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ISOMORPHISMS BETWEEN LEFT AND RIGHT ADJOINTS

H. FAUSK, P. HU, AND J.P. MAY

ABSTRACT. There are many contexts in algebraic geometry, algebraic topology, and
homological algebra where one encounters a functor that has both a left and right ad-
joint, with the right adjoint being isomorphic to a shift of the left adjoint specified by
an appropriate “dualizing object”. Typically the left adjoint is well understood while
the right adjoint is more mysterious, and the result identifies the right adjoint in fa-
miliar terms. We give a categorical discussion of such results. One essential point is
to differentiate between the classical framework that arises in algebraic geometry and
a deceptively similar, but genuinely different, framework that arises in algebraic topol-
ogy. Another is to make clear which parts of the proofs of such results are formal. The
analysis significantly simplifies the proofs of particular cases, as we illustrate in a sequel
discussing applications to equivariant stable homotopy theory.
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1. Introduction

We shall give a categorical discussion of Verdier and Grothendieck isomorphisms on the
one hand and formally analogous results whose proofs involve different issues on the other.
Our point is to explain and compare the two contexts and to differentiate the formal
issues from the substantive issues in each. The philosophy goes back to Grothendieck’s
“six operations” formalism. We give background in §2. We fix our categorical framework,
explain what the naive versions of our theorems say, and describe which parts of their
proofs are formal in §§3–6. This discussion does not require triangulated categories. Its
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hypotheses and conclusions make sense in general closed symmetric monoidal categories,
whether or not triangulated. In practice, that means that the arguments apply equally
well before or after passage to derived categories.

After giving some preliminary results about triangulated categories in §7, we explain
the formal theorems comparing left and right adjoints in §8. Our “formal Grothendieck
isomorphism theorem” is an abstraction of results of Amnon Neeman, and our “formal
Wirthmüller isomorphism theorem” borrows from his ideas. His paper [25] has been
influential, and he must be thanked for catching a mistake in a preliminary version by the
third author. We thank Gaunce Lewis for discussions of the topological context, and we
thank Sasha Beilinson and Madhav Nori for making clear that, contrary to our original
expectations, the context encountered in algebraic topology is not part of the classical
context familiar to algebraic geometers. We also thank Johann Sigurdsson for corrections
and emendations.

2. Background and contexts

We start with an overview of the contexts that we have in mind. Throughout, we shall
fix an adjoint pair of functors (f ∗, f∗) relating closed symmetric monoidal categories. We
shall always assume that the left adjoint f ∗ is strong symmetric monoidal, so that it
preserves tensor products up to natural isomorphism.

The notation (f ∗, f∗) meshes with standard notation in algebraic topology and alge-
braic geometry, where one starts with a map f : A −→ B of suitably restricted spaces
or schemes. Here f ∗ and f∗ are pullback (or inverse image) and pushforward (or direct
image) functors that relate the categories of sheaves on A and on B, or the categories
of OA-modules and OB-modules, or that relate the respective derived categories. In such
contexts, there is often another pair of adjoint functors (f!, f

!), where f! is direct image
with compact or proper supports. Unless f is proper, the functor f∗ is not well-behaved,
not even preserving sums, and the functor f! remedies that defect. Here the construction
of the right adjoint f ! to f! is not obvious. Grothendieck’s six functor formalism refers to
the six functors (⊗, Hom, f∗, f

∗, f!, f
!) and especially to base change as f varies. Even to-

day, this intrinsically 2-categorical context cries out for a much more complete categorical
study than exists in the literature.

However, we shall only be concerned with a fixed f . As noted by Lipman [17, p. 119],
even here there is already a non-trivial “coherence problem”, namely the problem of
determining which compatibility diagrams relating the given data necessarily commute.
An early reference for coherence in closed symmetric monoidal categories is [8], and the
volume [14] contains several papers on the subject and many references. In particular, G.
Lewis [15] gives a partial coherence theorem for closed monoidal functors. The categorical
theory of coherence is relevant to the study of “compatibilities” that focuses on base
change maps and plays an important role in the literature in algebraic geometry [1, 6, 7, 11]
and especially Conrad [4]. A study of that is beyond the scope of this note. A full
categorical coherence theorem is not known and would be highly desirable. A start on
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this has been made by Voevodsky [7]. Since his discussion focuses on base change relating
quadruples (f ∗, f∗, f!, f

!), ignoring ⊗ and Hom entirely, it is essentially disjoint from our
discussion. Lipman [17, 18] takes a categorical point of view similar to ours, but he also
leaves a full treatment of coherence as a problem for future work.

When f is proper, f∗ = f! and thus f ! is right adjoint to the right adjoint f∗ of
the strong symmetric monoidal functor f ∗. Under favorable circumstances, the usu-
ally unfamiliar functor f ! can be computed in terms of the usually familiar functor f ∗.
This gives one starting point for the vast literature of Grothendieck duality, initiated in
Grothendieck’s paper [10]; see also [1, 4, 6, 5, 11, 17, 18, 25, 29]. The theory extends
to the general context with f∗ �= f!. In the context of derived categories of sheaves over
spaces, this development begins with Verdier’s paper [28]; see also [2, 13, 27].

We shall introduce a categorical “Grothendieck context” that is modelled on the case
f∗ = f! and a categorical “Verdier-Grothendieck context” that is modelled on the general
case of these sheaf theoretical contexts. We shall say a bit more about the sheaf theoretical
specializations later. For now, we merely contrast them with another context, which feels
both similar (or dual) and different. We shall be more precise about the similarities and
differences later. Categorically, starting with two pairs of adjoint functors (f ∗, f∗) and
(f!, f

!) relating the same categories, with f ∗ strong symmetric monoidal, we will arrive at
the Grothendieck context by assuming, in part, that f∗ = f!, so that f ∗ is a left adjoint of
a left adjoint. We might instead assume that f ∗ = f !, in which case the strong symmetric
monoidal functor f ∗ has both a right adjoint f∗ and a left adjoint f!. Here we can seek
to compute the right adjoint f∗ in terms of the left adjoint f!. We illustrate the idea with
two examples.

2.1. Example. Consider a homomorphism f : A −→ B of commutative rings, say
a monomorphism. We have a pullback functor f ∗ from the category of B-modules to
the category of A-modules, and similarly on passage to derived categories. Extension of
scalars, B⊗A X, gives the left adjoint f! of f ∗. Coextension of scalars, HomA(B,X), gives
the right adjoint f∗ of f ∗. Here f ∗ is not strong symmetric monoidal since f ∗(Y ⊗B Z) is
not isomorphic to f ∗Y ⊗A f ∗Z. It is instructive to compare this with the sheaf theoretical
context that starts from the map Spec(f).

There is an interesting variant of this example for which f ∗ is strong symmetric
monoidal. Indeed, assume that A and B are cocommutative Hopf algebras (not nec-
essarily commutative) over a field k and let f : A −→ B be a map of Hopf algebras.
Then the category of A-modules is closed symmetric monoidal with unit object k under
the tensor product and internal hom functor that send A-modules X and W to X ⊗k W

and to Homk(X,W ), with A-actions induced from the coproduct of A. The cocommuta-
tivity of the coproduct implies the symmetry of ⊗k. The same holds for B. The pullback
functor f ∗ is strong symmetric monoidal with respect to these tensor products, and it
still has the left adjoint f! and right adjoint f∗. Observe that f! is not strong symmetric
monoidal since B⊗A (X⊗k W ) is not isomorphic to (B⊗AX)⊗k (B⊗AW ). If B is finitely
generated and free as an A-module, then f∗X = HomA(B,X) is naturally isomorphic to
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f!X = B ⊗A X.

2.2. Example. Consider a homomorphism of groups f : H −→ G, say a monomor-
phism. Let G be any complete and cocomplete closed symmetric monoidal category. We
have a pullback functor f ∗ from the category of G-objects in G to the category of H-
objects in G , and f ∗ has both a left adjoint extension of group action functor f! and
a right adjoint coextension of group action functor f∗. For example, if G is cartesian
monoidal, then f!X = G ×H X and f∗X = HomH(G,X). If G is additive and f(H) has
finite index in G, then f∗X is naturally isomorphic to f!X.

When H and G are compact Lie groups, there are analogous functors f ∗, f!, and f∗
relating the stable homotopy categories of G-spectra and of H-spectra, and there is an
analogous description of f∗ in terms of f!. The first version of such a result was due to
Wirthmüller [30]. In this paper, we will introduce a categorical “Wirthmüller context”
that is modelled on this example, and we shall discuss its specialization to equivariant
stable homotopy theory in the sequel [22].

In the general contexts that we shall introduce, there need be no underlying map “f”
in sight. We give some simple illustrative examples in §5.

3. The starting point: the adjoint pair (f ∗, f∗)

We fix closed symmetric monoidal categories C and D with unit objects IC and ID . We
write ⊗ and Hom for the tensor product and internal hom functor in either category,
and we write X (or X ′, X ′′, or W ) and Y (or Y ′ or Z) generically for objects of C

and objects of D , respectively. We write C (X,W ) and D(Y, Z) for the categorical hom
sets. We let DX = Hom(X, IC ) denote the dual of X, and similarly in D . We let
ev : Hom(X,W )⊗X −→ W denote the evaluation map, that is, the counit of the (⊗, Hom)
adjunction

C (X ⊗ X ′,W ) ∼= C (X, Hom(X ′,W )).

We also fix a strong symmetric monoidal functor f ∗ : D −→ C . This means that we
are given isomorphisms

f ∗ID
∼= IC and f ∗(Y ⊗ Z) ∼= f ∗Y ⊗ f ∗Z, (3.1)

the second natural, that commute with the associativity, symmetry, and unit isomor-
phisms for ⊗ in C and D . We assume throughout that f ∗ has a right adjoint f∗, and we
write

ε : f ∗f∗X −→ X and η : Y −→ f∗f
∗Y

for the counit and unit of the adjunction. This general context is fixed throughout.
The assumption that f ∗ is strong symmetric monoidal has several basic, and well-

known, implications. The adjuncts of the isomorphism f ∗ID
∼= IC and the map

f ∗(f∗W ⊗ f∗X) ∼= f ∗f∗W ⊗ f ∗f∗X
ε⊗ε ��W ⊗ X
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are maps
ID −→ f∗IC and f∗W ⊗ f∗X −→ f∗(W ⊗ X), (3.2)

the second natural. These are not usually isomorphisms. This means that f∗ is lax
symmetric monoidal.

The adjunct of the map

f ∗ Hom(Y, Z) ⊗ f ∗Y ∼= f ∗(Hom(Y, Z) ⊗ Y )
f∗(ev)��f ∗Z

is a natural map
α : f ∗ Hom(Y, Z) −→ Hom(f ∗Y, f ∗Z). (3.3)

It may or may not be an isomorphism in general, and we say that f ∗ is closed symmetric
monoidal if it is. However, the adjunct of the composite map

f ∗ Hom(Y, f∗X) α �� Hom(f ∗Y, f ∗f∗X)
Hom(id,ε) �� Hom(f ∗Y,X)

is a natural isomorphism

Hom(Y, f∗X) ∼= f∗ Hom(f ∗Y,X). (3.4)

In particular, Hom(Y, f∗IC ) ∼= f∗Df ∗Y . Indeed, we have the following two chains of
isomorphisms of functors.

D(Z, Hom(Y, f∗X)) ∼= D(Z ⊗ Y, f∗X) ∼= C (f ∗(Z ⊗ Y ), X)

D(Z, f∗ Hom(f ∗Y,X)) ∼= C (f ∗Z, Hom(f ∗Y,X)) ∼= C (f ∗Z ⊗ f ∗Y,X)

By the Yoneda lemma and a check of maps, these show immediately that the assumed
isomorphism of functors in (3.1) is equivalent to the claimed isomorphism of functors
(3.4). That is, the isomorphism of left adjoints in (3.1) is adjunct, or “conjugate”, to the
isomorphism of right adjoints in (3.4). Systematic recognition of such conjugate pairs of
isomorphisms can substitute for quite a bit of excess verbiage in the older literature. We
call this a “comparison of adjoints” and henceforward leave the details of such arguments
to the reader.

Using the isomorphism (3.4), we obtain the following natural map β, which is analo-
gous to both α and the map of (3.2). Like the latter, it is not usually an isomorphism.

β : f∗ Hom(X,W )
f∗ Hom(ε,id) ��f∗ Hom(f ∗f∗X,W )

∼= �� Hom(f∗X, f∗W ). (3.5)

Using (3.2), we also obtain a natural composite

π : Y ⊗ f∗X
η⊗id ��f∗f

∗Y ⊗ f∗X ��f∗(f
∗Y ⊗ X). (3.6)

Like α, it may or may not be an isomorphism in general. When it is, we say that the
projection formula holds.
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We illustrate the need for a systematic treatment of coherence by recording a particular
diagram that commutes in the known examples and whose commutativity should be
incorporated in such a treatment, namely

f ∗DY ⊗ f ∗Y
∼= ��

α⊗id
��

f ∗(DY ⊗ Y )
f∗(ev)�� f ∗ID

∼=
��

Df ∗Y ⊗ f ∗Y ev
�� IC .

(3.7)

We shall need a consequence of this diagram. There is a natural map

ν : DX ⊗ W −→ Hom(X,W ),

namely the adjunct of

DX ⊗ W ⊗ X ∼= DX ⊗ X ⊗ W
ev⊗id
−−−→ IC ⊗ W ∼= W.

The commutativity of the diagram (3.7) implies the commutativity of the diagram

f ∗DY ⊗ f ∗Z
∼= ��

α⊗id

��

f ∗(DY ⊗ Z)
f∗ν �� f ∗ Hom(Y, Z)

α

��
Df ∗Y ⊗ f ∗Z ν

�� Hom(f ∗Y, f ∗Z).

(3.8)

We assume familiarity with the theory of “dualizable” (alias “strongly dualizable” or
“finite”) objects; see [20] for a recent exposition. The defining property is that X is
dualizable if ν : DX ⊗ X −→ Hom(X,X) is an isomorphism. It follows that ν : DX ⊗
W −→ Hom(X,W ) is an isomorphism if either X or W is dualizable. It also follows that
the natural map ρ : X −→ DDX is an isomorphism, but the converse fails in general.
When X ′ is dualizable, we have the duality adjunction

C (X ⊗ X ′, X ′′) ∼= C (X,DX ′ ⊗ X ′′). (3.9)

As observed in [16, III.1.9], (3.1) and the definitions imply the following result.

3.1. Proposition. If Y ∈ D is dualizable, then DY , f ∗Y , and Df ∗Y are dualizable
and, with Z = ID , the map α of (3.3) restricts to an isomorphism

f ∗DY ∼= Df ∗Y. (3.10)

This implies that α and π are often isomorphisms for formal reasons.

3.2. Proposition. If Y ∈ D is dualizable, then

α : f ∗ Hom(Y, Z) −→ Hom(f ∗Y, f ∗Z) and π : Y ⊗ f∗X −→ f∗(f
∗Y ⊗ X)

are isomorphisms for all objects X ∈ C and Z ∈ D . Thus, if all objects of D are
dualizable, then f ∗ is closed symmetric monoidal and the projection formula holds.



ISOMORPHISMS BETWEEN LEFT AND RIGHT ADJOINTS 113

Proof. For the first statement, α coincides with the composite

f ∗ Hom(Y, Z) ∼= f ∗(DY ⊗ Z) ∼= f ∗DY ⊗ f ∗Z ∼= Df ∗Y ⊗ f ∗Z ∼= Hom(f ∗Y, f ∗Z).

For the second statement, π induces the isomorphism of represented functors

D(Z, Y ⊗ f∗X) ∼= D(Z ⊗ DY, f∗X) ∼= C (f ∗(Z ⊗ DY ), X) ∼= C (f ∗Z ⊗ f ∗DY,X)

∼= C (f ∗Z ⊗ Df ∗Y,X) ∼= C (f ∗Z, f ∗Y ⊗ X) ∼= D(Z, f∗(f
∗Y ⊗ X)).

4. The general context: adjoint pairs (f ∗, f∗) and (f!, f
!)

In addition to the adjoint pair (f ∗, f∗) of the previous section, we now assume given a
second adjoint pair (f!, f

!) relating C and D , with f! : C −→ D being the left adjoint.
We write

σ : f!f
!Y −→ Y and ζ : X −→ f !f!X

for the counit and unit of the second adjunction.
The adjunction D(Y, f∗X) ∼= C (f ∗Y,X) can be recovered from the more general

“internal Hom adjunction” Hom(Y, f∗X) ∼= f∗ Hom(f ∗Y,X) of (3.4) by applying the
functor D(ID ,−) and using the assumption that f ∗ID

∼= IC . It seems reasonable to hope
that the adjunction D(f!X,Y ) ∼= C (X, f !Y ) can be recovered by applying the functor
D(ID ,−) to an analogous internal Hom adjunction

Hom(f!X,Y ) ∼= f∗ Hom(X, f !Y ).

However, unlike (3.4), such an adjunction does not follow formally from our hypothe-
ses. Motivated by different specializations of the general context, we consider two triads of
basic natural maps that we might ask for relating our four functors. For the first triad, we
might ask for either of the following two duality maps, the first of which is a comparison
map for the desired internal Hom adjunction.

γ : f∗ Hom(X, f !Y ) −→ Hom(f!X,Y ). (4.1)

δ : Hom(f ∗Y, f !Z) −→ f ! Hom(Y, Z). (4.2)

We might also ask for a projection formula map

π̂ : Y ⊗ f!X −→ f!(f
∗Y ⊗ X), (4.3)

which should be thought of as a generalized analogue of the map π of (3.6). These
three maps are not formal consequences of the given adjunctions, but rather must be
constructed by hand. However, it suffices to construct any one of them.
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4.1. Proposition. Suppose given any one of the natural maps γ, δ, and π̂. Then it
determines the other two by conjugation. The map δ is an isomorphism for all dualizable
Y if and only if its conjugate π̂ is an isomorphism for all dualizable Y . If any one of the
three conjugately related maps is a natural isomorphism, then so are the other two.

4.2. Remark. In the contexts encountered in algebraic geometry, there is a natural
map ι : f!X −→ f∗X and π̂ is a restriction of π along ι, in the sense that the following
diagram commutes.

Y ⊗ f!X
id⊗ι ��

π̂
��

Y ⊗ f∗X

π

��
f!(f

∗Y ⊗ X) ι
�� f∗(f

∗Y ⊗ X)

It is natural to restrict our general context by requiring such a map ι and requiring π̂ to
be such a restriction of π. This gives the context most relevant to algebraic geometry, and
it is a sufficiently rigid context to give a sensible starting point for a categorical study of
coherence that is applicable to base change functors.

The second triad results from the first simply by changing the direction of the arrows.
That is, we can ask for natural maps in the following directions.

γ̄ : Hom(f!X,Y ) −→ f∗ Hom(X, f !Y ). (4.4)

δ̄ : f ! Hom(Y, Z) −→ Hom(f ∗Y, f !Z). (4.5)

π̄ : f!(f
∗Y ⊗ X) −→ Y ⊗ f!X. (4.6)

Here δ̄ is to be viewed as a generalized analogue of the map α of (3.3).

4.3. Proposition. Suppose given any one of the natural maps γ̄, δ̄, and π̄. Then it
determines the other two by conjugation. The map δ̄ is an isomorphism for all dualizable
Y if and only if its conjugate π̄ is an isomorphism for all dualizable Y . If any one of the
three conjugately related maps is a natural isomorphism, then so are the other two.

Of course, when the three maps are isomorphisms, the two triads of maps are inverse
to each other and there is no real difference. However, we are interested in two quite
different specializations: we might have f! = f∗, or we might have f ! = f ∗. Here these
formulas should be interpreted formally, ignoring preassigned notational associations from
particular contexts. The first means that the right adjoint of f ∗ is itself a left adjoint.
The second means that f ∗ is both a left and right adjoint. It is entirely possible that both
of these statements hold, but we shall not consider that situation. The first specialization
occurs frequently in algebraic geometry, and is familiar. The second occurs in algebraic
topology and elsewhere, but seems less familiar. However, it does also appear in algebraic
geometry, in those base change situations where f ∗ has a left adjoint f!; the latter is
sometimes denoted f#, as in [23, 3.1.23], to avoid possible confusion. With the first
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specialization, the first triad of maps arises formally, taking π̂ to be the map π of (3.6).
With the second specialization, the second triad arises formally, taking δ̄ to be the map
α of (3.3). Recall the isomorphism (3.4), the map β of (3.5), and Proposition 3.2.

4.4. Proposition. Suppose f! = f∗. Taking π̂ to be the projection map π of (3.6), the
conjugate map γ is the composite

f∗ Hom(X, f !Y )
β �� Hom(f∗X, f∗f

!Y )
Hom(id,σ) �� Hom(f∗X,Y )

and the conjugate map δ is the adjunct of the map

f∗ Hom(f ∗Y, f !Z) ∼= Hom(Y, f∗f
!Z)

Hom(id,σ) �� Hom(Y, Z).

Moreover, π and δ are isomorphisms if Y is dualizable.

When f ! = f ∗, passage to adjuncts from IC
∼= f ∗ID and the natural map

W ⊗ X
ζ⊗ζ ��f ∗f!W ⊗ f ∗f!X ∼= f ∗(f!W ⊗ f!X)

gives maps, not usually isomorphisms,

f!IC −→ ID and f!(W ⊗ X) −→ f!W ⊗ f!X, (4.7)

the second natural. This means that f! is an op-lax symmetric monoidal functor.

4.5. Proposition. Suppose f ! = f ∗. Taking δ̄ to be the map α of (3.3), the conjugate
map π̄ is the composite

f!(f
∗Y ⊗ X) ��f!f

∗Y ⊗ f!X
σ⊗id ��Y ⊗ f!X

and the conjugate map γ̄ is the adjunct of the map

f ∗ Hom(f!X,Y )
α �� Hom(f ∗f!X, f∗Y )

Hom(ζ,id) �� Hom(X, f∗Y ).

Moreover α and π̄ are isomorphisms if Y is dualizable.

4.6. Definition. We introduce names for the different contexts in sight. In all three,
we start with an adjoint pair (f ∗, f∗), with f ∗ strong symmetric monoidal.
(i) The Verdier-Grothendieck context: There is a second adjoint pair (f!, f

!) and a natural
isomorphism π̂ as in (4.3) (projection formula); there are then conjugately determined
natural isomorphisms γ as in (4.1) and δ as in (4.2).
(ii) The Grothendieck context: The functor f∗ has a right adjoint f ! and the projection
formula holds. That is, the map π of (3.6) is an isomorphism, hence so are the conjugate
maps γ and δ specified in Proposition 4.4.
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(iii) The Wirthmüller context: f ∗ has a left adjoint f! and is closed symmetric monoidal.
That is, the map α of (3.3) is an isomorphism, hence so are the conjugate maps π̄ and γ̄

specified in Proposition 4.5.

We emphasize that these are abstract categorical concepts whose notations are dictated
by consistency with our conceptual framework. Therefore, they cannot be expected to
agree with standard notations in all contexts to which they apply. We remark that
the coherence problem alluded to in §2 and Remark 4.2 should simplify considerably in
either the Grothendieck or the Wirthmüller context, due to the canonicity of the maps in
Propositions 4.4 and 4.5.

We repeat that our categorical results deduce formal conclusions from formal hypothe-
ses and therefore work equally well before or after passage to derived categories. Much
of the work in passing from categories of sheaves to derived categories can be viewed as
the verification that formal properties in the category of sheaves carry over to the same
formal properties in derived categories, although other properties only hold after passage
to derived categories.

While the proofs of Propositions 4.1 and 4.4 are formal, in the applications to algebraic
geometry they require use of unbounded derived categories, since otherwise we would not
have closed symmetric monoidal categories to begin with. These were not available until
Spaltenstein’s paper [27], and he gave one of our formal implications, namely that an
isomorphism (4.3) implies an isomorphism (4.2) [27, 6.19]. Unfortunately, as he makes
clear, in the classical sheaf context his methods fail to give the (f!, f

!) adjunction for all
maps f between locally compact spaces. It seems possible that a model theoretic approach
to unbounded derived categories would allow one to resolve this problem. In any case,
a complete reworking of the theory in model theoretical terms would be of considerable
value.

While Wirthmüller contexts do sometimes arise in algebraic geometry when a base
change functor f ∗ has a left adjoint f!, we do not know of situations where there is a
non-trivial question of proving that f! is isomorphic to a shift of f∗. In the examples of
the Wirthmüller context that we have in mind, where there is such a question, we think of
f ∗ as a forgetful functor that does not alter underlying structure, f! as a kind of extension
of scalars functor, and f∗ as a kind of coextension of scalars functor.

5. Isomorphisms in the Verdier–Grothendieck context

We place ourselves in the Verdier–Grothendieck context in this section.

5.1. Definition. For an object W ∈ C , define DW X = Hom(X,W ), the W -twisted
dual of X. If X or W is dualizable, then DW X ∼= DX ⊗ W . Let ρW : X −→ DW DW X

be the adjunct of the evaluation map DW X ⊗X −→ W . We say that X is W -reflexive if
ρW : X −→ DW DW X is an isomorphism.

Replacing Y by Z in (4.1) and letting W = f !Z, the isomorphisms γ and δ take the



ISOMORPHISMS BETWEEN LEFT AND RIGHT ADJOINTS 117

following form:

f∗DW X ∼= DZf!X and DW f ∗Y ∼= f !DZY. (5.1)

This change of notation and comparison with the classical context of algebraic geome-
try explains why we think of γ and δ as duality maps. If f!X is Z-reflexive, the first
isomorphism implies that

f!X ∼= DZf∗DW X. (5.2)

If Y is isomorphic to DZY ′ for some Z-reflexive object Y ′, the second isomorphism implies
that

f !Y ∼= DW f ∗DZY. (5.3)

These observations and the classical context suggest the following definition.

5.2. Definition. A dualizing object for a full subcategory C0 of C is an object W of
C such that if X ∈ C0, then DW X is in C0 and X is W -reflexive. Thus DW specifies an
auto–duality of the category C0.

5.3. Remark. In algebraic geometry, we often encounter canonical subcategories C0 ⊂
C and D0 ⊂ D such that f!C0 ⊂ D0 and f !D0 ⊂ C0 together with a dualizing object Z

for D0 such that W = f !Z is a dualizing object for C0. In such contexts, (5.2) and (5.3)
express f! on C0 and f ! on D0 in terms of f∗ and f ∗.

For any objects Y and Z of D , the adjunct of the map

f!(f
∗Y ⊗ f !Z) ∼= Y ⊗ f!f

!Z
id⊗σ ��Y ⊗ Z

is a natural map

φ : f ∗Y ⊗ f !Z −→ f !(Y ⊗ Z). (5.4)

It specializes to

φ : f ∗Y ⊗ f !ID −→ f !Y, (5.5)

which of course compares a right adjoint to a shift of a left adjoint. A Verdier–Grothendieck
isomorphism theorem asserts that the map φ is an isomorphism; in the context of sheaves
over spaces such a result was announced by Verdier in [28, §5]. The following observation
abstracts a result of Neeman [25, 5.4]. In it, we only assume the projection formula for
dualizable Y .

5.4. Proposition. The map φ : f ∗Y ⊗ f !Z −→ f !(Y ⊗ Z) is an isomorphism for all
objects Z and dualizable objects Y .
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Proof. Using Proposition 3.1, the projection formula, duality adjunctions (3.9), and
the (f!, f

!) adjunction, we obtain isomorphisms

C (X, f∗Y ⊗ f !Z) ∼= C (f ∗DY ⊗ X, f !Z) ∼= D(f!(f
∗DY ⊗ X), Z)

∼= D(DY ⊗ f!X,Z) ∼= D(f!X,Y ⊗ Z) ∼= C (X, f !(Y ⊗ Z)).

Diagram chasing shows that the composite isomorphism is induced by φ.

It is natural to ask when φ is an isomorphism in general, and we shall return to that
question in the context of triangulated categories. Of course, this discussion specializes
and remains interesting in the Grothendieck context f! = f∗.

We give some elementary examples of the Verdier–Grothendieck context.

5.5. Example. An example of the Verdier–Grothendieck context is already available
with C = D and f ∗ = f∗ = Id. Fix an object C of C and set

f!X = X ⊗ C and f !(Y ) = Hom(C, Y ).

The projection formula f!(f
∗Y ⊗ Z) ∼= Y ⊗ f!Z is the associativity isomorphism

(Y ⊗ Z) ⊗ C ∼= Y ⊗ (Z ⊗ C).

The map φ : f ∗Y ⊗ f !Z −→ f !(Y ⊗ Z) is the canonical map

ν : Y ⊗ Hom(C,Z) −→ Hom(C, Y ⊗ Z).

It is an isomorphism if Y is dualizable, and it is an isomorphism for all Y if and only if
C is dualizable. Variants of this example are important in local duality theory; see for
example [1, 2.1, p. 10].

The shift of an adjunction by an object of C used in the previous example generalizes
to give a shift of any Verdier-Grothendieck context by an object of C .

5.6. Definition. For an adjoint pair (f!, f
!) and an object C ∈ C , define the twisted

adjoint pair (fC
! , f !

C) by

fC
! (X) = f!(X ⊗ C) and f !

CY = Hom(C, f !Y ). (5.6)

5.7. Proposition. If (f ∗, f∗) and (f!, f
!) are in the Verdier-Grothendieck context, then

so are (f ∗, f∗) and (fC
! , f !

C).

Proof. The isomorphism π̂ of (4.3) shifts to a corresponding isomorphism π̂C .
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We also give a simple example of the context of Definition 5.2. Recall that dualizable
objects are IC -reflexive, but not conversely in general. The following observation parallels
part of a standard characterization of “dualizing complexes” [11, V.2.1]. Let dC denote
the full subcategory of dualizable objects of C .

5.8. Proposition. IC is W -reflexive if and only if all X ∈ dC are W -reflexive.

Proof. Since IC is dualizable, the backwards implication is trivial. Assume that IC

is W -reflexive. Since W ∼= DW IC , Hom(W,W ) = DW W ∼= DW DW IC . In any closed
symmetric monoidal category, such as C , we have a natural isomorphism

Hom(X ⊗ X ′, X ′′) ∼= Hom(X, Hom(X ′, X ′′)),

where X, X ′, and X ′′ are arbitrary objects. When X is dualizable,

ν : DX ⊗ X ′ −→ Hom(X,X ′)

is an isomorphism for any object X ′. Therefore

DW DW X ∼= Hom(DX ⊗ W,W ) ∼= Hom(DX, Hom(W,W )) ∼= DDX ⊗ DW DW IC .

Identifying X with X ⊗ IC , is easy to check that ρW corresponds under this isomorphism
to ρIC

⊗ ρW . The conclusion follows.

5.9. Corollary. Let W be dualizable. Then the following are equivalent.

(i) W is a dualizing object for dC .

(ii) IC is W -reflexive.

(iii) W is invertible.

(iv) DW : dC op −→ dC is an auto–duality of dC .

Proof. If X is dualizable, then DW X ∼= DX ⊗W is dualizable. Proposition 5.8 shows
that (i) and (ii) are equivalent, and it is clear that (iii) and (iv) are equivalent. Since
W is dualizable, DW DW IC

∼= Hom(W,W ) ∼= W ⊗ DW , with ρW corresponding to the
coevaluation map coev : IC −→ W ⊗DW . By [20, 2.9], W is invertible if and only if coev
is an isomorphism. Therefore (ii) and (iii) are equivalent.
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Finally, we have a shift comparison of Grothendieck and Wirthmüller contexts.

5.10. Remark. Start in the Grothendieck context, so that f! = f∗, and assume that
the map φ : f ∗Y ⊗ f !ID −→ f !Y of (5.5) is an isomorphism. Assume further that f !ID is
invertible and let C = Df !ID . Define a new functor f! by f!X = f∗(X ⊗ f !ID). Then f!

is left adjoint to f ∗. Replacing X by X ⊗ C, we see that

f∗X ∼= f!(X ⊗ C).

In the next section, we shall consider isomorphisms of this general form in the Wirthmüller
context. Conversely, start in the Wirthmüller context, so that f ! = f ∗, and assume given
a C such that f∗ID

∼= f!C and the map ω : f∗X −→ f!(X ⊗ C) of (6.6) below is an
isomorphism. Define a new functor f ! by f !Y = Hom(C, f∗Y ) and note that f !IC

∼= DC.
Then f ! is right adjoint to f∗. If either C or Y is dualizable, then Hom(C, f∗Y ) ∼=
f ∗Y ⊗ DC and thus f ∗Y ⊗ f !ID

∼= f !Y , which is an isomorphism of the same form as in
the Grothendieck context.

6. The Wirthmüller isomorphism

We place ourselves in the Wirthmüller context in this section, with f ! = f ∗. Here the
specialization of the Verdier–Grothendieck isomorphism is of no interest. In fact, φ reduces
to the originally assumed isomorphism (3.1). However, there is now a candidate for an
isomorphism between the right adjoint f∗ of f ∗ and a shift of the left adjoint f!. This
is not motivated by duality questions, and it can already fail on dualizable objects. We
assume in addition to the isomorphisms α = δ̄, hence π̄ and γ̄, that we are given an object
C ∈ C together with an isomorphism

f∗IC
∼= f!C. (6.1)

Observe that the isomorphism γ̄ specializes to an isomorphism

Df!X ∼= f∗DX. (6.2)

Taking X = IC in (6.2) and using that DIC
∼= IC , we see that (6.1) is equivalent to

Df!IC
∼= f!C. (6.3)

This version is the one most naturally encountered in applications, since it makes no
reference to the right adjoint f∗ that we seek to understand. In practice, f!IC is dualizable
and C is dualizable or even invertible. It is a curious feature of our discussion that it does
not require such hypotheses.

Replacing C by IC ⊗C in (6.1), it is reasonable to hope that it continues to hold with
IC replaced by a general X. That is, we can hope for a natural isomorphism

f∗X ∼= f♯X, where f♯X ≡ f!(X ⊗ C). (6.4)
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Note that we twist by C before applying f!. We shall shortly define a particular natural
map ω : f∗X −→ f♯X. A Wirthmüller isomorphism theorem asserts that ω is an isomor-
phism. We shall show that if f!IC is dualizable and X is a retract of some f ∗Y , then ω

is an isomorphism. However, even for dualizable X, ω need not be an isomorphism in
general. A counterexample is given in the sequel [22]. We shall also give a categorical
criterion for ω to be an isomorphism for a particular object X. An application is also
given in [22].

Using the map ID −→ f∗IC of (3.2), the assumed isomorphism f∗ID
∼= f!C gives rise

to maps

τ : ID −→ f∗IC
∼= f!C

and

ξ : f ∗f!C ∼= f ∗f∗IC

ε ��IC

such that

ξ ◦ f ∗τ = id: IC −→ IC .

Using the alternative defining property (6.3) of C, we can obtain alternative descriptions
of these maps that avoid reference to the functor f∗ we seek to understand.

6.1. Lemma. The maps τ and ξ coincide with the maps

ID
∼= DID

Dσ ��Df!f
∗ID

∼= Df!IC
∼= f!C

and

f ∗f!C ∼= f ∗Df!IC
∼= Df ∗f!IC

Dζ ��DIC
∼= IC .

Proof. The proofs are diagram chases that use, in addition to (6.3), the naturality of
η and ε, the triangular identities for the (f!, f

∗) adjunction, and the description of γ̄ in
Proposition 4.5.

Using the isomorphism (4.6), we extend τ to the natural map

τ : Y ∼= Y ⊗ ID

id⊗τ ��Y ⊗ f!C ∼= f!(f
∗Y ⊗ C) = f♯f

∗Y. (6.5)

Specializing to Y = f∗X, we obtain the desired comparison map ω as the composite

ω : f∗X
τ ��f♯f

∗f∗X
f♯ε ��f♯X. (6.6)

An easy diagram chase using the triangular identity ε ◦ f ∗η = id shows that

ω ◦ η = τ : Y −→ f♯f
∗Y. (6.7)

If ω is an isomorphism, then τ must be the unit of the resulting (f ∗, f♯) adjunction.
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Similarly, using (3.1) and (4.6), we extend ξ to the natural map

ξ : f ∗f♯f
∗Y = f ∗f!(f

∗Y ⊗ C) ∼= f ∗Y ⊗ f ∗f!C
id⊗ξ ��f ∗Y ⊗ IC

∼= f ∗Y. (6.8)

We view ξ as a partial counit, defined not for all X but only for X = f ∗Y . Since
ξ ◦ f ∗τ = id: IC −→ IC , it is immediate that

ξ ◦ f ∗τ = id: f ∗Y −→ f ∗Y, (6.9)

which is one of the triangular identities for the desired (f ∗, f♯) adjunction. Define

ψ : f♯f
∗Y −→ f∗f

∗Y (6.10)

to be the adjunct of ξ. The adjunct of the relation (6.9) is the analogue of (6.7):

ψ ◦ τ = η : Y −→ f∗f
∗Y. (6.11)

6.2. Proposition. If Y or f!IC is dualizable, then ω : f∗f
∗Y −→ f♯f

∗Y is an iso-
morphism with inverse ψ. If ψ is an isomorphism for all Y , then f!IC is dualizable. If
X is a retract of some f ∗Y , where Y or f!IC is dualizable, then ω : f∗X −→ f♯X is an
isomorphism.

Proof. With X = f ∗Y , the first part of the proof of the following result gives that
ψ ◦ ω = id, so that ω = ψ−1 when ψ is an isomorphism. We claim that ψ coincides with
the following composite:

f♯f
∗Y = f!(f

∗Y ⊗ C) ∼= Y ⊗ D(f!IC )
ν
−→ Hom(f!IC , Y ) ∼= f∗ Hom(IC , f ∗Y ) = f∗f

∗Y.

Here the isomorphisms are given by (4.6) and (6.3) and by (4.4). Since ν is an isomorphism
if Y or f!IC is dualizable, the claim implies the first statement. Note that ψ = f∗ξ ◦ η

and that the isomorphism γ̄ of (4.4) is f∗ Hom(ζ, id) ◦ f∗α ◦ η. Using the naturality of η

and the description of ξ in Lemma 6.1, an easy, if lengthy, diagram chase shows that the
diagram (3.8) gives just what is needed to check the claim. The second statement is now
clear by the definition of dualizability; indeed, it suffices to consider Y = f!IC . The last
statement follows from the first since a retract of an isomorphism is an isomorphism.

We extract a criterion for ω to be an isomorphism for a general object X from the
usual proof of the uniqueness of adjoint functors [19, p. 85].

6.3. Proposition. If there is a map ξ : f ∗f♯X = f ∗f!(X ⊗ C) −→ X such that

f♯ξ ◦ τ = id: f♯X −→ f♯X (6.12)
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and the following (partial naturality) diagram commutes, then ω : f∗X −→ f♯X is an
isomorphism with inverse the adjunct ψ of ξ.

f ∗f♯f
∗f∗X

ξ ��

f∗f♯ε

��

f ∗f∗X

ε

��
f ∗f♯X

ξ
�� X

(6.13)

Moreover, (6.12) holds if and only if the following diagram commutes.

X ⊗ C
ζ ��

ζ

��

f ∗f!(X ⊗ C)

f ∗f!(X ⊗ C)
f∗τ

�� f ∗f!(f
∗f!(X ⊗ C) ⊗ C)

f∗f!(ξ⊗id)

��
(6.14)

Proof. In the diagram (6.13), the top map ξ is given by (6.8). The diagram and the
relation ξ ◦f ∗τ = id of (6.9) easily imply the relation ξ ◦f ∗ω = ε, which is complementary
to the defining relation ε ◦ f ∗ψ = ξ for the adjunct ψ. Passage to adjuncts gives that
ψ ◦ω = id. The following diagram commutes by (6.7), the triangular identity f∗ε◦η = id,
the naturality of η and ω, and the fact that ψ is adjunct to ξ. It gives that ω ◦ ψ =
f♯ξ ◦ τ = id.

f♯X
τ ��

η

�����������

ψ

��

f♯f
∗f♯X

f♯ξ

��

����������

����������

f∗f
∗f♯X

ω ��

f∗f∗ψ

��

f♯f
∗f♯X

f♯f
∗ψ

��
f∗f

∗f∗X
ω ��

f∗ε

��

f♯f
∗f∗X

f♯ε

������������

f∗X

η
�����������

f∗X ω
�� f♯X.

The last statement is clear by adjunction.

6.4. Remark. The map ω can be generalized to the Verdier–Grothendieck context.
For that, we assume given an object W of C such that

f!C ∼= Df!f
!ID ;

compare (6.3). As in Lemma 6.1, we then have the map

τ : ID
∼= DID

Dσ ��Df!f
!ID

∼= f!C.
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This allows us to define the comparison map

ω : f∗X ∼= f∗X ⊗ ID

id⊗τ ��f∗X ⊗ f!W ∼= f!(f
∗f∗X ⊗ C)

f!(ε⊗id)��f!(X ⊗ C).

A study of when this map ω is an isomorphism might be of interest, but we have no
applications in mind. We illustrate the idea in the context of Example 5.5.

6.5. Example. Returning to Example 5.5, we seek an object C ′ of C such that
f!C

′ ∼= D(f!f
!IC ), which is

C ′ ⊗ C ∼= D(DC ⊗ C).

If C is dualizable, then the right side is isomorphic to C ⊗ DC ∼= DC ⊗ C and we can
take C ′ = DC. Here the map

ω : X = f∗X −→ f!(X ⊗ DC) = X ⊗ DC ⊗ C

turns out to be id⊗(γ ◦coev), where coev : IC −→ C⊗DC is the coevaluation map of the
duality adjunction (3.9) and γ is the symmetry isomorphism for ⊗. We conclude (e.g.,
by [20, 2.9]) that ω is an isomorphism if and only if C is invertible.

7. Preliminaries on triangulated categories

We now go beyond the hypotheses of §§3–6 to the triangulated category situations that
arise in practice. We assume that C and D are triangulated and that the functors (−)⊗X

and f ∗ are exact (or triangulated). This means that they are additive, commute with Σ
up to natural isomorphism, and preserve distinguished triangles. For (−) ⊗ X, this is a
small part of the appropriate compatibility conditions that relate distinguished triangles
to ⊗ and Hom in well-behaved triangulated closed symmetric monoidal categories; see
[21] for a discussion of this, as well as for basic observations about what triangulated
categories really are: the standard axiom system is redundant and unnecessarily obscure.
We record the following easily proven observation relating adjoints to exactness (see for
example [24, 3.9]).

7.1. Lemma. Let F : A −→ B and G : B −→ A be left and right adjoint functors
between triangulated categories. Then F is exact if and only if G is exact.

We also record the following definitions (see for example [12, 25]).

7.2. Definition. A full subcategory B of a triangulated category C is thick if any
retract of an object of B is in B and if the third object of a distinguished triangle with
two objects in B is also in B. The category B is localizing if it is thick and closed under
coproducts. The smallest thick (respectively, localizing) subcategory of C that contains a
set of objects G is called the thick (respectively, localizing) subcategory generated by G .
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7.3. Definition. An object X of an additive category A is compact, or small, if
the functor A (X,−) converts coproducts to direct sums. The category A is compactly
detected if it has arbitrary coproducts and has a set G of compact objects that detects
isomorphisms, in the sense that a map f in A is an isomorphism if and only if A (X, f)
is an isomorphism for all X ∈ G . When A is symmetric monoidal, we require its unit
object to be compact and we include it in the detecting set G .

When A is triangulated, this is equivalent to a definition given by Neeman [25, 1.7]
(who used the term “generated” instead of “detected”), and we have the following gener-
alization of a result of his [25, 5.1].

7.4. Lemma. Let A be a compactly detected additive category with detecting set G and
let B be any additive category. Let F : A −→ B be an additive functor with right adjoint
G. If G preserves coproducts, then F preserves compact objects. Conversely, if F (X) is
compact for X ∈ G , then G preserves coproducts.

Proof. Let X ∈ A and let {Yi} be a set of objects of B. Then the evident map
f : ∐ G(Yi) −→ G(∐Yi) induces a map

f∗ : A (X,∐G(Yi)) −→ A (X,G(∐Yi)).

If X is compact and f∗ is an isomorphism, then, by adjunction and compactness, it induces
an isomorphism

∐B(F (X), Yi) −→ B(F (X),∐Yi),

which shows that F (X) is compact. Conversely, if X and F (X) are both compact, then
f∗ corresponds under adjunction to the identity map of ∐B(F (X), Yi) and is therefore
an isomorphism. Restricting to X ∈ G , it follows from Definition 7.3 that f is an isomor-
phism.

While this result is elementary, it is fundamental to the applications. We generally
have much better understanding of left adjoints, so that the compactness criterion is
verifiable, but it is the preservation of coproducts by right adjoints that is required in all
of the formal proofs.

Returning to triangulated categories, we connect the notion of a generating set of
objects from Definition 7.2 with the notion of a detecting set of objects from Definition
7.3. Its first part is [25, 3.2] (and is also given by the proof of [12, 2.3.2]). Its second part
is [12, 2.1.3(d)].

7.5. Proposition. Let A be a compactly detected triangulated category with detecting
set G . Then the localizing subcategory generated by G is A itself. If the objects of G are
dualizable, then the thick subcategory generated by G is the full subcategory of dualizable
objects in A , and an object is dualizable if and only if it is compact.

The following standard observation works in tandem with the previous result.
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7.6. Proposition. Let F, F ′ : A −→ B be exact functors between triangulated cate-
gories and let φ : F −→ F ′ be a natural transformation that commutes with Σ. Then the
full subcategory of A whose objects are those X for which φ is an isomorphism is thick,
and it is localizing if F and F ′ preserve coproducts.

Proof. Since a retract of an isomorphism is an isomorphism, closure under retracts
is clear. Closure under triangles is immediate from the five lemma. A coproduct of iso-
morphisms is an isomorphism, so closure under coproducts holds when F and F ′ preserve
coproducts.

8. The formal isomorphism theorems

We assume throughout this section that C and D are closed symmetric monoidal cate-
gories with compatible triangulations and that (f ∗, f∗) is an adjoint pair of functors with
f ∗ strong symmetric monoidal and exact.

For the Wirthmüller context, we assume in addition that f ∗ has a left adjoint f!. The
maps (4.4)–(4.6) are then given by (3.3) and Proposition 4.5. When

π̄ : f!(f
∗Y ⊗ X) −→ Y ⊗ f!X

is an isomorphism, the map
ω : f∗X −→ f!(X ⊗ C)

is defined. Observe that π̄ is a map between exact left adjoints and that π̄ and ω commute
with Σ. The results of the previous section give the following conclusion.

8.1. Theorem. [Formal Wirthmüller isomorphism] Let C be compactly detected with a
detecting set G such that π̄ and ω are isomorphisms for X ∈ G . Then π̄ is an isomorphism
for all X ∈ C . If all X ∈ G are dualizable, then ω is an isomorphism for all dualizable
X. If f∗ preserves coproducts, for example if D has a detecting set of compact objects H

such that f ∗Y is compact for all Y ∈ H , then ω is an isomorphism for all X ∈ C .1

The force of the theorem is that no construction of an inverse to ω is required: we
need only check that ω is an isomorphism one detecting object at a time. Proposition 6.3
explains what is needed for that verification.

For the Grothendieck context, we can use the following basic results of Neeman [25,
3.1, 4.1] to construct the required right adjoint f ! to f∗ in favorable cases. A main point of
Neeman’s later monograph [26] and of Franke’s paper [9] is to replace compact detection
by a weaker notion that makes use of cardinality considerations familiar from the theory
of Bousfield localization in algebraic topology.

8.2. Theorem. [Triangulated Brown representability theorem] Let A be a compactly
detected triangulated category. A functor H : A op −→ A b that takes distinguished trian-
gles to long exact sequences and converts coproducts to products is representable.

1Statement revised 2003-05-21. Original version at www.tac.mta.ca/tac/volumes/11/4/11-04a.dvi.
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8.3. Theorem. [Triangulated adjoint functor theorem] Let A be a compactly detected
triangulated category and B be any triangulated category. An exact functor F : A −→ B

that preserves coproducts has a right adjoint G.

Proof. Take G(Y ) to be the object that represents the functor B(F (−), Y ).

The map

π : Y ⊗ f∗X −→ f∗(f
∗Y ⊗ X)

of (3.6) commutes with Σ. When π is an isomorphism,

φ : f ∗Y ⊗ f !Z −→ f !(Y ⊗ Z)

is defined and commutes with Σ. We obtain the following conclusion.

8.4. Theorem. [Formal Grothendieck isomorphism] Let D be compactly detected with
a detecting set G such that f ∗Y is compact and π is an isomorphism for Y ∈ G . Then f∗
has a right adjoint f !, π is an isomorphism for all Y ∈ D , and φ is an isomorphism for
all dualizable Y . If the objects of G are dualizable and the functor f ! preserves coproducts,
then φ is an isomorphism for all Y ∈ D .

Proof. As a right adjoint of an exact functor, f∗ is exact by Lemma 7.1, and it preserves
coproducts by Lemma 7.4. Thus f ! exists by Theorem 8.3. Now π is an isomorphism for
all Y by Proposition 7.6, φ is an isomorphism for dualizable Y by Proposition 5.4, and
the last statement holds by Propositions 7.5 and 7.6.

When f ! is obtained abstractly from Brown representability, the only sensible way to
check that it preserves coproducts is to appeal to Lemma 7.4, requiring C to be compactly
detected and f∗X to be compact when X is in the detecting set. With this assumption
on C , π is an isomorphism for all X and Y if it is an isomorphism for all X in a detecting
set for C .

For the Verdier-Grothendieck context, we assume that we have a second adjunction
(f!, f

!), with f! exact. We also assume given a map

π̂ : Y ⊗ f!X −→ f!(f
∗Y ⊗ X)

that commutes with Σ. When π̂ is an isomorphism, the map

φ : f ∗Y ⊗ f !Z −→ f !(Y ⊗ Z)

is defined and commutes with Σ. Since f ∗ and f! are both left adjoints and thus preserve
coproducts, Propositions 7.6 and 5.4 give the following conclusion.
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8.5. Theorem. [Formal Verdier isomorphism] Let D be compactly detected with a
detecting set G such that π̂ is an isomorphism for Y ∈ G . Then π̂ is an isomorphism for
all Y ∈ D , and φ is an isomorphism for all dualizable Y . If the objects of G are dualizable
and the functor f ! preserves coproducts, then φ is an isomorphism for all Y ∈ D .

Here again, f ! preserves coproducts if and only if the objects f!Y are compact for all
Y ∈ G , by Lemma 7.4.

8.6. Remark. In many cases, one can construct a more explicit right adjoint f !
0

from some subcategory D0 of D to some subcategory C0 of C , as in Remark 5.3. In
such cases we can combine approaches. Indeed, assume that we have an adjoint pair
(f!, f

!
0) on full subcategories C0 and D0 such that objects isomorphic to objects in C0

(or D0) are in C0 (or D0). Then, by the uniqueness of adjoints, the right adjoint f ! to
f! given by Brown representability restricts on D0 to a functor with values in C0 that
is isomorphic to the explicitly constructed functor f !

0. That is, the right adjoint given
by Brown representability can be viewed as an extension of the functor f !

0 to all of D .
This allows quotation of Proposition 4.1 or 4.3 for the construction and comparison of
the natural maps (4.1)–(4.3) or (4.4)–(4.6).

We give an elementary example and then some remarks on the proofs of the results
that we have quoted from the literature, none of which are difficult.

8.7. Example. Return to Example 5.5, but assume further that C is a compactly
detected triangulated category with a detecting set of dualizable objects. Here the formal
Verdier duality theorem says that φ = ν : Y ⊗ Hom(C,Z) −→ Hom(C, Y ⊗ Z) is an
isomorphism if and only if the functor Hom(C,−) preserves coproducts. That is, an
object C is dualizable if and only if Hom(C,−) preserves coproducts.

8.8. Remark. Clearly Theorem 8.3 is a direct consequence of Theorem 8.2. In turn,
Theorem 8.2 is essentially a special case of Brown’s original categorical representation
theorem [3]. Neeman’s self-contained proof closely parallels Brown’s argument. The first
statement of Proposition 7.5 is used as a lemma in the proof, but it is also a special case.
To see this, let B be the localizing subcategory of A generated by G . For X ∈ A ,
application of the representability theorem to the functor A (−, X) on B gives an object
Y ∈ B together with a natural isomorphism φ : A (B,X) −→ B(B, Y ) on objects
B ∈ B. The map f : Y −→ X such that φ(f) = idY is an isomorphism since it induces
an isomorphism A (B, f) for all objects B ∈ G . The second part of Proposition 7.5 is
intuitively clear, since objects in A not in the thick subcategory generated by G must
involve infinite coproducts, and these will be neither dualizable nor compact. The formal
proof in [12] starts from Example 8.7, which effectively ties together dualizability and
compactness.
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[6] P. Deligne. Cohomologie à supports propres, Théorie des topos et cohomologie étale
des schemes (SGA 4), tome 3. Springer Lecture Notes in Mathematics 305, 1973,
250–461.

[7] P. Deligne. Voevodsky’s lectures on cross functors, Fall 2001. http://www.math.ias.
edu/˜vladimir/delnotes01.ps.

[8] S. Eilenberg and G.M. Kelly Closed categories. Proc. Conf. Categorical Algebra (La
Jolla, Calif., 1965) 421–562. Springer-Verlag. 1966.

[9] J. Franke. On the Brown representability theorem for triangulated categories. Topol-
ogy 40, 2001, 667–680.
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