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Abstract

If S is a semigroup and a € S, the semigroup (S,0) defined by
xoy = zxay for all z,y € S is called a variant of S and (S, o) is denoted
by (S,a). In 2003-2004, Tsyaputa characterized when two variants of
the following transformation semigroups are isomorphic : the symmetric
inverse semigroup, the full transformation semigroup and the partial
transformation semigroup on a finite nonempty set. In this paper, we
consider the semigroups under composition of all linear transformations
of a finite-dimensional vector space over a finite field. We determine
when its variants are isomorphic. We also obtain as a consequence in
the same matter for the full n x n matrix semigroup over a finite field.
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1 Introduction and Preliminaries

The cardinality of a set X is denoted by | X|. The value of the mapping a at x
in the domain of « shall be written as xa. The range (image) of « is denoted
by ran a.

If S is a semigroup and a € S, the semigroup (S, 0) defined by x oy = zay
for all z,y € S is called a variant of S and it is denoted by (S, a). Variants of
abstract semigroups were first studied by Hickey [2] in 1983. In fact, variants
of concrete semigroups of relations were earlier considered by Magill [8] in
1967. Hickey [2, 1, 3, 4, 5] introduced various results relating to variants
of semigroups. Khan and Lawson [7] determined an element a in a regular
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semigroup with identity and an inverse semigroup such that (S, a) is a regular
semigroup.

It is interesting to know when two variants of a certain semigroup are
isomorphic. It is clear that if S is a semigroup with identity and a, b are units
of S, (S,a) = (S,b) through the mapping x +— axb™!, in particular, (S,a) = S
through x +— ax. In this case, ! is the identity of (S, a). Moreover, if S has
a zero 0, then 0 is clearly the zero of the variant (S, a) of S for every a € S.

For a nonempty set X, let T(X), P(X) and I(X) denote the full transfor-
mation semigroup, the partial transformation semigroup and the symmetric
inverse semigroup. Notice that T'(X) and I(X) are subsemigroups of P(X). If
X is a finite set containing n elements, let T,,, P,, and I, stand for T'(X), P(X)
and I(X), respectively. For a € P, and k € {1,... ,n}, let

ar = {y € ran «a | ]yofll = k}|.

The n-tuple (aq,...,q,) is called the type of a. In 2003-2004, Tsyaputa
[9, 10] provided the remarkable results on variants of I,,,T,, and P, as follows
: for a, B € I, (I, ) = (I, 0) if and only if |ran «| = |ran 3|, for o, 3 €
T, (T, ) = (T,, ) if and only if o and 3 have the same type and this is true
for variants of P,.

We recall some notations and basic knowledge in linear algebra. Let V'
and W be vector spaces over a field F. Let Lp(V, W) be the set of all linear
transformations o : V- — W and let Lp(V') stand for Lg(V, V). Then Lp(V)
is a semigroup under composition. Note that 1y, the identity mapping on V'
and Oy, the zero mapping on V are the identity and the zero of the semigroup
Lp(V), respectively. If 0 € Lr(V, W), then dimp V = dimp ker #+ dimg ran 6.
We call dimp ker § and dimp ran 6 the nullity and the rank of 8, respectively
and they are denoted respectively by nullity # and rank 6. If B is a basis of V,
B'is abasis of W and 6 € Lr(V, W) is such that 0|z is a bijection from B onto
B’, then 6 is an isomorphism from V onto W. If Bj is a basis of ker # and B
a basis of V' containing By, then (B \ Bj)f is a basis of ran 6 and for distinct
u,v € B~ By,ufl # vf. In particular, if W is a subspace of V', B; a basis of
W and B a basis of V' containing By, then {v + W | v € B\ By} is a basis of
the quotient space V/W and for distinct u,v € B\ Bj,u+ W # v+ W.

It is clear that for a basis B of V,

Le(V,W)| = H{a]a:B— W} =W

In particular, if V' and W are finite-dimensional, F' is finite, dimg V' = n and
dimp W = k, then W = F* as vector spaces and hence

|Lp(V,W)| = |F*" = |F|(dimFV)(dimFW) < oo
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For a positive integer n and a field F, let M, (F') be the multiplicative
semigroup of all n x n matrices over a field F. If V is finite-dimensional and
dimp V' = n, then there exists a semigroup isomorphism ¢ : Lp(V') — M, (F)
which preserves ranks ([6], p. 330 and 336-337).

In this paper, we shall prove that if V' is a finite-dimensional vector space
over a finite field ' and 01,0, € Lp(V), then (Lp(V),0,) = (Lp(V),0s) if
and only if rank 6; = rank 65. As a consequence, we have that if F' is a finite
field and P, P, € M,(F), then (M,(F),P,) = (M,(F),P,) if and only if
rank P; = rank P».

2 Main Result

To prove the main result, the following series of lemmas is needed.

Lemma 2.1. Let S be a semigroup with identity and a,b € S. If there
exist units u,v in S such that uav = b, then (S,a) = (S,b).

Proof. Define ¢ : S — S by x¢p = v tazu™! for all z € S. It is evident that ¢
is a bijection. If x,y € S, then

1 1 1 1

(xay)p = v wrayu™ = v xu” !

1 1

uavv”tyut = v eu o yu ! = (20)b(yp).

Thus ¢ is an isomorphism from (.S, a) onto (.5,b). O

Lemma 2.2. Let V' be a vector space over a field F' and 61,05 € Lp(V). If
rank 6, =rank 0y, nullity §; =nullity 0, and dimg(V/ran 0;) = dimg(V/ran 6,),
then there exist isomorphisms ¢, € Lp(V') such that @019 = 05.

Proof. Let B; and B, be bases of kerf; and ker f,, respectively and let By
be a basis of V containing B; and B, a basis of V containing B,. It follows
that (B; \ By)f; and (By \ By)f; are bases of ran 6; and ran 6, respectively.
We also have |(B; \ By)0:| = |By ~ Bi| and |(By \ By)f| = | By \ By|. Next
let B; be a basis of V containing (Bl \ By)0; and B, a basis of V containing
(By \ By)f,. By assumption, |B;| = |By| and |(B; \ B1)0:| = |(Bz \ By)bs|.
Therefore there exists an isomorphism ¢ € Lp(V) such that By = B; and
(By\Bsy)p = By~ Bj. Since dimp(V/ran 6;) = dimp(V/ran ), it follows that
|.B_1 AN (.B_l_\ B1)¢91| = dlmF(V/I'aI} Ql) = dimF(V/ran 02) = |B_2 AN (B_Q AN BQ)QQ|
Let 7 : By~ (By \ B1)0y — By~ (By \ By)f, be a bijection. Note that
By = (B1\B1)01U(B;~(By~By)0;) = ((B2\ B2)pbty) U(By ~\ (By ~\ By)0y).
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Define 1 € Lp(V) on By by

¢:<w@& :

ubs UT ) ueBa~\ Bz,
vEB1~(B1\B1)61

Since ufy # v8, for distinct u,v € By . By, it follows that 0l 5, 1s a bijection

from B; onto B,. Hence ¢ is an isomorphism of V. If u € By, then up € By,
50 upb1 = 0 = uby. If u € By \ By, then by the definition of 1, uwpb1y = ubs.
Therefore we have @811 = 65, as desired. OJ

Lemma 2.3. Let 'V be a finite-dimensional vector space over a field
F and 0,,05 € Lp(V). If rank 6; = rank 0y, then there exist isomorphisms
o, € Lp(V') such that @09 = 05.

Proof. Since dimp V' = nullity 6; +rank 6; = nullity 65 +rank 6, dimg V is fi-
nite and rank ¢, = rank 65, it follows that nullity 6; = nullity 5. Also, we have
dimp(V/ran 6;) = dimp V' — rank 0; = dimp V' — rank 6, = dimp(V/ran 6y).
Hence by Lemma 2.2, the desired result follows. O

Notice that the converse of Lemma 2.3 is clearly true.
The following lemma follows directly from Lemma 2.1 and Lemma 2.3.

Lemma 2.4. Let V be a finite-dimensional vector space over a field F' and
Ql,eg € LF(V) ]frank 0y = rank Qg, then (LF(V),Ql) = (LF(V),QQ)

Theorem 2.5. Let V be a finite-dimensional vector space over a finite
field F' and 01,05 € Lp(V). Then (Lp(V),6,) = (Lp(V),62) if and only if
rank 6; = rank 6.

Proof. First assume that (Lp(V),6,) = (Lp(V),0s) through an isomorphism
¢. Since Oy is the zero of both (Lp(V),60,) and (Lp(V),0,), we have that
Ovp = 0y. We claim that a#; = (6, if and only if (ap)fy = (Bp)fy for
all o, € Lp(V). Let a,8 € Lp(V) and assume that af; = (6;. Then
abi A = B0, for all A € Lp(V), it follows that (ap)ba(Ap) = (Bp)f(Ap) for
all A € Lp(V). Since (Lp(V))p = Lp(V), we have (ap)fy = (ap)hsly =
(Bp)021y = (Bp)hs. But since o' is an isomorphism from (Lr(V),6s) onto
(Lp(V),6), if (ap)Bs = (Bp)bs, then from the above proof we have similarly
that (ap)e™10; = (Be)e101, ie., afy = $6;. Therefore we prove that af; =
(6, if and only if (ap)fs = (B¢)fs. In particular, if 5 = Oy, then af; = 0y if
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and only if (ap)fy = Oy. This proves that for every a € Lp(V),af; = 0y if
and only if (ap)fy = 0y. It follows that ran o C ker 6, if and only if ran ap C
ker 0, for all & € Lp(V). This proves that (Lp(V,ker6;))p = Lr(V, ker6,).
Consequently, |Lg(V,ker6,)| = |Lr(V,ker6y)|. As mentioned in Section 1,
|LF(‘/, ker 91)| — |F|(dimp V) (nullity 61) and |LF(‘/, ker Q2)| — |F‘(dimF V) (nullity 92)‘
It follows that nullity #; = nullity 6. Hence rank ¢; = dimp V' — nullity 6, =
dimp V — nullity 6, = rank 6,.

The converse follows directly from Lemma 2.4.

The proof is thereby completed. O

Corollary 2.6. Let F' be a finite field, n a positive integer and Py, Py € M, (F).
Then (M, (F), P,) = (M,(F), Py) if and only if rank P, = rank P;.

Proof. Let V' be a vector space over F' of dimension n. Then there exists
a semigroup isomorphism ¢ : Lg(V) — M, (F) which preserves ranks. Let
01,05 € Lr(V') be such that ;¢ = Py and 30 = P,. Then for all o, 5 € Lp(V),

(a018)p = (ap)P1(By) and (abzB)p = (ap) Pa(B).

Since ¢ : Lp(V) — M, (F) is a bijection, it follows from the above equalities
that ¢ is an isomorphism from (Lg(V'),6,) onto (M, (F), P;) and an isomor-
phism from (L (V), 62) onto (M,,(F), P), i.e., (Lp(V),601) = (M, (F), P,) and
(Le(V), 62) = (M, (F), Py)

First assume that (M, (F),P;) = (M, (F'),P,). This implies that(Lz(V),0;) =
(Lp(V),05). By Theorem 2.5, rank ¢; = rank 6,. Since ¢ preserves ranks, it
follows that rank P; = rank P,.

Conversely, assume that rank P, = rank P,. Then rank #; = rank 5 since
¢ preserves ranks. By Theorem 2.5, (Lg(V),0;) = (Lrp(V),0s). Consequently,
(M, (F), P) = (My(F), Py). 0

Remark 2.7. From Lemma 2.4 and the proof of Corollary 2.6 we can see that
the following result holds : if F is a field (need not be finite), n a positive integer
and Py, P, € M,(F) are such that rank P, = rank P,, then (M, (F), P;) =
(M, (F), P,). In fact, the following result can be referred from Lemma 2.1 and
the fact that if P, P, € M,(F) are such that rank P, = rank P, then P
is equivalent to P, i.e., P = Q1 Q)5 for some invertible matrices )1, ()> in
M, (F) ([6], p- 338).
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