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Abstract

We introduce a class of inverse semigroups of injective transformations and our main result
concerns isomorphisms between two such semigroups. This result is then applied to semigroups
of homeomorphisms between closed subsets of a T, topological space, semigroups of
homeomorphisms between compact subsets of k -spaces and semigroups of isomorphisms
between subsemilattices of semilattices. In the first two cases it is shown that the two inverse
semigroups under consideration are isomorphic if and only if the corresponding topological
spaces are homeomorphic. In the latter case, the two inverse semigroups are isomorphic if and
only if the semilattices are either isomorphic or are dual isomorphic infinite chains.

1. Introduction

An element ft in a semigroup S is an inverse of an element a in 5 if
aba = a and bab = b. In general, an element may have more than one
inverse. Those semigroups in which each element has precisely one inverse
are referred to as inverse semigroups. The canonical example of an inverse
semigroup is the semigroup, under composition, of all injective partial
transformations on a set. This inverse semigroup is denoted by $x and is
referred to as the symmetric inverse semigroup on the set X. Preston (1954)
and Vagner (1952) have shown that every inverse semigroup S can be
embedded in $s- One may consult Clifford and Preston (1961) for a discussion
of inverse semigroups in general and the symmetric inverse semigroup in
particular.

Preston (1973) has suggested various natural ways in which one can
extend the notion of the symmetric inverse semigroup on a set X. One can
provide X with some sort of structure and then take all those injective partial
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maps on X which are compatible in some sense with that structure. For
example, one can take X to be a semigroup and the inverse semigroup to
consist of all isomorphisms between subsemigroups of X. (The empty set is
regarded as a subsemigroup of X) For another example, take X to be a
topological space and the inverse semigroup to consist of all homeomor-
phisms between closed subsets of X. We denote this latter semigroup by
^F(X). The results in this paper are, for the most part, a consequence of our
investigations of the semigroups ^ F ( X ) where X is any T, space. In particular
we wanted to determine if the Tt spaces X and Y must be homeomorphic
whenever the semigroups SF{X) and &F(Y) are isomorphic (it is a straightfor-
ward matter to show that the converse is true). They must be, and what we do
is to prove a rather general theorem which can be applied to obtain this result
not only for $F(X) but for other inverse semigroups on topological spaces as
well. In fact, the result is general enough to apply to the inverse semigroup of
all isomorphisms between subsemilattices of a semilattice (that is, a commuta-
tive semigroup all of whose elements are idempotent). In this case, two such
inverse semigroups are isomorphic if and only if the semilattices are either
isomorphic or are dual isomorphic infinite chains.

The author would like to thank the referee for pointing out an error in
the original version of this paper.

2. Definition of -f(X) and examples

DEFINITION 2.1. Let X be a set and "OF a collection of subsets of X such
that if F and F' belong to 9 then F n F' belongs to &. Then J?(X) will, in
general, denote any collection of injective maps whose domains and ranges
are members of 2F satisfying the following conditions:

1) For any F 6 f , the identity map on F, denoted iF, belongs to $(X).
2) If / belongs to $(X) then the inverse mapping f'1 of f also belongs to

*(*)•

3) ^(X) is closed with respect to composition of functions.
It can easily be shown that -$(X) is an inverse semigroup where the

inverse of the map / is just f~l. Idempotents in £(X) are of the form iF for
FE.SF.To emphasize association with X the set '9 will sometimes be written
2F(X). Examples of various $(X) are given below, together with their own
special designations. Proofs that these examples satisfy the requirements of
Definition 2.1 are straightforward.

1) X is any nonempty topological space, 2F = {F: F is a closed subset of
X}, and ^ F ( X ) = {/: dom / (the domain of /) is closed, ran / (the range of /) is
closed, and / is a homeomorphism}.
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2) X is any nonempty topological space, & = {K: K is a closed compact
subset of X}, and SK{X) = {/: d o m / G &, ran f E &, and / is a
homeomorphism}.

3) X is any semigroup, 3F = {S:S is a subsemigroup of X}, and
J>s (X) = {/: dom / is a subsemigroup of X, ran / is a subsemigroup of X, and /
is an isomorphism}.

DEFINITION 2.2. The inverse semigroup J(X) (with associated set
will be called maximal if $(X) contains all maps / which satisfy the following
conditions:

1) / is an injective map
2) dom/G ^(X) and ran/G &(X)
3) if F G ^(X) then f(F) E &(X) and /"'(F) G

3. Isomorphism theorems

THEOREM 3.1. Let X and Y be nonempty sets such that {x}E &(X) for
every x G X and {y}G 3F(Y) for every y G Y. Let <p be an isomorphism from
J"(X) onto $(Y). Then there exists a unique bijection h from X onto Y such
that:

1) h(F)E&(Y) for all F E &(X), h~\H)E&(X) for all H E
2) <p(f)= hofoh"1 for all fE3>{X).

Conversely, if $(X) and J>(Y) are maximal then all isomorphisms from
onto J(Y) are obtained in exactly this way.

PROOF. Suppose <p is an isomorphism from J'(X) onto $(Y). Denote by
(x,z) the map / such that dom/ = {x} and f(x) = z. Let x E X. Since
{x} E 5F(X) for every x E X, (x, x) belongs to ^ ( X ) . The homomorphic image
of an idempotent is an idempotent and so (p(x,x)= iv for some V E 2F(Y).
Suppose V = 0 . Then <p~'(iv) is the zero for J"(X). This means that
(x,x)°(z,z) = (x, x) for every z E X. Hence X = {x}. Now i 0 £ ^ ( X ) since
(x,x) is the zero for ^ ( X ) . Hence J'(X) = {{x, x)}. The map <p is an
isomorphism and so \J*(Y)\= 1. Since Y is nonempty we have that (y, y)G
J-(Y) for some y G Y. But i 0 G ^ ( Y ) also. Hence | j ? ( y ) | g 2 which is a
contradiction. This means that V^ 0 . Now let y G V. Then <p~\y, y) is an
idempotent. Suppose <p~'(y, y ) = it/- Then

<p('un(*i) = <p(i[/°(x, x » = <p(/[;)o(p(x, x> = (y, y>° JV = (y, y> = <p('u).

Since (p is injective this means that U C\{x} = U. Now U^ 0 by the same
reasoning as above. Hence U = {x}. Therefore <p(x, x) = (y, y). Set h(x) = y.
Then <p(x, x) = (^i(x), /i(x)). Since <p is an isomorphism we have that h is an
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injective map. If y G Y, then the same reasoning as above shows that
<P '(y,y) — (x, x) for some x £ X . Clearly h{x)=y. This shows that h is a
bijection from X onto Y.

Now it will be shown that <p(iu) = k{vy Let <p(iv)=iv and suppose
x E U. Then iv °(x, x) = (x, x) and

Therefore h (x )E V and so h(U)C V. Conversely, if y £ V then y = h(x)
for some x G X. Now

Hence x e 1/ and so VCh(U). Thus V = / i( l / ) and <p(iu)= hwy Since
< p ( i u ) e ^ ( y ) this shows that h(U)E&(Y). Conversely, if H E &(Y) then
(p'(iH)E ^ (X) . But if <p"'('«) = 'u then / i( t / ) = H and since h is a bijection
this means that h'(H)= U and hence h\H)E &(X). Thus part 1) of the
theorem has been shown.

Suppose f&J>(X). We will show that <p(f)= h°f°h\ Now

= d o m <p ( / " ' ° / ) = d o m <p ( i d o m , ) = d o m ( j h ( d o m ; ) ) = h ( d o m / ) .

Since h is a b i jec t ion f rom X o n t o V, d o m ( J i °f°h~l)= h(domf) a l so . N o w
let y £ d o m i p ( / ) . T h e n y = h(x) w h e r e x £ d o m / a n d {h°f°h'i){y) =
h(f(x)). Now

Thus q>(x,f(x)) maps ^i(x) onto <p(f)(h(x)). We also have that

ran <p(x,f{x\) = dom(<p(x,/(x)))"1 = dom <p((x,f(x))~') = dom <p(f(x), x)

= / i ( d o m < / ( * ) , * » =

Hence <p(f)(h(x)) = fc (/(*)) and so (p(f)= h° f° h~\ Thus 2) has been
established.

To complete the first part of the proof it must be shown that h is unique.
Therefore suppose g is a bijection from X onto Y satisfying 1) and 2). Let
x G X Because g satisfies 2) we get that <p(x, x) = g °(x, x)°g~' . But
cp(x,x) = (h(x), Ji(x)). Hence g" ' ( / i (x))=x and g(x) = h(x). Thus g = h and
/i is unique.
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To show the converse of the theorem suppose that 3(X) and 3(Y) are
maximal and h is a bijection from X onto Y satisfying 1). For fG3(X)
define <p(/) = h°f°h~\ It must be shown that cp is an isomorphism from
3>(X) onto J(Y). First we show that <p(/)G^(Y). We have dom<p(/) =
h(domf). But h(domf)G&(Y) by 1) since dom/G &(X). Now ran <p(f) =
dom(((p(/))"') = dom((/i°/° ft"1)"1) = h(ran/). Again, by 1), ran(p(/)E
^(Y). Clearly <p(/) is an injective map. Now let FE &(Y) and set
dom (p (/) = V. Then

cp(f)(F)=<p(f)(Fn V) = (hofoh-1)(Fn V).

Now Ffl VeSP(Y) and so, by requirement 1), h~\Fn V)G^(X). But
then (/ofc-'MFn V)G^(X) also and hence (/i»/4"')(Fn V)Gf(y).
Thus <p(f)(FD V)(E&(Y). Likewise (<p(f))\F)e &(Y) also. Since ^(Y)is
maximal we have that (p(f)GJ(Y). Thus <p maps ^(X) into 3(Y). If
g G $(Y) then it can easily be shown that the map h'l°g ° h belongs to 3(X)
(using the maximality of 3(X) and the fact that h satisfies 1)). Clearly
<p(h~'°g °h) = g and so <p maps 3(X) onto 3(Y). Since h is injective <p must
also be injective. To complete the proof it only must be shown that <p is a
homomorphism. Let /, g G -^PO- Then

This shows that <p is an isomorphism from 3(X) onto
This theorem will now be used to prove isomorphism theorems for

where X is a 7\ space, for 3K{X) where X is a k-space, and for 3S(X) where
X is a semilattice.

COROLLARY 3.2. Suppose X and Y are nonempty topological Ti spaces.
For each isomorphism <p from 3F(X) onto 3F(Y) there exists a unique
homeomorphism h from X onto Y such that <p(f) = h °f°h~* for each
/ G ^ F ( X ) . Conversely, if h is a homeomorphism from X onto Y, then the
mapping <p, defined by <p(f) = h°f°h~l for each f E 3F(X), is an isomorphism
from JF(X) onto

PROOF Since X and Y are 7\ spaces, they satisfy the conditions of the
theorem. If <p is an isomorphism from 3F(X) onto JF(Y) then there is a
unique bijection h from X onto Y satisfying 1) and 2). This just means that h
is a homeomorphism.

It can easily be shown that the sets 3F(X) and J>F( Y) are maximal. Thus
the converse also follows from the last theorem.
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A topological T2 space X is a k -space if a set A C X is closed if and only
if the intersection A D K is closed for every compact set K c X . The class of
k -spaces includes all locally compact T2 spaces as well as all first countable T2

spaces (Dugundji (1966)). A useful advantage in working with k -spaces is that
in order to show that a bijection h from one such space X onto another such
space Y is a homeomorphism, it is sufficient to show that both h and h "' carry
compact sets onto compact sets. With this additional fact in mind the next
result follows in much the same manner as the last corollary.

COROLLARY 3.3. Suppose X and Y are nonempty 7\ spaces. For each
homeomorphism h from X onto Y, the mapping <p, defined by <p(/) = h ° f° h~*
foreachf E $K(X), is an isomorphism from JK(X) onto J>K(Y). IfXand Yare
k-spaces then the converse holds in the sense that for each isomorphism (p from
JK(X) onto JK( Y), there exists a unique homeomorphism hfrom Xonto Y such
that <p(f)=h°f°h~' for each f E JK(X).

Recall that a set X is a semilattice if X is a commutative semigroup and
every element of X is idempotent. Then ^s(X) will consist of all isomor-
phisms between subsemilattices of the semilattice X (the empty set is
considered to be a subsemilattice of X). A bijection h from a semilattice X
onto a semilattice Y is called a dual isomorphism if for every a,b EX, ab = a
if and only if h{a)h(b) = h(b).

THEOREM 3.4. Suppose X and Y are semilattices. If <p is an isomorphism
from ^s(X) onto $s(Y) then there exists a unique bijection h from X onto Y
such that <p(f)= h°f°h~' for every f E Js (X). Either h is an isomorphism or X
and Y are chains and h is a dual isomorphism. Conversely, if h is an
isomorphism from X onto Y or both X and Y are chains and h is a dual
isomorphism then the map (p, defined by <p(/) = h ° / ° h'1 for each f G $s(X), is
an isomorphism from Js(X) onto JS(Y).

PROOF. Suppose <p is an isomorphism from SS(X) onto #s(Y). If X = 0
then | $s(X)| = 1 and | JPS(V)| = 1 also and Y = 0 . Hence suppose X ^ 0 and
Y/ 0 . Since X and Y are semilattices we have that {x} is a subsemilattice of
X for every x E. X and {y} is a subsemilattice of Y for every y E Y. We now
apply Theorem 3.1 to get a unique bijection h from X onto Y such that
ip (/) = h ° / ° h ~l for / G #s (X). This means that K is a subsemilattice of X if
and only if h(K) is a subsemilattice of Y. First suppose that there exist
x, y G X such that xy ̂  x and xy / y. Then K = {x, y, xy} is a subsemilattice of
X and so h(K) = \h(x), h(y), h(xy)} is a subsemilattice of Y. Thus
h(x)h(y)Eh(K). If h(x)h(y)=h(x) or h(x)h(y)= h(y) then {h(x),h(y)}
is a subsemilattice of V and so {x, y} is a subsemilattice of X which is a
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contradiction. Thus h(x)h(y) = h(xy). Now let a and ft be distinct elements
of X. If aft/ a and aft/ b then h{ab) = h(a)h(b) by the above reasoning.
Hence suppose ab = a. Recall that we are assuming that there exist x, y £ X
such that xy / x and xy / y and so we have that h(x)h(y)= h(xy), Define a
map / £ $s(X) from {.xy, x} onto {a, b} by /(xy) = a, /(x) = b. Then / is an
isomorphism. Thus <p(f) is an isomorphism which maps {h(xy),h(x)} onto
{h(a),h(b)} and so

<p (/) (h (xy ))<p (/) {h(x))=<p (/) (/i (xy )fc (x)).

Now

h(xy)h(x) = h(x)h{y)h{x) = fc(y)*(x) = M*y)

and so

h(f(xy)) = (hof°h-')(h(xy))=<p(f)(h(xy))

= <p{f)(h(xy)h(x))= q>if)[h(xy))<pif){h{x))

= h(f(xy))h(f(x))=

Thus h(a)h(b')= h(a)= h(ab) and so h is an isomorphism from X onto Y.
Now suppose there do not exist elements x, y £ X such that xy/x and
xy / y. Then X is just a chain. If x, y £ X with xy = x and h(x)h(y) = fo(x)
then by the same reasoning as before we have that h(a)h(b) = h(ab) for all
a, b E. X (define an isomorphism / from {x, y} onto {a,b}). Thus /i is an
isomorphism. Now suppose X is a chain, x and y belong to X, xy = x but
h(x)h(y)^ h(x). Since {h(x),h(y)} is a subsemilattice we must have that
h (x)h (y) = fi (y). Now every pair of elements in Y forms a subsemilattice and
so Y is a chain also. Let a, b £ X with aft = a. Then as before define a map /
from {x, y} onto {a, ft} by f(x)= a, / (y)= ft. Then <p(/) is an isomorphism
from {h(x),h(y)} onto {h(a), h(b)}. Hence

Now we have a bijection h from the chain X onto the chain V which satisfies
the condition that if aft = a then h(a)h(b)= h(b). This means that h is a
dual isomorphism from X onto Y.

For the converse of the theorem first suppose that h is an isomorphism
from X onto Y. It is straightforward to show that <p, defined by <p{f) =
h ° f ° h~\ is an isomorphism from ^S(X) onto JfsiY). Now suppose h is a
dual isomorphism from the chain X onto the chain V. Define <p(/) =
h°f°h'. Then dom cp (f) = h (dom f) which is a subsemilattice of Y. Also
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ran«p(/) is a subsemilattice of Y. Let h(x), h(y)E dom (f(J). Then x, y G
dom/. Suppose h(x)h(y) = h(x). Then xy = y (ft is a dual isomorphism).
Hence f(x)f(y) = /(y) and so h{f{x))h(f{y))= h(f{x)). Now

Thus <p(/)G^s(V). It is straightforward to show that <p is an isomorphism
from ys(X) onto ^S(Y).

Note that if two finite chains are dual isomorphic then they are
isomorphic. This is clearly not so in the infinite case. The last theorem says
that if X and Y are semilattices then ^s(X) and J?s( Y) are isomorphic if and
only if X and Y are isomorphic or are dual isomorphic infinite chains.

Added in proof (3 November 1976). Corollary 3.2 also follows from a
paper by W. J. Thron called 'Lattice-equivalence of topological spaces' in the
Duke Mathematical Journal 29 (1962), 671-679.
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