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Abstract

If S is a semigroup and a ∈ S, the semigroup (S, ◦) defined by
x ◦ y = xay for all x, y ∈ S is called a variant of S and (S, ◦) is denoted
by (S, a). In 2003-2004, Tsyaputa characterized when two variants of
the following transformation semigroups are isomorphic : the symmetric
inverse semigroup, the full transformation semigroup and the partial
transformation semigroup on a finite nonempty set. In this paper, we
consider the semigroups under composition of all linear transformations
of a finite-dimensional vector space over a finite field. We determine
when its variants are isomorphic. We also obtain as a consequence in
the same matter for the full n × n matrix semigroup over a finite field.
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1 Introduction and Preliminaries

The cardinality of a set X is denoted by |X |. The value of the mapping α at x
in the domain of α shall be written as xα. The range (image) of α is denoted
by ran α.

If S is a semigroup and a ∈ S, the semigroup (S, ◦) defined by x ◦ y = xay
for all x, y ∈ S is called a variant of S and it is denoted by (S, a). Variants of
abstract semigroups were first studied by Hickey [2] in 1983. In fact, variants
of concrete semigroups of relations were earlier considered by Magill [8] in
1967. Hickey [2, 1, 3, 4, 5] introduced various results relating to variants
of semigroups. Khan and Lawson [7] determined an element a in a regular
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semigroup with identity and an inverse semigroup such that (S, a) is a regular
semigroup.

It is interesting to know when two variants of a certain semigroup are
isomorphic. It is clear that if S is a semigroup with identity and a, b are units
of S, (S, a) ∼= (S, b) through the mapping x �→ axb−1, in particular, (S, a) ∼= S
through x �→ ax. In this case, a−1 is the identity of (S, a). Moreover, if S has
a zero 0, then 0 is clearly the zero of the variant (S, a) of S for every a ∈ S.

For a nonempty set X, let T (X), P (X) and I(X) denote the full transfor-
mation semigroup, the partial transformation semigroup and the symmetric
inverse semigroup. Notice that T (X) and I(X) are subsemigroups of P (X). If
X is a finite set containing n elements, let Tn, Pn and In stand for T (X), P (X)
and I(X), respectively. For α ∈ Pn and k ∈ {1, . . . , n}, let

αk = |{y ∈ ran α | |yα−1| = k}|.

The n-tuple (α1, . . . , αn) is called the type of α. In 2003-2004, Tsyaputa
[9, 10] provided the remarkable results on variants of In, Tn and Pn as follows
: for α, β ∈ In, (In, α) ∼= (In, β) if and only if |ran α| = |ran β|, for α, β ∈
Tn, (Tn, α) ∼= (Tn, β) if and only if α and β have the same type and this is true
for variants of Pn.

We recall some notations and basic knowledge in linear algebra. Let V
and W be vector spaces over a field F . Let LF (V,W ) be the set of all linear
transformations α : V → W and let LF (V ) stand for LF (V, V ). Then LF (V )
is a semigroup under composition. Note that 1V , the identity mapping on V
and 0V , the zero mapping on V are the identity and the zero of the semigroup
LF (V ), respectively. If θ ∈ LF (V,W ), then dimF V = dimF ker θ+dimF ran θ.
We call dimF ker θ and dimF ran θ the nullity and the rank of θ, respectively
and they are denoted respectively by nullity θ and rank θ. If B is a basis of V ,
B′ is a basis of W and θ ∈ LF (V,W ) is such that θ|B is a bijection from B onto
B′, then θ is an isomorphism from V onto W . If B1 is a basis of ker θ and B
a basis of V containing B1, then (B �B1)θ is a basis of ran θ and for distinct
u, v ∈ B � B1, uθ �= vθ. In particular, if W is a subspace of V , B1 a basis of
W and B a basis of V containing B1, then {v +W | v ∈ B �B1} is a basis of
the quotient space V/W and for distinct u, v ∈ B �B1, u+W �= v +W .

It is clear that for a basis B of V ,

|LF (V,W )| = |{α | α : B →W}| = |W ||B|.

In particular, if V and W are finite-dimensional, F is finite, dimF V = n and
dimF W = k, then W ∼= F k as vector spaces and hence

|LF (V,W )| = |F k|n = |F |(dimF V )(dimF W ) <∞.
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For a positive integer n and a field F , let Mn(F ) be the multiplicative
semigroup of all n× n matrices over a field F . If V is finite-dimensional and
dimF V = n, then there exists a semigroup isomorphism ϕ : LF (V ) → Mn(F )
which preserves ranks ([6], p. 330 and 336-337).

In this paper, we shall prove that if V is a finite-dimensional vector space
over a finite field F and θ1, θ2 ∈ LF (V ), then (LF (V ), θ1) ∼= (LF (V ), θ2) if
and only if rank θ1 = rank θ2. As a consequence, we have that if F is a finite
field and P1, P2 ∈ Mn(F ), then (Mn(F ), P1) ∼= (Mn(F ), P2) if and only if
rank P1 = rank P2.

2 Main Result

To prove the main result, the following series of lemmas is needed.

Lemma 2.1. Let S be a semigroup with identity and a, b ∈ S. If there
exist units u, v in S such that uav = b, then (S, a) ∼= (S, b).

Proof. Define ϕ : S → S by xϕ = v−1xu−1 for all x ∈ S. It is evident that ϕ
is a bijection. If x, y ∈ S, then

(xay)ϕ = v−1xayu−1 = v−1xu−1uavv−1yu−1 = v−1xu−1bv−1yu−1 = (xϕ)b(yϕ).

Thus ϕ is an isomorphism from (S, a) onto (S, b).

Lemma 2.2. Let V be a vector space over a field F and θ1, θ2 ∈ LF (V ). If
rank θ1 =rank θ2, nullity θ1 =nullity θ2 and dimF (V/ran θ1) = dimF (V/ran θ2),
then there exist isomorphisms ϕ, ψ ∈ LF (V ) such that ϕθ1ψ = θ2.

Proof. Let B1 and B2 be bases of ker θ1 and ker θ2, respectively and let B̄1

be a basis of V containing B1 and B̄2 a basis of V containing B2. It follows
that (B̄1 �B1)θ1 and (B̄2 �B2)θ2 are bases of ran θ1 and ran θ2, respectively.
We also have |(B̄1 � B1)θ1| = |B̄1 � B1| and |(B̄2 � B2)θ2| = |B̄2 � B2|. Next
let ¯̄B1 be a basis of V containing (B̄1 � B1)θ1 and ¯̄B2 a basis of V containing
(B̄2 � B2)θ2. By assumption, |B1| = |B2| and |(B̄1 � B1)θ1| = |(B̄2 � B2)θ2|.
Therefore there exists an isomorphism ϕ ∈ LF (V ) such that B2ϕ = B1 and
(B̄2�B2)ϕ = B̄1�B1. Since dimF (V/ran θ1) = dimF (V/ran θ2), it follows that
| ¯̄B1 � (B̄1 �B1)θ1| = dimF (V/ran θ1) = dimF (V/ran θ2) = | ¯̄B2 � (B̄2 �B2)θ2|.
Let π : ¯̄B1 � (B̄1 � B1)θ1 → ¯̄B2 � (B̄2 � B2)θ2 be a bijection. Note that
¯̄B1 = (B̄1 �B1)θ1 ∪ ( ¯̄B1 � (B̄1 �B1)θ1) = ((B̄2 �B2)ϕθ1)∪ ( ¯̄B1 � (B̄1 �B1)θ1).
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Define ψ ∈ LF (V ) on ¯̄B1 by

ψ =

(
(uϕ)θ1 v

uθ2 vπ

)
u∈B̄2�B2,

v∈ ¯̄B1�(B̄1�B1)θ1

.

Since uθ2 �= vθ2 for distinct u, v ∈ B̄2 � B2, it follows that ψ| ¯̄B1
is a bijection

from ¯̄B1 onto ¯̄B2. Hence ψ is an isomorphism of V . If u ∈ B2, then uϕ ∈ B1,
so uϕθ1ψ = 0 = uθ2. If u ∈ B̄2 �B2, then by the definition of ψ, uϕθ1ψ = uθ2.
Therefore we have ϕθ1ψ = θ2, as desired.

Lemma 2.3. Let V be a finite-dimensional vector space over a field
F and θ1, θ2 ∈ LF (V ). If rank θ1 = rank θ2, then there exist isomorphisms
ϕ, ψ ∈ LF (V ) such that ϕθ1ψ = θ2.

Proof. Since dimF V = nullity θ1 +rank θ1 = nullity θ2 +rank θ2, dimF V is fi-
nite and rank θ1 = rank θ2, it follows that nullity θ1 = nullity θ2. Also, we have
dimF (V/ran θ1) = dimF V − rank θ1 = dimF V − rank θ2 = dimF (V/ran θ2).
Hence by Lemma 2.2, the desired result follows.

Notice that the converse of Lemma 2.3 is clearly true.
The following lemma follows directly from Lemma 2.1 and Lemma 2.3.

Lemma 2.4. Let V be a finite-dimensional vector space over a field F and
θ1, θ2 ∈ LF (V ). If rank θ1 = rank θ2, then (LF (V ), θ1) ∼= (LF (V ), θ2).

Theorem 2.5. Let V be a finite-dimensional vector space over a finite
field F and θ1, θ2 ∈ LF (V ). Then (LF (V ), θ1) ∼= (LF (V ), θ2) if and only if
rank θ1 = rank θ2.

Proof. First assume that (LF (V ), θ1) ∼= (LF (V ), θ2) through an isomorphism
ϕ. Since 0V is the zero of both (LF (V ), θ1) and (LF (V ), θ2), we have that
0V ϕ = 0V . We claim that αθ1 = βθ1 if and only if (αϕ)θ2 = (βϕ)θ2 for
all α, β ∈ LF (V ). Let α, β ∈ LF (V ) and assume that αθ1 = βθ1. Then
αθ1λ = βθ1λ for all λ ∈ LF (V ), it follows that (αϕ)θ2(λϕ) = (βϕ)θ2(λϕ) for
all λ ∈ LF (V ). Since (LF (V ))ϕ = LF (V ), we have (αϕ)θ2 = (αϕ)θ21V =
(βϕ)θ21V = (βϕ)θ2. But since ϕ−1 is an isomorphism from (LF (V ), θ2) onto
(LF (V ), θ1), if (αϕ)θ2 = (βϕ)θ2, then from the above proof we have similarly
that (αϕ)ϕ−1θ1 = (βϕ)ϕ−1θ1, i.e., αθ1 = βθ1. Therefore we prove that αθ1 =
βθ1 if and only if (αϕ)θ2 = (βϕ)θ2. In particular, if β = 0V , then αθ1 = 0V if
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and only if (αϕ)θ2 = 0V . This proves that for every α ∈ LF (V ), αθ1 = 0V if
and only if (αϕ)θ2 = 0V . It follows that ran α ⊆ ker θ1 if and only if ran αϕ ⊆
ker θ2 for all α ∈ LF (V ). This proves that (LF (V, ker θ1))ϕ = LF (V, ker θ2).
Consequently, |LF (V, ker θ1)| = |LF (V, ker θ2)|. As mentioned in Section 1,
|LF (V, ker θ1)| = |F |(dimF V )(nullity θ1) and |LF (V, ker θ2)| = |F |(dimF V )(nullity θ2).
It follows that nullity θ1 = nullity θ2. Hence rank θ1 = dimF V − nullity θ1 =
dimF V − nullity θ2 = rank θ2.

The converse follows directly from Lemma 2.4.
The proof is thereby completed.

Corollary 2.6. Let F be a finite field, n a positive integer and P1, P2 ∈ Mn(F ).
Then (Mn(F ), P1) ∼= (Mn(F ), P2) if and only if rank P1 = rank P2.

Proof. Let V be a vector space over F of dimension n. Then there exists
a semigroup isomorphism ϕ : LF (V ) → Mn(F ) which preserves ranks. Let
θ1, θ2 ∈ LF (V ) be such that θ1ϕ = P1 and θ2ϕ = P2. Then for all α, β ∈ LF (V ),

(αθ1β)ϕ = (αϕ)P1(βϕ) and (αθ2β)ϕ = (αϕ)P2(βϕ).

Since ϕ : LF (V ) → Mn(F ) is a bijection, it follows from the above equalities
that ϕ is an isomorphism from (LF (V ), θ1) onto (Mn(F ), P1) and an isomor-
phism from (LF (V ), θ2) onto (Mn(F ), P2), i.e., (LF (V ), θ1) ∼= (Mn(F ), P1) and
(LF (V ), θ2) ∼= (Mn(F ), P2).

First assume that(Mn(F ),P1)∼=(Mn(F ),P2). This implies that(LF (V ),θ1)∼=
(LF (V ), θ2). By Theorem 2.5, rank θ1 = rank θ2. Since ϕ preserves ranks, it
follows that rank P1 = rank P2.

Conversely, assume that rank P1 = rank P2. Then rank θ1 = rank θ2 since
ϕ preserves ranks. By Theorem 2.5, (LF (V ), θ1) ∼= (LF (V ), θ2). Consequently,
(Mn(F ), P1) ∼= (Mn(F ), P2).

Remark 2.7. From Lemma 2.4 and the proof of Corollary 2.6 we can see that
the following result holds : if F is a field (need not be finite), n a positive integer
and P1, P2 ∈ Mn(F ) are such that rank P1 = rank P2, then (Mn(F ), P1) ∼=
(Mn(F ), P2). In fact, the following result can be referred from Lemma 2.1 and
the fact that if P1, P2 ∈ Mn(F ) are such that rank P1 = rank P2, then P1

is equivalent to P2, i.e., P1 = Q1P2Q2 for some invertible matrices Q1, Q2 in
Mn(F ) ([6], p. 338).

References

[1] T.S. Blyth and J.B. Hickey, RP-dominated regular semigroups, Proc. R.
Soc. Edinb. A 99 (1984), 185-191.



1412 R. Jongchotinon, S. Chaopraknoi and Y. Kemprasit

[2] J.B. Hickey, Semigroups under a sandwich operation, Proc. Edinb. Math.
Soc. 26 (1983), 371-382.

[3] J.B. Hickey, On variants of a semigroup, Bull. Austral. Math. Soc. 34
(1986), 447-459.

[4] J.B. Hickey, On regularity preservation in a semigroup, Bull. Austral.
Math. Soc. 69 (2004), 69-86.

[5] J.B. Hickey, A class of regular semigroups with regularity-preserving ele-
ments, Semigroup Forum 81 (2010), 145-161.

[6] T.W. Hungerford, Algebra, Springer-Verlag, New York, 1974.

[7] T.A. Khan and M.V. Lawson, Variants of regular semigroups, Semigroup
Forum 62 (2001), 358-374.

[8] K.D. Magill, Semigroup structures for families of functions I. Some ho-
momorphism theorems, J. Austral. Math. Soc. 7 (1967), 81-94.

[9] G. Tsyaputa, Transformation semigroups with the deformed multiplica-
tion, Bulletin of the University of Kiev, Series : Physics and Mathematics,
2003, nr. 3, 82-88.

[10] G. Tsyaputa, Deformed multiplication in the semigroup PT n, Bulletin of
the University of Kiev, Series : Mechanics and Mathematics, 2004, nr.
11-12, 35-38.

Received: August, 2010


