
 Open access  Journal Article  DOI:10.1007/S00605-009-0152-9

Isomorphisms of algebras of generalized functions — Source link 

Hans Vernaeve

Institutions: Ghent University

Published on: 01 Feb 2011 - Monatshefte für Mathematik (Springer Vienna)

Topics: Colombeau algebra, Generalized function, Ring (mathematics), Isomorphism and Multiplicative function

Related papers:

 Elementary introduction to new generalized functions

 Topological structures in Colombeau algebras: topological ℂ̃-modules and duality theory

 Isomorphisms of algebras of Colombeau generalized functions

 Geometric Theory of Generalized Functions with Applications to General Relativity

 New Generalized Functions and Multiplication of Distributions

Share this paper:    

View more about this paper here: https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-
uj4dtgy47f

https://typeset.io/
https://www.doi.org/10.1007/S00605-009-0152-9
https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-uj4dtgy47f
https://typeset.io/authors/hans-vernaeve-31dt3q2v4w
https://typeset.io/institutions/ghent-university-14limu0t
https://typeset.io/journals/monatshefte-fur-mathematik-1lp4o8md
https://typeset.io/topics/colombeau-algebra-1tgekb6v
https://typeset.io/topics/generalized-function-1h5nd0p5
https://typeset.io/topics/ring-mathematics-27p85vgn
https://typeset.io/topics/isomorphism-3p1jtwvm
https://typeset.io/topics/multiplicative-function-3awyuyhd
https://typeset.io/papers/elementary-introduction-to-new-generalized-functions-ivg1hzv3n0
https://typeset.io/papers/topological-structures-in-colombeau-algebras-topological-3lkguscidu
https://typeset.io/papers/isomorphisms-of-algebras-of-colombeau-generalized-functions-1jponojo0m
https://typeset.io/papers/geometric-theory-of-generalized-functions-with-applications-53f5blt8yo
https://typeset.io/papers/new-generalized-functions-and-multiplication-of-5c8azbnt7i
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-uj4dtgy47f
https://twitter.com/intent/tweet?text=Isomorphisms%20of%20algebras%20of%20generalized%20functions&url=https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-uj4dtgy47f
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-uj4dtgy47f
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-uj4dtgy47f
https://typeset.io/papers/isomorphisms-of-algebras-of-generalized-functions-uj4dtgy47f


ISOMORPHISMS OF ALGEBRAS OF GENERALIZED

FUNCTIONS

HANS VERNAEVE

Abstract. We show that for smooth manifolds X and Y , any isomor-
phism between the algebras of generalized functions (in the sense of
Colombeau) on X, resp. Y is given by composition with a unique gen-
eralized function from Y to X. We also characterize the multiplicative
linear functionals from the Colombeau algebra on X to the ring of gen-
eralized numbers. Up to multiplication with an idempotent generalized
number, they are given by an evaluation map at a compactly supported
generalized point on X.

1. Introduction

It is a well-known theorem in commutative Banach algebra theory that
the isomorphisms between algebras of (C-valued) continuous functions on
compact Hausdorff topological spaces X, resp. Y are given by composition
with a unique homeomorphism from Y to X [15]. When X, Y are smooth
Hausdorff manifolds, isomorphisms between algebras of smooth functions on
them are similarly given by composition with a unique diffeomorphism from
Y to X. Classically, this is proven by interpreting points of the manifold
as multiplicative linear functionals on the corresponding algebras of smooth
functions (this result is sometimes referred to as ‘Milnor’s exercise’ [16,
21]) and it may be used as a basis for an axiomatic algebraic derivation of
classical tensor analysis. In its full generality, the theorem was only recently
established [10, 22]. A measure-theoretic analogue has been given in [20].

From the point of view of analysis, it is natural to look whether a similar
theorem can hold for generalized functions such as Schwartz distributions
[29]. By the nature of the problem, it is then necessary to consider alge-
bras of generalized functions containing the vector space of distributions.
The most widely used theory of such algebras is due to J.F. Colombeau
[3, 4, 7, 8, 24]. It was introduced primarily as a tool for studying nonlinear
partial differential equations and has been particularly successful in under-
standing solutions of equations with non-smooth coefficients and strongly
singular data [5, 14, 23, 26]. It is an extension of the theory of distributions
providing maximal consistency with respect to classical algebraic operations
[11] in view of L. Schwartz’s impossibility result [28]. Under the influence
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of applications of a primarily geometric nature (e.g. in Lie group analysis of
differential equations and in general relativity, cf. [30] for a recent survey), a
geometric theory of Colombeau generalized functions arose [6, 9, 11, 12, 18].
In particular, for X, Y smooth paracompact Hausdorff manifolds, Colom-
beau generalized functions from X to Y can be defined [17]. Recently, a
definition of distributions from X to Y was proposed as a quotient of a
subspace of the space G[X, Y ] of so-called special Colombeau generalized
functions from X to Y [19].

Denoting the algebra of (complex-valued) Colombeau generalized func-
tions on a smooth paracompact Hausdorff manifold X (resp. Y ) by G(X)
(resp. G(Y )), we show more generally (theorem 5.1 and its corollary) that
algebra homomorphisms G(X) → G(Y ) are characterized as compositions
with locally defined Colombeau generalized functions from X to Y , up to
multiplication with an idempotent element of G(Y ) (which is necessarily
locally constant on Y ). When the homomorphism is an isomorphism, the
idempotent element necessarily equals 1 and the generalized function from
X into Y is uniquely determined.

Our technique is based on a characterization of the multiplicative C̃-linear

functionals on G(X), where C̃ denotes the ring of Colombeau generalized

complex numbers. Up to multiplication with an idempotent element of C̃,
these functionals coincide with the evaluation maps at generalized points
[11, §3.2] in G(X).

2. Preliminaries

The ring C̃ of (complex) Colombeau generalized numbers is defined as
M/N , where

M = {(zε)ε ∈ C(0,1) : (∃b ∈ R)(|zε| = O(εb), as ε→ 0)}

N = {(zε)ε ∈ M : (∀b ∈ R)(|zε| = O(εb), as ε→ 0)}.

Colombeau generalized numbers arise naturally as evaluations of a Colom-

beau generalized function at a point in its domain. The subring of C̃ con-
sisting of those elements that have a net of real numbers as a representative,

is denoted by R̃. Nets in M are called moderate, nets in N negligible. The

element z̃ ∈ C̃ with representative (zε)ε is denoted by [(zε)ε].

C̃ is a complete topological ring with zero divisors for the so-called sharp
topology [1, 27]. For (zε)ε ∈ M, let v((zε)ε) := sup{a ∈ R : |zε| = O(εa), as

ε → 0}. Then for z̃ = [(zε)ε] ∈ C̃, |z̃|e := e−v((zε)ε) is an ultra-pseudonorm

on C̃. The sharp topology on C̃ is the corresponding ultrametric topology.

Let S ⊆ (0, 1). Let eS = [(χS(ε))ε] ∈ R̃, where χS is the characteristic
function of S. Then eS 6= 0 iff 0 ∈ S, the topological closure of S. Further,

as is proven in [2], every idempotent element in C̃ is of the form eS. Further

algebraic properties of C̃ are described in [1, 2].
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By a smooth manifold, we will mean a second countable Hausdorff C∞

manifold of finite dimension (without boundary).
Let X be a smooth manifold. By K ⋐ X, we denote a compact subset

K of X. Let ξ ∈ X (X) denote a vector field on X and Lξ its Lie deriva-
tive. Then the (so-called special) algebra G(X) of Colombeau generalized
functions on X is defined as EM(X)/N (X), where

EM(X) =
{
(uε)ε ∈ (C∞(X))(0,1) : (∀K ⋐ X)(∀k ∈ N)(∃b ∈ R)

(∀ξ1, . . . , ξk ∈ X (X))
(
sup
p∈K

|Lξ1 · · ·Lξk
uε(p)| = O(εb), as ε→ 0

)}

N (X) =
{
(uε)ε ∈ EM(X) : (∀K ⋐ X)

(∀b ∈ R)
(
sup
p∈K

|uε(p)| = O(εb), as ε→ 0
)}
.

See also [11, §3.2] for several equivalent definitions.
A net (pε)ε ∈ X(0,1) is called compactly supported [11, §3.2] if there

exists K ⋐ X and ε0 > 0 such that pε ∈ K, for ε < ε0. Denoting by dh

the Riemannian distance induced by a Riemannian metric h on X, two nets
(pε)ε, (qε)ε are called equivalent if the net (dh(pε, qε))ε is negligible (this
does not depend on the choice of h). The equivalence classes w.r.t. this
relation are called compactly supported generalized points on X. The set

of compactly supported generalized points on X will be denoted by X̃c. If

u ∈ G(X) and p ∈ X̃c, the point value u(p) ∈ C̃ is the generalized number
with representative (uε(pε))ε (this does not depend on the representatives).

Let X, Y be smooth manifolds. The space G[X, Y ] of c-bounded Colom-
beau generalized functions from X to Y is similarly defined as a quotient
of the set EM [X, Y ] of moderate, c-bounded nets of smooth maps X → Y
([11, Def. 3.2.44]) by a certain equivalence relation ∼ ([11, Def. 3.2.46]).

We will use a slightly modified version of the space G[X, Y ] where we
do not require the nets to be globally defined. Let EM,ld[X, Y ] be the
set of all nets (uε)ε of smooth maps defined on Xε ⊆ X → Y with the
property that (∀K ⋐ X)(∃ε0 > 0)(∀ε < ε0)(K ⊆ Xε) and satisfying the
c-boundedness and moderateness conditions for elements of EM [X, Y ], i.e.
(cf. [11, Def. 3.2.44]),

(1) (∀K ⋐ X)(∃ε0 > 0)(∃K ′ ⋐ Y )(∀ε < ε0)(uε(K) ⊆ K ′)
(2) for each k ∈ N, each chart (V, φ) in X, each chart (W,ψ) in Y , each

L ⋐ X and each L′ ⋐ Y , there exists N ∈ N such that

sup
p∈L∩u−1

ε (L′)

∥∥D(k)(ψ ◦ uε ◦ φ
−1)(φ(p))

∥∥ = O(ε−N).

Let ∼ be defined on EM,ld[X, Y ] as in [11, Def. 3.2.46], i.e., (uε)ε ∼ (vε)ε iff

(1) for each K ⋐ X, supp∈K dh(uε(p), vε(p)) → 0 as ε→ 0 for some (and
hence every) Riemannian metric h on Y
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(2) for each k ∈ N, each m ∈ N, each chart (V, φ) in X, each chart
(W,ψ) in Y , each L ⋐ X and each L′ ⋐ Y ,

sup
p∈L∩u−1

ε (L′)∩v−1
ε (L′)

∥∥D(k)(ψ ◦ uε ◦ φ
−1 − ψ ◦ vε ◦ φ

−1)(φ(p))
∥∥ = O(εm).

Then Gld[X, Y ] := EM,ld[X, Y ]/∼ is the space of locally defined c-bounded
Colombeau generalized functions X → Y . By definition, G[X, Y ] is a subset
of Gld[X, Y ].

Remark. Under mild topological restrictions on X, Gld[X, Y ] = G[X, Y ].

E.g., it is sufficient that (∀K ⋐ X)(∃f ∈ C∞(X,X))(f(X) ⋐ X & f|K =
idK). This appears to be fulfilled in almost all practical cases. It is unknown
if Gld[X, Y ] 6= G[X, Y ] for some smooth manifolds X, Y .

3. Surjectivity of multiplicative C̃-linear maps

Throughout this paper, A, A1, A2,. . . are faithful, commutative C̃-algebras

with 1. Faithfulness of A means that for each λ ∈ C̃ \ {0}, λ1 6= 0 in A;

hence we can identify the subring {λ1 : λ ∈ C̃} with C̃. By a linear map

A1 → A2, a C̃-linear map is meant. In particular, a multiplicative linear

functional on A is meant to be a multiplicative C̃-linear map A → C̃.

Lemma 3.1.

(1) If a multiplicative linear map φ: A1 → A2 is surjective, then φ(1) =
1.

(2) A multiplicative linear functional m on A is surjective iff m(1) = 1.

Proof. (1) Let u ∈ A1 such that φ(u) = 1. Then φ(1) = φ(1)φ(u) = φ(u) =
1.
(2) If m(1) = 1, then m(λ1) = λ, ∀λ ∈ C̃, so m is surjective. The converse
holds by part 1. �

Proposition 3.2. Suppose that there exists a multiplicative linear map φ0:
A1 → A2 with φ0(1) = 1. Let φ be any multiplicative linear map A1 → A2.
Then there exists a multiplicative linear map ψ: A1 → A2 with ψ(1) = 1
such that φ = φ(1) · ψ.
If A is a topological algebra and φ0, φ are continuous, then ψ is also con-
tinuous.

Proof. Let ψ = φ+ (1 − φ(1))φ0. �

E.g., if A1 = G(X), X a manifold, then for any p ∈ X, δp: A1 → A2:
δp(u) = u(p)1 is a multiplicative linear map A1 → A2 with δp(1) = 1. In
particular, the study of multiplicative linear functionals on G(X) is reduced
to the surjective ones.
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4. Multiplicative C̃-linear functionals on G(X)

For a (non-zero) multiplicative C-linear functional m on a C-algebra A,
A/Kerm ∼= C is a field, so Kerm is a maximal ideal. If A is a Banach
algebra, the converse also holds: for a maximal ideal M ⊳A, A/M ∼= C by
the Gelfand-Mazur theorem [15, 3.2.4], and the canonical surjection A →

A/M determines a multiplicative C-linear functional. Since C̃ is not a field,

the kernel of a multiplicative C̃-linear functional on a C̃-algebra A will not
be a maximal ideal. This motivates the following definition.

Definition. An ideal I⊳A is maximal with respect to the property I∩C̃1 =

{0} iff J ⊳ A, I ⊆ J and J ∩ C̃1 = {0} imply that I = J .

It is easy to see that for a surjective multiplicative C̃-linear functional m

on A, Kerm is an ideal maximal with respect to Kerm ∩ C̃1 = {0}.

Definition. Let u ∈ A and S ⊆ (0, 1) with 0 ∈ S. Then u is called
invertible w.r.t. S iff there exists v ∈ A such that uv = eS.

Lemma 4.1. Let I ⊳ A. The following are equivalent:

(1) I ∩ C̃1 = {0}
(2) for each S ⊆ (0, 1) with 0 ∈ S, if u ∈ A and u is invertible with

respect to S, then u /∈ I.

Proof. (1) ⇒ (2): let u be invertible w.r.t. S. Should u ∈ I, then also

0 6= eS ∈ I, so I ∩ C̃1 6= {0}.

(2) ⇒ (1): let λ ∈ C̃ \ {0}. Then there exists S ⊆ (0, 1) with 0 ∈ S such
that λ is invertible w.r.t. S, so λ /∈ I. �

We denote the complement of S ⊆ (0, 1) by Sc.

Lemma 4.2. Let u ∈ A and S ⊆ (0, 1) with 0 ∈ S. Then u is invertible
w.r.t. S iff ueS + eSc is invertible.

Proof. If uv = eS, for some v ∈ A, then (ueS+eSc)(veS+eSc) = uveS+eSc =
1.
Conversely, if (ueS + eSc)v = 1, for some v ∈ A, then multiplying by eS

shows that u(veS) = eS. �

Corollary 4.3. Let X be a smooth submanifold of Rd. Let S ⊆ (0, 1) with
0 ∈ S. Let u ∈ G(X). Then the following are equivalent:

(1) u is invertible w.r.t. S (as an element of G(X))

(2) u(x̃) is invertible w.r.t. S (as an element of C̃), for each x̃ ∈ X̃c.

Proof. This is a combination of the previous lemma with proposition A.3.
�

Proposition 4.4. Let X be a smooth submanifold of Rd. Let I ⊳ G(X).

If (∀p ∈ X̃c)(∃up ∈ I)(up(p) 6= 0), then I is not the kernel of a surjective
multiplicative linear functional on G(X).
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Proof. Suppose that I is the kernel of a surjective multiplicative linear func-

tional. Then I ∩ C̃1 = {0} and I + C̃1 = G(X), so each of the coordi-

nate functions xi ∈ I + C̃1 (i ∈ {1, . . . , d}), i.e., for each i, there exists

λi ∈ C̃ such that xi − λi1 ∈ I. Write λ = (λ1, . . . , λd) ∈ C̃d and consider
|x− λ|2 =

∑
i(xi − λi1)(xi − λi1) ∈ I.

We distinguish 3 cases.

(1) λ ∈ X̃c. Notice that by corollary A.2, this property is well-defined. By
hypothesis, there exists uλ ∈ I with uλ(λ) 6= 0. Then also |x− λ|2 + |uλ|

2 ∈

I, and there exists S ⊆ (0, 1), 0 ∈ S, such that uλ(λ) ∈ C̃ is invertible w.r.t.

S. Let x̃ ∈ X̃c with representative (xε)ε. By proposition A.4, there exist m,
k ∈ N such that

(∃ε0 > 0)(∀ε ∈ S ∩ (0, ε0))(|xε − λε| ≤ εm ⇒ |uλ,ε(xε)| ≥ εk).

Thus (∃ε0 > 0) (∀ε ∈ S ∩ (0, ε0))

(
|xε − λε|

2 + |uλ,ε(xε)|
2 ≥

{
ε2k, |xε − λε| ≤ εm

ε2m, |xε − λε| ≥ εm

)
,

and we conclude by corollary 4.3 that |x− λ|2 + |uλ|
2 ∈ I is invertible w.r.t.

S, a contradiction.

(2) λ ∈ X̃ \ X̃c, where X̃ = {x̃ ∈ R̃d : (∃ repr. (xε)ε of x̃)(∀ε)(xε ∈ X)}.
Let (Kn)n∈N be a compact exhaustion of X with Kn ⊆ (Kn+1)

◦, ∀n ∈ N
(where the interior is taken in the relative topology on X). Consider a

representative (λε)ε of λ such that λε ∈ X, ∀ε. As λ /∈ X̃c, there exists
a decreasing sequence (εn)n∈N with εn → 0 such that λεn

∈ X \ Kn for
each n. As the Euclidean distance d(X \Kn, Kn−1) > 0 for each n, v(x) =
|x− λε|

2 ∈ I evaluated in any compactly supported point of X is invertible
w.r.t. S = {εn : n ∈ N}, a contradiction.

(3) If λ ∈ C̃d \ X̃, then for any representative (λε)ε of λ, (d(λε, X)ε)ε is
not a negligible net. This means that there exists S ⊆ (0, 1) with 0 ∈ S
and m ∈ N such that d(λε, X) ≥ εm, for each ε ∈ S. This also means that
v(x) = |x− λε|

2 ∈ I evaluated in any compactly supported point of X is
invertible w.r.t. S, a contradiction. �

Theorem 4.5. Let X be a smooth manifold.

(1) The surjective multiplicative linear functionals on G(X) are

δp : G(X) → C̃ : δp(u) = u(p),

where p ∈ X̃c.
(2) The multiplicative linear functionals on G(X) are

eδp : G(X) → C̃ : eδp(u) = eu(p),

where p ∈ X̃c and e ∈ R̃ idempotent.
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Proof. First, let X be a smooth submanifold of Rd.
(1) Let m be a surjective multiplicative linear functional on G(X). Then

by proposition 4.4, there exists p ∈ X̃c such that u(p) = 0, ∀u ∈ Kerm.
I.e., Kerm ⊆ Ker δp. But Kerm is maximal w.r.t. Kerm ∩ C1 = {0}
and Ker δp ∩ C1 = {0}, so Kerm = Ker δp. So for each u ∈ G(X), as
u− u(p) ∈ Kerm = Ker δp, m(u) = m(u− u(p) + u(p)) = m(u(p)) = u(p),
so m = δp.
(2) This follows from part 1 and proposition 3.2.
Now let X be any smooth manifold. It follows from Whitney’s embedding
theorem [13] that there exists a smooth embedding f : X → Rd, for some

d ∈ N. Let m: G(X) → C̃ be a surjective multiplicative linear functional.

For u ∈ G(f(X)), u ◦ f ∈ G(X) (corollary A.7). Then µ: G(f(X)) → C̃:
µ(u) = m(u ◦ f) is a surjective multiplicative linear functional, so there

exists p ∈ f̃(X)c such that µ(u) = u(p), ∀u ∈ G(f(X)). For each v ∈ G(X),

v ◦ f−1 ∈ G(f(X)), so m(v) = µ(v ◦ f−1) = v(f−1(p)), where f−1(p) ∈ X̃c

[11, 3.2.55]. �

5. Algebra homomorphisms G(X) → G(Y )

Theorem 5.1. Let X ⊆ Rd1, Y ⊆ Rd2 be smooth submanifolds.

(1) Let φ: G(X) → G(Y ) be a morphism of algebras (i.e., a multiplica-

tive C̃-linear map). Then there exists f ∈ (G(Y ))d1, c-bounded into
X and e ∈ G(Y ) idempotent such that

φ(u) = e · (u ◦ f), ∀u ∈ G(X).

If φ(1) = 1, then e = 1 and f is uniquely determined.
(2) If φ: G(X) → G(Y ) is an isomorphism of algebras (i.e., additionally,

φ is bijective), then the map f has an inverse f−1 ∈ (G(X))d2, c-
bounded into Y such that φ−1 is given by composition with f−1. As

a map Ỹc → X̃c, f is bijective. In this case, dimX = dimY .

Proof. (1) First, let φ(1) = 1. Let ỹ ∈ Ỹc arbitrary. Then the map δỹ ◦φ is a
multiplicative linear functional on G(X). It is also surjective, as δỹ(φ(1)) =

1. So by theorem 4.5, there exists f(ỹ) ∈ X̃c such that δỹ ◦ φ = δf(ỹ). So

(1) (∀u ∈ G(X))(∀ỹ ∈ Ỹc)((φ(u))(ỹ) = u(f(ỹ))).

In particular, for ui(x) = xi ∈ G(X), i = 1, . . . , d1, we see that

(2) (φ(u1), . . . , φ(ud1
)) ∈ (G(Y ))d1

is the unique generalized function which coincides with f when evaluated

at generalized points in Ỹc (because an element of G(Y ) is completely deter-

mined by its values in Ỹc [11, Thm. 3.2.8]). With a slight abuse of notation,
we will therefore also denote it by f . By proposition A.6, f is c-bounded
into X. So by proposition A.5, for each u ∈ G(X), the componentwise
composition u◦f defines an element of G(Y ). By eqn. (1), it coincides with
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φ(u) on each compactly supported point in Ỹc, so u ◦ f = φ(u) in G(Y ).
Clearly, f is completely determined by fi = ui ◦ f = φ(ui) (i = 1, . . . , d1).
For general φ, this follows by proposition 3.2 and the fact that φ(1) is idem-
potent.
(2) Applying part 1 to φ−1, we find g ∈ (G(X))d2 , c-bounded into Y such
that φ−1 is given by composition with g. To see that g = f−1, we show that
f ◦ g = idG(X) ∈ (G(X))d1 , where idG(X) is the generalized function with
representative (idX)ε.
By eqn. (2) and because φ−1 is given by composition with g,

f ◦ g = (f1 ◦ g, . . . , fd1
◦ g) = (φ−1(f1), . . . , φ

−1(fd1
))

= (φ−1(φ(u1)), . . . , φ
−1(φ(ud1

))) = (u1, . . . , ud1
).

Similarly, g ◦ f = idG(Y ) ∈ (G(Y ))d2 . From these equalities, it follows also
that f−1 is the inverse of f as a pointwise map on compactly supported
generalized points.
In order to prove that dimX = dimY , we consider the equality f ◦ g =
idG(X) on representatives. By proposition A.5, there exist representatives
(fε)ε of f and (gε)ε of g such that fε ◦ gε = idX +nε holds locally and for
sufficiently small ε, where (nε)ε ∈ (N (X))d1 . Let x ∈ X be fixed. Denoting
the differential of a map f at x by df(x), we have dfε(gε(x)) ◦ dgε(x) =
d(idX +nε)(x) by the chain rule. As elements in N (X) also satisfy the
negligibility-estimates for the derivatives [11, p. 278], rank(d(idX +nε)(x)) =
rank(idTxX) = dimX for sufficiently small ε, whereas

rank(dfε(gε(x)) ◦ dgε(x)) ≤ rank(dfε(gε(x))) ≤ dimY,

since fε ∈ C∞(Y,Rd1). Hence dimX ≤ dimY . By g ◦ f = idG(Y ), we
similarly obtain dimY ≤ dimX. �

Corollary 5.2. Let X, Y be smooth manifolds.

(1) Let φ: G(X) → G(Y ) be a morphism of algebras (i.e., a multiplica-

tive C̃-linear map). Then there exists f ∈ Gld[Y,X] and e ∈ G(Y )
idempotent such that

φ(u) = e · (u ◦ f), ∀u ∈ G(X).

If φ(1) = 1, then e = 1 and f is uniquely determined.
(2) If φ: G(X) → G(Y ) is an isomorphism of algebras (i.e., additionally,

φ is bijective), then the map f has an inverse f−1 ∈ Gld[X, Y ] such

that φ−1 is given by composition with f−1. As a map X̃c → Ỹc, f is
bijective. In this case, dimX = dimY .

Proof. It follows from Whitney’s embedding theorem [13] that there exist
smooth embeddings ι1: X → Rd1 and ι2: Y → Rd2 , for some d1, d2 ∈ N.

(1) Let φ: G(X) → G(Y ) be a multiplicative C̃-linear map with φ(1) = 1.

Then φ̃: G(ι1(X)) → G(ι2(Y )): φ̃(u) = φ(u ◦ ι1) ◦ ι
−1
2 is a multiplicative

C̃-linear map with φ̃(1) = 1. By the previous theorem and by corollary A.7,
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there exists f̃ ∈ Gld[ι2(Y ), ι1(X)] such that φ̃ is given by composition with

f̃ . So for each u ∈ G(X), φ(u) = φ̃(u ◦ ι−1
1 ) ◦ ι2 = u ◦ (ι−1

1 ◦ f̃ ◦ ι2). By

the analogue of [11, Cor. 3.2.59] for Gld[X, Y ], f = ι−1
1 ◦ f̃ ◦ ι2 ∈ Gld[Y,X].

Unicity of f follows from unicity of f̃ .
The result for general φ follows again from proposition 3.2.
(2) We similarly find g̃ ∈ Gld[ι1(X), ι2(Y )] with g = ι−1

2 ◦ g̃ ◦ ι1 ∈ Gld[X, Y ].

By the previous theorem, f̃ ◦ g̃ is the identity in Gld[ι1(X), ι1(X)]. So f ◦g =
ι−1
1 ◦ idGld[ι1(X),ι1(X)] ◦ι1 = idGld[X,X], and similarly, g◦f = idGld[Y,Y ]. It follows

again that g = f−1 as pointwise maps on compactly supported generalized
points. �

Concerning idempotent elements in G(X), we can be more explicit:

Proposition 5.3. Let X be a smooth manifold. Let e ∈ G(X) be idempo-
tent. Then on every connected component of X, e is an idempotent constant.

Proof. If X is an open subset of Rd, this is proven in [2]. Let X be an
arbitrary manifold. Consider a chart (V, ψ) of X and x ∈ V . Then the local
representation e ◦ ψ−1 ∈ G(ψ(V )) is an idempotent, and therefore equal

to some constant c ∈ C̃ in a connected, open neighbourhood W of ψ(x).
So e = c in the open neighbourhood ψ−1(W ) of x. Therefore, for every

c ∈ C̃, {x ∈ X : (∃U open neighbourhood of x)(e|U = c)} is open and closed
in X. Consequently, on every connected component C of X, each x ∈ C

has an open neighbourhood U such that e|U = c, for some constant c ∈ C̃
independent of x ∈ C. The proposition follows by the fact that G(C) is a
sheaf of differential algebras on C ([11, Prop. 3.2.3]). �

Appendix A. Colombeau generalized functions on a manifold

embedded in Rd

In this appendix, we extend some results that are well-known in the
special case where X is an open subset of Rd to the case of a submanifold
of Rd.

Lemma A.1. Let X be a connected smooth submanifold of Rd. Let h be
the Riemannian metric on X induced by the Euclidean metric in Rd. Let
K ⋐ X. Then there exists C ∈ R+ such that for each p, q ∈ K, |p− q| ≤
dh(p, q) ≤ C |p− q|.

Proof. dh(p, q) is the infimum of the distances between p, q along paths on
X, and therefore at least equal to the Euclidean distance between p and
q. For the other inequality, suppose first that p, q lie in a sufficiently small
neighbourhood of a given point p0 ∈ K. It is an exercise in elementary
differential geometry that in this case, dh(p, q) ≤ C |p− q| (with C → 1 as
p, q → p0).
If the inequality would not hold globally on K, one could construct se-
quences (pm)m, (qm)m of points in K such that dh(pm, qm) ≥ m |pm − qm|.
BecauseK is compact, there is a subsequence (mk)k such that pmk

→ p ∈ K,
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qmk
→ q ∈ K. By continuity, dh(p, q) ≥ m |p− q|, for each m ∈ N, so

|p− q| = 0 and p = q. This contradicts the inequality in a sufficiently small
neighbourhood of p. �

Corollary A.2. Let X be a smooth submanifold of Rd. The compactly sup-

ported generalized points in X̃c are in 1-1 correspondence with the elements

of R̃d which have a representative that consists of elements of K, for some
K ⋐ X. More specifically, the injection is given by the (well-defined) map

X̃c → R̃d which is the identity-map on representatives.

Proof. By the fact that every x ∈ X has a connected neighbourhood,K ⋐ X
is contained in a finite number of connected components of X.
Two compactly supported nets (pε)ε, (qε)ε in X(0,1) represent the same gen-
eralized point in X iff dh(pε, qε) = O(εm), ∀m ∈ N. (By definition, this
also implies that for a fixed sufficiently small ε, pε and qε lie in the same
connected component.) By lemma A.1, this is equivalent with |pε − qε| =
O(εm), ∀m ∈ N (this also implies that for a fixed sufficiently small ε, pε and
qε lie in the same connected component, since any open cover of K ⋐ X,
in particular one that consists of connected sets, has a Lebesgue number),

i.e., they represent the same element in R̃d. �

Proposition A.3. Let X be a smooth submanifold of Rd. Let u ∈ G(X).
Then the following are equivalent:

(1) u is invertible (as an element of G(X))

(2) u(x̃) is invertible (as an element of C̃), for each x̃ ∈ X̃c.

Proof. (1) ⇒ (2) is analogous to [11, Thm. 1.2.5].
(2) ⇒ (1): to show that a global inverse exists, it is enough to show that
there exists an inverse in each local representation (w.r.t. charts), and that
the compatibility-conditions between them are satisfied [11, Prop. 3.2.3]. As
in [11, Thm. 3.2.8], part (2) is also satisfied for each local representation. So
by [11, Thm. 1.2.5], local inverses exist. The compatibility-conditions for
u−1 follow from the compatibility-conditions of u and the fact that inverses
in G(X) are unique (for any manifold X). �

Proposition A.4 (Continuity in the sharp topology). Let X be a smooth
submanifold of Rd. Let u ∈ G(X) and let K ⋐ X. Then for each k ∈ N,

(∃m ∈ N)(∃ε0 > 0)(∀ε ≤ ε0)

(∀x, y ∈ K)(|x− y| ≤ εm ⇒ |uε(x) − uε(y)| ≤ εk).

Proof. If X is an open subset of Rd, see e.g. [25, Prop. 3.1].
If X is a smooth manifold of Rd, cover K by geodesically convex Wα with
W α ⋐ Vα for charts (Vα, ψα) (as in [11, Thm. 3.2.8]). By compactness,
a finite number W1, . . . , WM is sufficient. Call the corresponding charts
(V1, ψ1), . . . , (VM , ψM). By the existence of a Lebesgue number, we may
suppose that x and y belong to the same Wi, if ε0 is chosen sufficiently small
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(andm ≥ 1). So, let k ∈ N. We apply the proposition to u◦ψ−1
i ∈ G(ψi(Vi)),

and we obtain mi ∈ N, εi > 0 such that

(∀ε ≤ εi)(∀x, y ∈ Wi)(|ψi(x) − ψi(y)| ≤ εmi ⇒ |uε(x) − uε(y)| ≤ εk).

Further, by [11, Lemma 3.2.6] and lemma A.1 (as Wi is connected),

|ψi(x) − ψi(y)| ≤ Cdh(x, y) ≤ C ′ |x− y| ,

for some C, C ′ ∈ R+ (independent of x, y ∈ Wi). So, possibly after increas-
ing mi and decreasing εi,

(∀ε ≤ εi)(∀x, y ∈ Wi)(|x− y| ≤ εmi ⇒ |uε(x) − uε(y)| ≤ εk).

Choose ε0 ≤ ε1, . . . , ε0 ≤ εM and m ≥ m1, . . . , m ≥ mM . Then we obtain
the statement of the proposition. �

Let X ⊆ Rd1 , Y ⊆ Rd2 be smooth submanifolds. In analogy with the case
where X, Y are open subsets of Rd1 , resp. Rd2 ([11, 1.2.7]), u ∈ (G(X))d2 is
called c-bounded into Y if there exists a representative (uε)ε of u such that

(3) (∀K ⋐ X)(∃K ′
⋐ Y )(∃ε0 > 0)(∀ε ≤ ε0)(uε(K) ⊆ K ′).

Proposition A.5. Let X ⊆ Rd1, Y ⊆ Rd2 be smooth submanifolds. Let
u ∈ (G(X))d2 be c-bounded into Y and v ∈ G(Y ). Then the composition
v ◦ u defined on representatives by means of (v ◦ u)ε = (vε ◦ uε) is a well-
defined generalized function in G(X).

Proof. Notice that the net (vε◦uε)ε is only locally defined; to find a globally
defined representative, it can be multiplied by a net (χε)ε of smooth, com-
pactly supported cut-off functions which is a representative of 1 ∈ G(X).
Well-definedness follows as in [11, Prop. 1.2.8]. �

Proposition A.6. Let X ⊆ Rd1, Y ⊆ Rd2 be smooth submanifolds. Let
u ∈ (G(X))d2. Then the following are equivalent:

(1) u is c-bounded into Y
(2) for one, and thus for all representatives (uε)ε of u,

(∀K ⋐ X)(∃K ′
⋐ Y )(∀m ∈ N)

(
sup
x∈K

d(uε(x), K
′) = O(εm), ε→ 0

)

(here d denotes the Euclidean distance in Rd2).

(3) as a pointwise function on compactly generalized points, u(X̃c) ⊆ Ỹc.

Proof. (1) ⇒ (3): let x̃ ∈ X̃c. For a representative (xε)ε of x, xε ∈ K ⋐ X,
for sufficiently small ε. If (uε)ε is a representative of u with uε(K) ⊆ K ′ ⋐ Y

for sufficiently small ε, then uε(xε) ∈ K ′ for sufficiently small ε, so u(x̃) ∈ Ỹc.
(3) ⇒ (2): suppose that there exists K ⋐ X such that

(∀K ′
⋐ Y )(∃m ∈ N)(∀η ∈ (0, 1))(∃ε < η)(∃x ∈ K)(d(uε(x), K

′) ≥ εm).

We distinguish 2 cases.
(a) (supx∈K d(uε(x), Y ))ε is not negligible, i.e., the previous formula also
holds for Y itself instead of K ′. Then we find a decreasing sequence (εn)n∈N,
with εn → 0 and xεn

∈ K, with d(uεn
(xεn

), Y ) ≥ εm, for some m. Extend
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(xεn
)n∈N to (xε)ε, with xε ∈ K, ∀ε. Then it represents x̃ ∈ X̃c for which

u(x̃) /∈ Ỹc.
(b) (supx∈K d(uε(x), Y ))ε is negligible. Consider a compact exhaustion
(Kn)n∈N of Y with Kn ⊆ (Kn−1)

◦, ∀n ∈ N. Then we find a decreas-
ing sequence (εn)n∈N, with εn → 0, mn ∈ N and xεn

∈ K such that
d(uεn

(xεn
), Y ) < εmn+n

n < εmn

n ≤ d(uεn
(xεn

), Kn); in particular, there exists
yn ∈ Y \Kn such that |yn − uεn

(xεn
)| ≤ εn

n. Let m < n. As Km ⊆ (Kn)◦,
d(yn, Km) ≥ r ∈ R+, so uεn

(xεn
) /∈ Km as soon as n is large enough. Extend

(xεn
)n∈N to (xε)ε, with xε ∈ K, ∀ε. Then it represents x̃ ∈ X̃c for which

u(x̃) /∈ Ỹc.
(2) ⇒ (1): let (uε)ε be a representative of u. Let W be a normal tubular
neighbourhood of Y in Rd2 with associated smooth retraction q: W → Y
(see [13]). By assumption, u is c-bounded into W , so the composition q ◦ u
is a well-defined element of (G(X))d2 and is c-bounded into Y . Let K ⋐ X.
By the fact that W is a normal tubular neighbourhood of Y , q(x) is the
unique element of Y that is closest to x, for each x ∈ W . So for sufficiently
small ε, supx∈K |(q ◦ uε)(x) − uε(x)| = supx∈K d(uε(x), Y ) which is negligi-
ble by assumption. It follows that q ◦ u = u as a generalized function in
(G(X))d2 . �

Corollary A.7. (1) Let X ⊆ Rd1, Y ⊆ Rd2 be smooth submanifolds. An
element u ∈ (G(X))d2 that is c-bounded into Y ⊆ Rd2 defines a unique
element of Gld[X, Y ] by restricting a representative satisfying eqn. (3) to
(suitably chosen, depending on ε) compact subsets of X.
(2) Let X, Y be smooth manifolds. Let u ∈ Gld[X, Y ] and v ∈ G(Y ). Then
the composition v◦u defined on representatives by means of (v◦u)ε = vε◦uε

is a well-defined generalized function in G(X).

Proof. (1) Let (uε)ε be a representative of u satisfying eqn. (3). Let (Kn)n∈N

be a compact exhaustion of X. Then for each n ∈ N, there exists K ⋐ Y
and εn ∈ (0, 1) such that uε(Kn) ⊆ K, for each ε ≤ εn. We may suppose
(εn)n∈N to be a decreasing sequence. Let vε = uε|Kn

, for each εn+1 < ε ≤ εn.
Then (vε)ε represents an element of Gld[X, Y ]. Well-definedness follows as
in [11, Prop. 3.2.43].
(2) Analogous to [11, Prop. 3.2.58]. �

It follows that, in case G[X, Y ] ( Gld[X, Y ], a characterization of alge-
bra homomorphisms G(X) → G(Y ) as compositions with generalized maps
G[X, Y ] is not possible (Gld[X, Y ] has to be used instead).
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