflective, then Autk A(a) is generated by G and Ω. If a
is not reflective, then Autk A(a) = G.

Proof. Let Γ ∈ Autk A(a). By Theorem 3.27, with x1 = Γ(x), y1 = Γ(y), h1 = Γ(h)
and a1 = a, there exist Φ ∈ G and τ ∈ k such that either x = ΦΓ(x), y = ΦΓ(y),
h+ τ = ΦΓ(h) and a(h+ τ) = a(h) or ΦΓ(x) = y,ΦΓ(y) = (−1)dx, ΦΓ(h) = τ − h
and (−1)da(τ − h− 1) = a(h). In the latter case a is reflective, with ρ = τ − 1, and
Γ = Φ−1Ω ∈ 〈G,Ω〉. In the former case, which must hold if a is not reflective, τ
must be 0 and Γ = Φ−1 ∈ G.
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3.30. Remark. When d = 2, Ω ∈ G; see [12, 4.4]. It would be interesting to know
when Ω ∈ G.

3.31. Proposition. Let w ∈ A. Then w is strictly nilpotent if and only if there
exists Φ ∈ G such that Φ(w) ∈ k[x] or Φ(w) ∈ k[y].

Proof. This result holds when d ≤ 2 by [11, Théorème 9.1] and [12, Théorème 6.2],
so we may assume that d > 2. By Lemma 3.4, x and y are strictly nilpotent and it
follows, as in [12, 4.1], that if there exists an automorphism Φ as stated, then w is
strictly nilpotent.

Suppose that w is strictly nilpotent. By Lemma 3.25, there exists Φ ∈ G such
that Φ(w) ∈ k[x] or Φ(w) ∈ k[y] or Φ(w) = λx+ ηh+µy+ τ for some λ, η, µ, τ ∈ k.
It suffices to show, in the third possibility, that η = 0 and that λ = 0 or µ = 0.
Let z = Φ(w). In the H1,1-grading, z = λT d + µY d so it follows from Lemma 3.20
that this is a monomial, that is λ = 0 or µ = 0. If λ = 0, then y is an eigenvector
for ad z with eigenvalue −η and if µ = 0, then x is an eigenvector for ad z with
eigenvalue η. As z is strictly nilpotent, η = 0 as required.

3.32. Remark. When a is reflective Ω(x) = y so the criterion for w to be strictly
nilpotent becomes the existence of Φ ∈ Autk A such that Φ(w) ∈ k[x].

4. Algebras similar to U(sl2)

Smith [31] considers a class of algebras similar to the enveloping algebra of sl2.
Let f = f(H) ∈ k[H ]. We denote by R(f) the k-algebra generated by A,B and H
subject to the relations

[H,A] = A, [H,B] = −B, [A,B] = f(H).

As an ambiskew polynomial ring, R(f) = R(k[H ], σ, f(H), 1), where σ is the
k-automorphism of k[H ] such that σ(H) = H − 1. By Lemma 2.4 R(f) =
k[H,W ](σ,W ), where σ(H) = H − 1 and σ(W ) = W + f(H).

We continue to assume that chark = 0. In [31] k = C, but the proofs of those
results we quote from [31] are valid more generally. By [31, Proposition 1.5], the
centre of R(f) is generated by the Casimir element

C := AB +BA+ 1
2 (u(H + 1)− u(H)) = 2AB + u(H) = 2BA+ u(H + 1),

where u ∈ k[H ] is such that f(H) = u(H+1)−u(H) and is unique up to addition of
scalars. Let x, y and h denote the images in R(f)/CR(f) ofA,B andH respectively.
Then the k-algebra R(f)/CR(f) is generated by x, y, h subject to the relations

xh = (h− 1)x, yh = (h+ 1)y, xy = − 1
2u(h), yx = − 1

2u(h+ 1).

Thus R(f)/CR(f) = A(a), where a(h) = − 1
2u(h+ 1). More generally, for γ, δ ∈ k,

with γ 6= 0,

R(f)/(γC − δ)R(f) = A( δ
2γ −

1
2u(h+ 1)).(30)

In [31, Lemma 6.1 and Remark 2], Smith notes the first two parts of the following
lemma and remarks that he believes it will be very difficult to understand precisely
when R(f1) ' R(f2).

4.1. Lemma. Let f1, f2 ∈ k[H ].
(i) If f2 = γf1 for some non-zero γ ∈ k, then R(f1) ' R(f2) via A 7→ γ−1A,B 7→

B and H 7→ H.
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(ii) If f2(H) = f1(H+τ) for some τ ∈ k, then R(f1) ' R(f2) via A 7→ A,B 7→ B
and H 7→ H + τ .

(iii) If f2(H) = f1(−H), then R(f1) ' R(f2) via A 7→ B,B 7→ −A, and H 7→ −H.

Proof. (i), (ii) and (iii) are special cases of Lemma 2.8(i), (v) and (vi), respectively.
In (iii), one applies 2.8 with p = 1 and τ(H) = −H.

Combining the three parts of Lemma 4.1, R(f1) ' R(f2) if f2(H) = γf1(τ ±H)
for some γ, τ ∈ k with γ 6= 0. We shall now show that this condition is also
necessary for R(f1) ' R(f2).

4.2. Theorem. For f1(H), f2(H) ∈ k[H ], R(f1) ' R(f2) if and only if f2(H) =
ηf1(τ ±H) for some η, τ ∈ k with η 6= 0.

Proof. Lemma 4.1 establishes that the given condition is sufficient for R(f1) '
R(f2). For necessity, suppose that there is an isomorphism θ : R(f1)→ R(f2). For
i = 1, 2, let Ci = 2AB + ui(H) = 2BA + ui(H + 1) ∈ R(fi), where ui ∈ k[H ] is
such that fi(H) = ui(H + 1)− ui(H). The centre of Ri is k[Ci] and so there exist
γ, δ ∈ k, with γ 6= 0, such that θ(C1) = γC2 − δ. There is an induced isomorphism
R(f1)/C1R(f1) ' R(f2)/(γC2 − δ)R(f2) so, by (30),

A(− 1
2v1) ' A(σ, δ2γ −

1
2v2),

where each vi(h) = ui(h+ 1). By Lemma 3.1(i),

A(v1) ' A(ρ+ v2),

where ρ = − δ
γ ∈ k. By Theorem 3.28, there exist η, τ ∈ k, with η 6= 0, such that

ρ+ v2(h) = ηv1(τ ± h). Then

f2(H) = u2(H + 1)− u2(H)

= v2(H)− v2(H − 1)

= (v2(H) + ρ)− (v2(H − 1) + ρ)

= ηv1(τ ±H)− ηv1(τ ± (H − 1))

= η(u1(τ ±H + 1)− u1(τ ±H ∓ 1 + 1))

= ηf1(τ +H) or − ηf1(1 + τ −H).

5. Algebras similar to the primitive factors of Uq(sl2)

In this section we concentrate on the case where D is the Laurent polynomial ring
k[h±1] and σ(h) = qh, where q ∈ k∗ is not a root of unity. Let a = a(h) ∈ k[h±1]
and let W = k[h±1](σ, a). Thus W is the k-algebra generated by h, h−1, x and y
subject to the relations

xh = qhx, yh = q−1hy, xy = a(qh), yx = a(h).

Examples include the minimal primitive factors of the quantized enveloping algebra
Uq(sl2), for which the details will be given in Example 5.3. These algebras may
be viewed as quantizations of those considered in Section 3 but the isomorphism
problem is influenced by the existence of the unit h. The following lemma lists some
routine consequences of the definitions, Lemma 2.7(ii) and the fact that k[h±1] is
a domain. Here U(W ) denotes the group of units of W .
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5.1. Lemma. (i) If a ∈ k[h±1] is a non-zero non-unit, then U(W )/k∗ is cyclic,
generated by h.

(ii) If a = λhn is a unit in k[h±1], then U(W )/k∗ is free abelian of rank two,
generated by h and x, and W is isomorphic to the skew Laurent polynomial
ring k[h±1][x±1;σ].

(iii) For each positive integer n, {w ∈ W : h−1wh = qnw} = k[h±1]xn and
{w ∈W : h−1wh = q−nw} = ynk[h±1].

5.2. Theorem. Let 0 6= a1, a2 ∈ k[h±1], let q ∈ k∗ and let σ ∈ Autk k[h±1] be
such that σ(h) = qh. Then k[h±1](σ, a1) ' k[h±1](σ, a2) if and only if a2(h) =
ηhma1(µh±1) for some η, µ ∈ k∗ and some integer m.

Proof. For i = 1, 2, let Wi = k[h±1](σ, ai). By Lemma 5.1, we can assume that
a1 and a2 are non-units; if both are units, then the stated condition holds and,
by 5.1(ii), W1 ' k[h±1][x±1;σ] ' W2, while if only one is a unit, then the stated
condition fails and, by 5.1(i) and (ii), W1 6'W2.

If a2(h) = ηhma1(µh), then, by Lemma 2.7(ii), with λ = ηhm, and Lemma 2.7(v)
with τ(h) = µh, W1 'W2 with

x 7→ xη−1h−m, y 7→ y and h 7→ µh.

If a2(h) = ηhma1(µh−1), then, by Lemma 2.7(ii) and Lemma 2.7(vi), with τ(h) =
q−1µh−1 so that τσ(h) = µh−1 = σ−1τ(h), W1 'W2 with

x 7→ y, y 7→ xη−1h−m, and h 7→ q−1µh−1.

For the converse, suppose that there is an isomorphism Γ : W1 → W2. By
Lemma 5.1(i), there exists τ ∈ k∗ such that Γ(h) = τh±1. Suppose first that
Γ(h) = τh. By Lemma 5.1(iii), there exist f1, g1 ∈ k[h±1] such that Γ(x) = f1(h)x
and Γ(y) = yg1(h). In W2,

a1(τh) = Γ(a1(h)) = Γ(yx) = yg1(h)f1(h)x

= g1(q−1h)f1(q−1h)yx = g1(q−1h)f1(q−1h)a2(h).

Hence

a1(h) = g1(τ−1q−1h)f1(τ−1q−1h)a2(τ−1h).(31)

By symmetry, there exist f2, g2 ∈ k[h±1] such that

a2(h) = g2(τq−1h)f2(τq−1h)a1(τh).(32)

Using (32) to substitute in (31) for a2(τ−1h), we obtain

a1(h) = g1(τ−1q−1h)f1(τ−1q−1h)g2(q−1h)f2(q−1h)a1(h).

From this it follows that f1, f2, g1 and g2 are all units in k[h±1] and hence, by (32),
that a2(h) = ηhma1(τh) for some η ∈ k∗ and some integer m.

Now suppose that Γ(h) = τh−1. By Lemma 5.1(iii), there exist f1, g1 ∈ k[h±1]
such that Γ(y) = f1(h)x and Γ(x) = yg1(h). In W2,

a1(τh−1) = Γ(a1(h)) = Γ(yx)

= f1(h)xyg1(h) = f1(h)a2(qh−1)g1(h).

Hence

a1(h) = f1(τ−1h−1)g1(τ−1h−1)a2(qτ−1h−1).(33)
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By symmetry, there exist f2, g2 ∈ k[h±1] such that

a2(h) = f2(τ−1h−1)g2(τ−1h−1)a1(qτ−1h−1).(34)

Using (32) to substitute in (31) for a2(qτ−1h−1), we obtain

a1(h) = f1(τ−1h−1)g1(τ−1h−1)f2(q−1h)g2(q−1h)a1(h).

It follows that f1, f2, g1 and g2 are all units in k[h±1] and hence, by (34), that
a2(h) = ηhma1(qτ−1h−1) for some η ∈ k∗ and some integer m.

5.3. Example. When q is not a root of unity, the minimal primitive ideals of
the quantized enveloping algebra Uq(sl2) are generalized Weyl algebras of the form
Cµ := k[t±1](σ, u−µ), where σ(t) = q2t, µ ∈ k and u = − q

−2t2+q2t−2

(q2−q−2)2 ; see [16, 7.9].
A simple calculation based on Theorem 5.2 shows that, for λ, µ ∈ k, Cλ ' Cµ if
and only if µ = ±λ. There are isomorphisms Γ1,Γ2 : Cλ → C−λ such that

Γ1(x) = −x, Γ1(y) = y and Γ1(t) = it

and

Γ2(x) = −y, Γ2(y) = x and Γ2(t) = iq2t−1.

The first of these was noted in [16, 7.9] for two particular values of λ, namely those
for which Cλ has infinite global dimension.

Because of the term hm, Theorem 5.2 cannot be lifted in the way that Theo-
rem 3.28 was lifted modulo a central element to yield Theorem 4.2. In the analogue
of Theorem 4.2, the term hm disappears.

5.4. Theorem. For i = 1, 2, let Ri be the k-algebra generated by H±1, X and Y
subject to the relations

XH = qHX, Y H = q−1HY, XY − Y X = vi(H),

where q ∈ k∗ is not a root of unity and 0 6= vi(H) ∈ k[H±1]. Suppose that both v1

and v2 have zero constant term. Then R1 ' R2 if and only if v2(H) = ηv1(µH±1)
for some η, µ ∈ k∗.

Proof. Each Ri is an ambiskew polynomial ring, R(k[H±1], σ, vi, 1), where σ(H) =
qH . By the condition on constant terms, there exist u1, u2 ∈ k[H±1] such that
each vi = ui(qH)− ui(H). For i = 1, 2, let Zi = Y X − ui(H) = XY − ui(qH). By
[17, 2.1(ii)], for i = 1, 2, k[Zi] is the centre of Ri. As a generalized Weyl algebra,
Ri = k[H±1, Z](σ, Z + ui), where σ(H) = qH and σ(Z) = Z.

Suppose that there is a k-isomorphism Γ : R1 → R2. It is easy to see that the
units of Ri have the form λHm, where λ ∈ k∗ and m ∈ Z. Hence there exists
λ ∈ k∗ such that Γ(H) = λH±1.

There exist β ∈ k∗ and γ ∈ k such that Γ(Z1) = βZ2 + γ. Then

Γ(Y X) = Γ(Z1 + u1(H)) = βZ2 + γ + u1(λH±1).(35)

It follows from consideration of degrees in Y and X in the iterated skew poly-
nomial ring R2 = k[H±1][X ;σ][Y ;σ−1, δ] that one of Γ(X) and Γ(Y ) has the form
f1(H)Y + g1(H), f1, g1 ∈ k[H±1], and the other has the form Xf2(H) + g2(H),
f2, g2 ∈ k[H±1].
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Suppose that Γ(H) = λH . As H−1XH = qX and H−1Y H = q−1Y , we must
have Γ(X) = Xf2(H) and Γ(Y ) = f1(H)Y . By (35),

f1(H)f2(H)Y X = Γ(Y X) = β(Y X − u2(H)) + γ + u1(λH),

whence u2(H) = β−1(u1(λH) + γ) and v2(H) = β−1v1(λH).
Now suppose that Γ(H) = λH−1. In this case we must have Γ(X) = f1(H)Y

and Γ(Y ) = Xf2(H). By (35),

f2(qH)f1(qH)XY = p−1β(XY − u2(qH)) + γ + u1(λH−1),

whence u2(H) = pβ−1(u1(λH−1) + γ) and v2(H) = −pβ−1v1(λq−1H−1). In both
cases, v2(H) = ηv1(µH±1) for some η, µ ∈ k∗.

For the converse, if v2(H) = ηv1(µH) for some η, µ ∈ k∗, then R1 ' R2 by
Lemma 2.8(i) with λ = η and Lemma 2.8(v) with τ(H) = µH . If v2(H) =
ηv1(µH−1) for some η, µ ∈ k∗, then R1 ' R2 by Lemma 2.8(i) with λ = η and
Lemma 2.8(vi) with τ(H) = µH−1.

6. The deformations of Witten and Woronowicz

6.1. Notation. In this section we consider a class of algebras including two al-
gebras named in [10, 35] as Woronowicz’s deformation and Witten’s second defor-
mation. We offer two proofs that these two algebras are isomorphic. One is based
on an analysis of this class of algebras and the second is a direct application of
Lemma 2.7 based on the identification of Woronowicz’s deformation and Witten’s
second deformation as generalized Weyl algebras in [8].

We consider ambiskew polynomial rings of the form R(k[t], σ, v, p), where, for
some q ∈ k∗ and c ∈ k, σ is the k-automorphism of k[t] such that σ(t) = qt+ c and
v = dt+ e ∈ k[t] has degree 1. Such a ring A is the k-algebra generated by x, y and
t subject to the relations

xt− qtx = cx, yt− q−1ty = −q−1cy, xy − pyx = dt+ e.

By Lemma 2.4, A is the generalized Weyl algebra k[t, w](σ,w), where σ is extended
to the polynomial ring k[t, w] by setting σ(w) = pw + v. If p 6= q and either e = 0
or p 6= 1, then there exists u = ft+ g ∈ k[t] of degree 1 such that v = σ(u) − pu,
whence, by Lemma 2.5(ii), A = k[t, z](σ, ft+ z + g), where σ(z) = pz.

6.2. Example. Taking q = r2, c = −r, d = 1, e = 0 and p = s2, where r, s ∈ k∗,
one obtains a class of algebras discussed by Fairlie [13]. The defining relations are

rtx − r−1xt = x, ryt− r−1ty = y, s−1xy − syx = t.

In [13], the generators x, y, t are written as W+,W− and W0 respectively. We shall
denote the algebra with these generators and relations by Fs,r. For Woronowicz’s
deformation, introduced in [34, p. 150] and discussed in the survey article [30], take
r = ν2 and s = ν ∈ k∗. In [34, 30], k = C and ν ∈ [−1, 1] is real. The generators
∇0, ∇1 and ∇2 given in [34, 30] are related to ours by the formulae

∇1 = (1 + ν2)t,∇0 = (1 + ν2)x,∇2 = −y.

For Witten’s second deformation, introduced in [33, 5.13], take r = q
1
2 and s = q ∈

k∗. In [33], the generators x, y, t are written as t+, t− and t0 respectively.
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6.3. Notation. For a given pair of parameters p and q with q 6= 1, the algebras
specified in §6.1 fall into two isomorphism classes and there is a simple procedure,
outlined in the proof of the next theorem, to determine which isomorphism class a
given algebra is in. Let σ be the k-automorphism of k[t] such that σ(t) = qt. Let
Wp,q = R(k[t], σ, t+1, p) and Vp,q = R(k[t], σ, t, p). If p 6= q, then by Lemma 2.5(ii),
Vp,q = k[t, z](σ, z+t/(q−p)) and, if also p 6= 1, Wp,q = k[t, z](σ, z+t/(q−p)+1/(1−
p)), where σ(z) = pz. By Lemma 2.4, W1,q = k[t, w](σ,w), where σ(w) = w+ t+ 1.

6.4. Theorem. Let A be one of the rings specified in §6.1. If q 6= 1, then either
A 'Wp,q or A ' Vp,q.

Proof. Let t′ = t + c
q−1 . Then σ(t′) = qt′ and A = R(k[t′], σ, dt′ + e′, p) where

e′ = e− dc
q−1 .

If e′ = 0, then there is an isomorphism from A to Vp,q given by t′ 7→ d−1t, x 7→ x
and y 7→ y.

If e′ 6= 0, then there is an isomorphism from A to Wp,q given by t′ 7→ e′d−1t, x 7→
e′x and y 7→ y.

The next lemma indicates symmetry in the roles of the pairs (t, q) and (z, p) in
Wp,q and Vp,q.

6.5. Lemma. (i) Vq,p ' Vp,q and, if q 6= 1 and p 6= 1, Wq,p 'Wp,q.
(ii) Wp,q 'Wp−1,q−1 and Vp,q ' Vp−1,q−1 .

Proof. (i) We may assume that p 6= q. We have observed that Vp,q = k[t, z](σ, z +
t/(q− p)) and, if p 6= 1, Wp,q = k[t, z](σ, z + t/(q− p) + 1/(1− p)), where σ(t) = qt
and σ(z) = pz. Applying Lemma 2.7(iv) with τ(z) = t/(q− p) and τ(t) = (q− p)z,
so that τστ−1(z) = qz, τστ−1(t) = pt and τ(z + t/(q − p)) = z + t/(q − p), we
obtain Vp,q ' Vq,p and, if p 6= 1 and q 6= 1, Wp,q 'Wq,p.

(ii) follows easily from Lemma 2.8(i).

6.6. Remark. In 6.1, if q = 1, then A ' R(k[t], σ, t, p), where σ = id or σ(t) = t−1,
depending on whether c = 0. In particular, Wp,1 ' Vp,1 which, by Lemma 6.5(i),
is isomorphic to V1,p. However, if p 6= 1, W1,p and V1,p are not isomorphic. It can
be deduced from [22, 3.1] that, if p 6= 1, W1,p has a unique 1-dimensional simple
module whereas V1,p has infinitely many, because in this case k[t, z] has a maximal
ideal invariant under σ.

6.7. Example. We apply the algorithm from the proof of Theorem 6.4 to the
algebras Fs,r in Example 6.2, assuming that r2 6= 1. In the notation of that proof,
t′ = t− r

r2−1 and e′ = r
r2−1 6= 0. Consequently, Fs,r 'Ws2,r2 .

6.8. Corollary. Let q = ν2 ∈ k∗. If q2 6= 1, then Woronowicz’s deformation and
Witten’s second deformation are isomorphic algebras.

Proof. From the discussions in Examples 6.2 and 6.7, Woronowicz’s deformation
Fν,ν2 is isomorphic to Wν2,ν4 while Witten’s second deformation Fq,q1/2 is isomor-
phic to Wq2,q = Wν4,ν2 . By Lemma 6.5(i), the two are isomorphic.

An alternative proof is based upon the identifications of the two deformations as
generalized Weyl algebras given by the first author [8]. Let D be the commutative
polynomial algebra k[C,H ] and let σ be the k-automorphism of D such that σ(C) =
r4C and σ(H) = r2H . From [8], Woronowicz’s deformation is D(σ, a), where a =
C−(H−r/(1−r2))(H−r3/(1−r2))/r2(r+r−1), and Witten’s second deformation
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is D(σ, a1), where a1 = H +µC+ ρ for some µ, ρ ∈ k∗. By straightforward changes
of generators, we can assume that a = C − λH2 +H + 1 for some λ ∈ k∗ and that
a1 = C +H + 1.

Let τ be the k-automorphism of D such that τ(C) = C − λH2 and τ(H) = H .
Then στ = τσ and τ(a) = a1 so, by Lemma 2.7(v), D(σ, a) ' D(σ, a1).

6.9. Remark. The algebra known as Witten’s first deformation [10, 35], which was
introduced in [33, 5.2], is of the form R(k[t], σ, v, p) = k[t, w](σ,w), with p = 1,
specified in §6.1 except that v is quadratic in t. The algebraic relationship between
Witten’s two deformations was explained in rigorous terms by Le Bruyn [24]. Below
we apply his method more generally, using a change of variables of the form used
in the proof of Theorem 6.4, and observe that the drop in degree from 2 to 1 in
the degree of the element v in the passage from Witten’s first deformation to his
second is, in a sense, singular.

Let A be a k-algebra of the form R(k[t], σ, v, p), where p, q ∈ k∗, q 6= 1, σ(t) =
qt + c and v ∈ k[t] has degree 2. As in the proof of Theorem 6.4, a change of
variables allows us to assume that c = 0. Thus A is the k-algebra generated by x, y
and t subject to the relations

xt = qtx, yt = q−1ty, xy − pyx = ft2 + dt+ e,(36)

for some f, d, e ∈ k with f 6= 0. The homogenization B, say, of A is the graded
k-algebra generated by x, y, t and z subject to the relations

xt = qtx, yt = q−1ty, xy − pyx = ft2 + dtz + ez2,

zx = xz, zy = yz, zt = tz.

The element t is normal in B and the automorphism τ of B for which tb = τ(b)t
for all b ∈ B is given by

x 7→ q−1x, y 7→ qy, t 7→ t, z 7→ z.

Following [2, §8], the twist Bτ of B by τ is the graded k-algebra which is isomorphic
to B as a graded abelian group, with an isomorphism written as a 7→ aτ , and
has multiplication determined by the rule aτbτ = (τd(a)b)τ , where a, b ∈ B are
homogeneous and d = deg(b). Thus Bτ is the k-algebra generated by xτ , yτ , tτ and
zτ subject to the relations

xτ tτ = tτxτ , yτ tτ = tτyτ , xτyτ − p2q−2yτxτ = q−1(ft2τ + dtτzτ + ez2
τ ),

zτxτ = qxτzτ , zτyτ = q−1yτzτ , zτ tτ = tτzτ .

The element tτ is central and the dehomogenization C, say, of Bτ is obtained by
factoring out the ideal generated by tτ − 1. Thus it is the k-algebra generated by
xτ , yτ and zτ subject to the relations

zτxτ = qxτzτ , zτyτ = q−1yτzτ , xτyτ − p2q−2yτxτ = q−1(f + dzτ + ez2
τ ).

Comparing these with (36), the defining parameters q and p are replaced by q−1 and
p2q−2 respectively. If e 6= 0, the algebra C is of the same general form as A with v
quadratic, but if e = 0, it is of the original form specified in §6.1 with the degree of
v dropping from 2 to 1. This is the situation with Witten’s two deformations. His
first deformation is of the form A, with v quadratic with zero constant term, both
before and after the change of variables which makes t normal, and his second is the
corresponding algebra formed by homogenization, twisting and dehomogenization.
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The original parameters, labelled q and p in the general discussion above, are q−1

and 1 and so become q and q2 in C.

We conclude this section by showing that, under certain conditions on the pa-
rameters, the only situations where there are isomorphisms between algebras of the
forms Vp,q and Wp,q are those covered by Remark 6.6 and Lemma 6.5.

6.10. Theorem. Let p, q, p1, q1 ∈ k∗\{1} be such that the subgroups 〈p, q〉 and
〈p1, q1〉 of k∗ have positive rank, p 6= q and p1 6= q1.

(i) Wp,q 6' Vp1,q1 .
(ii) If {p1, q1} 6= {p, q} and {p1, q1} 6= {p−1, q−1}, then Wp,q 6'Wp1,q1 and Vp,q 6'

Vp1,q1 .

Proof. (i) This follows from the determination of the finite-dimensional simple mod-
ules for Vp,q and Wp,q given by [22, 3.1]. In the notation of [22], vd = (1 + pq−1 +
. . .+ (pq−1)d−1)t for Vp,q and vd = (1 +pq−1 + . . .+ (pq−1)d−1)t+ 1 +p+ . . .+pd−1

for Wp,q. The only positive integers s for which there exist s-dimensional simple
Vp,q-modules are 1, for which there are infinitely many, and, if it exists, the least
positive integer d such that qd = pd, for which there are again infinitely many. On
the other hand, Wp,q also has infinitely many 1-dimensional simple Wp,q-modules
but, for d > 1, there is at most one d-dimensional simple module. For d = 2, this
module exists precisely when ((1 + pq−1)t+ 1 + p)k[t] 6= (t+ 1)k[t]. As q 6= 1, there
is a unique two-dimensional simple Wp,q-module.

(ii) We begin with the determination of the non-zero normal elements which
generate prime ideals of Wp,q. Let W = Wp,q and let S = R(k[t±1], σ, t, p) be the
localization of W at the powers of the normal element t. As p 6= 1 and p 6= q, the
element z of Lemma 2.5 exists and the results of [17] apply. Both zW and tW are
prime ideals of W . Let N (W ) = {w ∈W : wW = Ww is a non-zero prime ideal of
W} and define N (S) in a similar way.

First consider the case where the subgroup 〈p, q〉 of k∗ has rank two. By [17,
2.21], N (S) consists of associates of z and hence, by standard localization theory,
for example [26, 2.1.16], N (W ) = k∗z ∪ k∗t.

Now consider the case where 〈p, q〉 has rank one. Without loss of generality, we
may assume that q is not a root of unity so that [17, 2.21] is applicable to S. Let n
be the minimal positive integer such that pn ∈ 〈q〉 and let i be the integer such that
pn = qi. If i < 0, then t−izn is central in W and, for all η ∈ k∗, t−izn− η ∈ N (W ).
If i ≥ 0, then ti − ηzn ∈ N (W ) for all η ∈ k∗. It follows from [17, 2.21] that
N (S) consists of the associates of z and those of elements of the form t−izn − η
or ti − ηzn, η ∈ k∗, depending on whether i > 0. It then follows that N (W ) =
k∗z∪k∗t∪(

⋃
η∈k∗ k

∗(t−izn−η)) if i < 0 andN (W ) = k∗z∪k∗t∪(
⋃
η∈k∗ k

∗(ti−ηzn))
if i > 0.

In either case, for m ≥ 0, let Wm = k[t, z]xm and W−m = ymk[t, z]. Then W =∑
m∈ZWm and each Wm is simultaneously an eigenspace for all the automorphisms

of W of the form w 7→ a−1wa, a ∈ N (W ). For each j ∈ Z, the eigenvalues for Wj

are qj for a = t, pj for a = z, 1 when a has the form t−izn − η and pjn = qji when
a has the form ti − ηzn. It follows that the set {{p, q}, {p−1, q−1}} is determined
by W . This proves the result for Wp,q and the proof for Vp,q is similar.
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