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Abstract. Cohesive sets play an important role in computability theory.
Here we use cohesive sets to build nonstandard versions of the rationals.
We use Koenigsmann’s work on Hilbert’s Tenth Problem to establish that
these nonstandard fields are rigid. As a consequence we obtain results
about automorphisms of the lattices of computably enumerable vector
spaces arising in the context of Ash’s conjecture.

1 Introduction

This paper is motivated by the 30-year open problem of finding automorphisms of
the lattice L∗(V∞). As in Metakides and Nerode [16], the space V∞ is the canon-
ical computable ℵ0-dimensional vector space over a computable field F . The lat-
tice of computably enumerable (c.e.) subspaces of V∞ is denoted by L(V∞). The
lattice L(V∞) modulo finite dimension is denoted by L∗(V∞). Guichard [7] es-
tablished that there are countably many automorphisms of L(V∞) because they
are generated by computable semilinear transformations. Ash conjectured that
the automorphisms of L∗(V∞) are generated by special computable semilinear
transformations.

Definition 1. An automorphism of L∗(V∞) is called an Ash automorphism if
it is generated by a semilinear transformation with finite dimensional kernel and
co-finite dimensional image in V∞.

Conjecture 1. (Ash) Every automorphism of L∗(V∞) is an Ash automorphism.

Definition 2. (1) An infinite set C ⊂ ω is cohesive if for every c.e. set W
either W ∩ C or W ∩ C is finite.

(2) A set M is maximal if M is c.e. and M is cohesive.
(3) A set B is quasimaximal if it is the intersection of finitely many maximal

sets.



For sets A and B we use A =∗ B to denote that A and B differ on at
most finitely many elements, and A ⊂∗ B to denote that all but finitely many
elements of A are also elements of B. For vector spaces we use the same notation
where “finitely many elements” is replaced by “finite dimension.” Let A be a
computable basis of V∞ and let B be a quasimaximal subset of A. Let E∗(B, ↑)
denote the principal filter of B in the lattice E∗ of c.e. sets modulo =∗. It is known
that E∗(B, ↑) is isomorphic to a finite Boolean algebra Bn. Let V = cl(B) be the
closure of B in V∞. In contrast to E∗(B, ↑), the principal filter of V in L∗(V∞),
L∗(V, ↑), is not always isomorphic to Bn. Rather, as shown in [2] and [3], these
filters are isomorphic to either:

(1) a finite Boolean algebra,
(2) a lattice of subspaces of an n-dimensional vector space W over a certain

extension of F (denoted by L(n, F̃ )), or
(3) a finite product of structures from the previous two cases.

The extension F̃ of F mentioned in (2), which is denoted by
∏
C

F , is called

the cohesive power of F , and is defined below. In the context of computable
vector spaces the main interesting cases occur when F is finite or F = Q. For
finite F we have

∏
C

F ∼= F. The first key result in this paper is that
∏
M1

Q ∼=
∏
M2

Q

iff the maximal sets M1 and M2 are of the same 1-degree up to finitely many
elements. This result implies the following theorem when F = Q.

Theorem 1. (i) The principal filters L∗(V, ↑) of type (2) fall into infinitely
many non-isomorphic classes even when these filters are isomorphic to lattices
of subspaces of finite dimensional vector spaces of the same dimension (≥ 3).

(ii) Every automorphism of L∗(V∞) preserves m-degrees of the spaces in (2).

A bijective semilinear map Φ on a vector space W over a field F is defined
by

Φ(av + bw) = f(a)Φ(v) + f(b)Φ(w), (1)

where f is an automorphism of F . Such bijective semilinear map Φ on the
space W in (2) above generates an automorphism τΦ of L(n, F̃ ). Moreover, by

the fundamental theorem of projective geometry, all automorphisms of L(n, F̃ )
for n ≥ 3 are generated by such semilinear maps. By (2) above we can regard
τΦ as an automorphism of L∗(V, ↑). When Φ is merely semilinear, τΦ is not the
restriction of any Ash automorphism to L∗(V, ↑). When Φ is linear, τΦ has a
natural extension τΦ to an automorphism of L∗(V∞) as described in the con-
struction in the proof of Theorem 2.1 in [5]. This τΦ is an Ash automorphism of
L∗(V∞). In certain cases we may hope to generalize this construction in the case
when Φ is merely semilinear and thereby generating a non-Ash automorphism.
However, our second key result is that

∏
C

F has only the trivial automorphism

when F = Q and we can establish the following results.

Theorem 2. (i) Any automorphism of L∗(V∞) of the form τΦ for every bijective
semilinear map Φ is an Ash automorphism.



(ii) Any automorphism of L∗(V, ↑), where L∗(V, ↑) is of type (2) and n ≥ 3,
can be extended to an automorphism of L∗(V∞).

The result that the cohesive power
∏
M

Q is rigid, and its proof are of indepen-

dent interest. Our proof uses a recent number theoretic result by Koenigsmann
on Hilbert’s Tenth Problem [11], which allows us to apply work in nonstandard
models of arithmetic to our problem.

In Section 2, we define a cohesive power of a computable structure A over a
cohesive set C of natural numbers,

∏
C

A. We give a natural way of embedding∏
C

N into
∏
C

Q. In Section 3, we prove that
∏
C

N is definable in both
∏
C

Z and∏
C

Q. The main result in this section implies that if M1 and M2 are maximal

sets of natural numbers, then
∏
M1

Q∼=
∏
M2

Q iff M1 ≡∗1 M2. Finally, in Section 4,

we prove that if C is a a co-maximal (hence co-c.e.) set, then
∏
C

Q is rigid.

2 Effective Ultraproducts and Isomorphisms

Homomorphic images of the semiring of recursive functions have been studied
as models of fragments of arithmetic in [6], [8], and [12]. Let C be an r-cohesive
set. Fefferman, Scott, and Tannenbaum considered the quotient structureR/ ∼C
where R is the set of all unary (totally) computable functions and ∼C is the
equivalence relation on R defined by:

f ∼C g ⇔ C ⊆∗ {n ∈ ω | f(n) = g(n)}. (2)

They proved that there is a specific Π0
3 sentence σ such that N |= σ but R/ ∼C2

σ (see Theorem 2.1 in [12]). Lerman [12] further proved that if R1 ≡m R2 are
r-maximal sets, then R/ ∼R1

∼= R/ ∼R2
. Moreover, Corollary 2.4 in [12] states

that if M1 and M2 are maximal sets of different m-degrees, then R/ ∼M1
and

R/ ∼M 2
are not even elementary equivalent. These models of fragments of

arithmetic have been further studied by Hirschfeld, Wheeler, and McLaughlin in
[8], [9], [13], [14], and [15], and are special cases of what we call cohesive powers.
The cohesive powers of fields, which were used in [3] to characterize the principal
filters of quasimaximal spaces, motivated the following general definition in [4].
As usual, we will denote the equality of partial functions by '.

Definition 3. Let A be a computable structure for a computable language L and
with domain A, and let C ⊂ ω be a cohesive set. The cohesive power of A over
C, denoted by

∏
C

A, is a structure B for L with domain B such that the following

holds.

1. The set B = (D/ =C), where D = {ϕ | ϕ : ω → A is a partial computable
function, and C ⊆∗ dom(ϕ)}.



For ϕ1, ϕ2 ∈ D, we have ϕ1 =C ϕ
2

iff C ⊆∗ {x : ϕ1(x) ↓= ϕ2(x) ↓}.
The equivalence class of ϕ with respect to =C will be denoted by [ϕ]C , or
simply by [ϕ] (when the reference to C is clear from the context).

2. If f ∈ L is an n-ary function symbol, then fBis an n-ary function on B such
that for every [ϕ1], . . . , [ϕn] ∈ B, we have fB([ϕ1], . . . , [ϕn]) = [ϕ], where for
every x ∈ A,

ϕ(x) ' fA(ϕ1(x), . . . , ϕn(x)). (3)

3. If P ∈ L is an m-ary predicate symbol, then PB is an m-ary relation on B
such that for every [ϕ1], . . . , [ϕm] ∈ B,

PB([ϕ1], . . . , [ϕm]) iff C ⊆∗ {x ∈ A | PA(ϕ1(x), . . . , ϕm(x))}. (4)

4. If c ∈ L is a constant symbol, then cB is the equivalence class of the (total)
computable function on A with constant value cA.

Remark 1. Let C and B be as in Definition 3.
(i) The requirement that C is cohesive can be weakened to C being r-cohesive.
(ii) If C is co-c.e., then for every [ϕ] ∈ B there is a computable function f

such that f =C ϕ. In this case the structures
∏
C

N and R/ ∼C are isomorphic.

Versions of restricted  Loś’s theorem were given in [13], [14] for models of
fragments of arithmetic. The version of  Loś’s theorem for cohesive powers of
computable structures was given in [4] and was called the fundamental theorem
of cohesive powers. Here is a part of the theorem that we will use in the proof
of Proposition 1.

Theorem 3. [4] If Φ(y1, . . . , yn) is a formula in L that is a Boolean combination
of Σ0

1 and Π0
1 formulas and [ϕ1], . . . , [ϕn] ∈ B, then∏

C

A |= Φ([ϕ1], . . . , [ϕn]) iff C ⊆∗ {x : A |= Φ(ϕ1(x), . . . , ϕn(x))}. (5)

The structure
∏
C

N can be embedded naturally into
∏
C

Q by mapping the

equivalence class of [ϕ] ∈
∏
C

N to the larger equivalence class of the same [ϕ] in∏
C

Q. With the following general approach we can also obtain
∏
C

Q from
∏
C

N.

Definition 4. Let M1 be a structure for the language L = {+, ·, 0, 1}, which
satisfies the commutative semiring axioms.

Let M2 be a ring with domain (M1 ×M1)≡+ where (a1, b1) ≡+ (a2, b2) iff
a1 + b2 = b1 + a2. Suppose that the natural definition of the ring operations of
M2 is such that M2 is an integral domain.

Let M3 be a field with domain (M2 ×M2)≡· where (a1, b1) ≡· (a2, b2) iff
a1 · b2 = b1 · a2 and the field (of quotients) operations of M3 are naturally
defined.



Remark 2. Let M1 be as in Definition 4. If M1 =
∏
C

N, then M2
∼=
∏
C

Z and

M3
∼=
∏
C

Q. The natural embedding of M1 into M3 yields the natural embed-

ding of
∏
C

N into
∏
C

Q mentioned earlier.

Lemma 1. (i) Any automorphism of Mi induces an automorphism of Mj for
i < j ≤ 3.

(ii) If Mi is definable in Mj for i < j ≤ 3, then any automorphism of Mj

induces an automorphism of Mi.
(iii) If Mj is rigid, then so is Mi for i < j ≤ 3.
(iv) If Mi is definable in Mj for i < j ≤ 3 and Mi is rigid, then so is Mj.

Proof. We will prove only (ii) and (iv) and leave the rest of the theorem to the
reader.

(ii) Let Γ be an automorphism of M3. To define an automorphism Γ1 :
M2 → M2, let a ∈ M2. The natural embedding of M2 into M3 maps a to
[(a, 1)]≡· . Let φ be a first-order formula in L that defines the set { [(x, 1)]≡· |
x ∈ M2} in M3. Then M3 |= φ([(a, 1)]≡·), so M3 |= φ(Γ ([(a, 1)]≡·)). Then
Γ ([(a, 1)]≡·) = [(c, 1)]≡· for a unique c ∈ M2. Let Γ1(a) = c. The proofs for the
other cases are similar.

(iv) We will only prove that M3 is rigid provided that M2 is rigid. Suppose
that Γ is an automorphism of M3. Since M2 is first-order definable in M3, Γ1

defined in (ii) is an automorphism of M2. Let a ∈ M3, and let b1, b2 ∈ M2 be
such that a = [(b1, b2)]≡· . Then

Γ (a) = Γ ((b1, 1)) · Γ ((1, b2)) = [(Γ1(b1), Γ1(b2))]≡· = [(b1, b2)]≡· = a (6)

because M2 is rigid.

Remark 3. Note that if M1 is rigid in language L and a relation R is definable
inM1, thenM1 is rigid in L∪{R}. We will later use this fact when the relation
R is <.

3 Definability and Isomorphisms

We will now prove that
∏
C

N is definable both in
∏
C

Z and
∏
C

Q. The definability

of Z in Q (by a Π0
3 formula) has been established by J. Robinson in [10]. More

recently, Koenigsmann [11] gave a Π0
1 definition of Z in Q. He proved that there

is a positive integer n and a polynomial p ∈ Z[y, z1, . . . , zn] such that

y ∈ Z ⇐⇒ ∀z1 . . . ∀zn[p(y, z1, . . . , zn) 6= 0]. (7)

We note that the intended range of all quantified variables in formulas (7)
through (10) is Q. The proof of Proposition 1 below essentially uses the Koenigs-
mann’s definition and cannot work with a definition of higher complexity.



The definability of N in Z (by various Σ0
1 formulas) has been established by

R. Robinson in [17]. We will use the formula that defines the natural numbers
as sums of the squares of four integers. Using these results we obtain that N can
be defined in Q as follows:

x ∈ N⇔ ∃y1 . . . ∃y4[
∧
i≤4

yi ∈ Z ∧ x = y21 + y22 + y23 + y24 ] (8)

x ∈ N⇔ ∃y1 . . . ∃y4∀z1 . . . ∀zn[
∧
i≤4

p(yi, z1, . . . , zn) 6= 0 ∧ x = y21 + y22 + y23 + y24 ],

(9)
which we will abbreviate as

x ∈ N⇔ ∃y∀zθ(x, y, z) (10)

where φ(x, y, z) is a quantifier-free formula in the language of rings L = {+, ·, 0, 1} .
Note that there is a natural embedding of

∏
C

N into
∏
C

Z, and of
∏
C

Z into
∏
C

Q.

Proposition 1. The natural embedding of
∏
C

N is definable in
∏
C

Q by the same

formula ∃y∀zθ(x, y, z) that defines N in Q.

Proof. First, assume that for some [ϕ] ∈
∏
C

Q we have

∏
C

Q |= ∃y∀zθ([ϕ] , y, z) (11)

and that yi = [ψi] are such that∏
C

Q |= ∀zθ([ϕ] , [ψi], z). (12)

By Theorem 3, we have that:

C ⊆∗ {n : Q |= ∀zθ(ϕ(n), ψi(n), z}. (13)

Using the definition of θ(x, y, z) we immediately obtain that C ⊆∗ {n : ϕ(n) ∈
ω}, which means that [ϕ] ∈

∏
C

N.

Now, assume that [ϕ] ∈
∏
C

N. We will prove that

∏
C

Q |= ∃y∀zθ([ϕ] , y, z). (14)

Define the partial computable functions ξi : ω → Q (i ≤ 4) as follows.
If at stage s we have ϕs(n) = m and m ∈ ω, then find the least

(b1, . . . , b4) ∈ ω4 such that m =
4∑
i=1

b2i and let ξi(n) = bi.



By the definition of the functions yi, we have that

C ⊆∗ {n : Q |= [
∧
i≤4

(ξi(n) ∈ Z) ∧ ϕ(n) =
∑
i≤4

ξi(n)2]}. (15)

Again, by Theorem 3, we obtain that∏
C

Q |= ∀zθ([ϕ] , [y1], . . . , [y4], z), (16)

which implies that ∏
C

Q |= ∃y∀zθ([ϕ] , y, z). (17)

For convenience we will introduce additional notation. Let

(1) ϕ1(x) =def ∃y1 . . . ∃y4[x = y21 + y22 + y23 + y24 ], and

(2) ϕ2(x) =def ∀z1 . . . ∀zn[p(x, z1, . . . , zn) 6= 0].

Definition 5. Let ϕ(x) be a formula in a prenex normal form. Define ϕ∗(x)
inductively as follows:

(1) ϕ∗(x) =def ϕ(x) if ϕ is a quantifier-free formula,

(2) ϕ∗(x) =def ∃y[ϕ2(y) ∧ ψ∗(x, y)] if ϕ(x) = ∃yψ(x, y),

(3) ϕ∗(x) =def ∀y[ϕ2(y)⇒ ψ∗(x, y)] if ϕ(x) = ∀yψ(x, y).

Note that in this case: x ∈ N ⇔ ϕ∗1(x)⇔ ∃y∀zθ(x, y, z).

Definition 6. Let ϕ(x) be a formula in a prenex normal form. Define ϕ
†
(x)

inductively as follows:

(1) ϕ†(x) =def ϕ(x) if ϕ is a quantifier-free formula

(2) ϕ
†
(x) =def ∃y[ϕ∗1(y) ∧ ψ†(x, y)] if ϕ(x) = ∃yψ(x, y),

(3) ϕ
†
(x) =def ∀y[ϕ∗1(y)⇒ ψ

†
(x, y)] if ϕ(x) = ∀yψ(x, y).

The idea for this definition is that φ
†
(x) essentially expresses the formula

φ(x) with the scope of its quantifiers limited from Q to N (and from
∏
C

Q to
∏
C

N

because of Proposition 1).

Proposition 2.
∏
C

Q and Q are not elementary equivalent.

Proof. Let T be Kleene’s predicate. By a result by Fefferman, Scott, and Tan-
nenbaum (see Theorem 2.1 in [12]), we know that for

φ = ∀x∃t∀e∀z[(e < x ∧ T (e, x, z))⇒ z < t], (18)

N |= φ but
∏
C

N 2 φ. (19)



We can assume that φ is a sentence in L = (+, ·, 0, 1) since both Kleene’s T

predicate and < are definable in N. Then Q |= φ
†

iff N |= φ, and
∏
C

Q 2 φ
†

iff∏
C

N 2 φ. This finally gives us that

Q 6≡
∏
C

Q. (20)

Definition 7. ([4]) The sets A ⊆ ω and B ⊆ ω have the same 1-degree up to
=∗ (denoted by A ≡∗1 B) if there are C =∗ A and D =∗ B such that C ≡1 D.

Remark 4. Using Myhill’s Isomorphism Theorem (see [18] p. 24),we conclude
that A ≡∗1 B iff there is a computable permutation σ of ω such that σ(A) =∗ B.

Proposition 3. Let M1 ⊆ ω and M2 ⊆ ω be maximal sets.

1. If M1 ≡∗1 M2, then
∏
M1

Q∼=
∏
M2

Q.

2. If M1 6≡∗1 M2, then
∏
M1

Q 6≡
∏
M2

Q.

Proof. (1) This fact has been proven in [4] for an arbitrary computable structure
A. If σ is a computable permutation of ω such that σ(M1) =∗ M2, then the map
Φ :

∏
M1

A →
∏
M2

A such that Φ([ψ]) = [ψ ◦ σ] is an isomorphism.

(2) Note that for maximal sets we have M1 ≡∗1 M2 iff M1 =m M2. For the
proof in the nontrivial direction, assume that M1 ≤m M2 via f and M2 ≤m M1

via g. Since M1 is cohesive, g ◦ f(M1)∩M1 is infinite and, by Proposition 2.1 in
[12], g ◦ f |M1

and I|M1
differ only on finitely many elements. Then to define the

computable permutation σ we enumerate M1 and let

σ(n) =

{
n, if n is enumerated into M1 first;

f(n), if g(f(n)) = n.
Note that σ(n) will be defined for almost every n ∈ ω and let σ(n) = n in

the finitely many remaining cases.
If M1 6=m M2, then we apply Theorem 2.3 in [12]. In fact, Lerman provided

a specific sentence θ (originally in the language L< = {+, ·, 0, 1, <}) for which∏
M1

N |= θ while
∏
M2

N |=qθ. As before, we can assume that the sentence θ is

equivalent to a sentence in the language L. Thus, for the relativisation θ
†

, we

have
∏
M1

Q |= θ
†

, while
∏
M2

Q |=qθ
†

.

4 Automorphisms

We now assume that C is a co-maximal (co-c.e. and cohesive) set and will prove
that the field

∏
C

Q is rigid (i.e., it has only the trivial automorphism). To do this



we will show that
∏
C

N is a special case of arithmetic (exactly ∆0
1) ultrapowers

studied by Hirschfeld, Wheeler, and McLaughlin. Specifically, they studied the
structures Fn/U , where U is a non-principal ultrafilter in the Boolean algebra of
∆0
n sets and Fn is the set of all total functions withΣ0

n graphs. In Theorem 2.11 of
[14], McLaughlin proved that Fn/U is rigid for the language L< = {+, ·, 0, 1, <} .
To apply McLaughlin’s result we need to make a few observations. First, clearly,
the theorem also holds for the language L = {+, ·, 0, 1} because of the definability
of the relation “<”. Second, we will see how the equivalence relation induced by
the co-maximal set C is equivalent to the one induced by a ∆0

1 ultrafilter. Finally,
the domain of

∏
C

N consists of partial computable functions, while the functions

in F1 are total. The last two points are addressed in the following proposition.

Proposition 4. (1) UC = {R | R ∈ ∆0
1 and C ⊆∗ R} is an ultrafilter in the

Boolean algebra ∆0
1.

(2)
∏
C

N ∼= F1/UC

Proof. (1) It is straightforward to show that UC is a filter. Since C is cohesive,
we have (∀R ∈ ∆0

1)[C ⊆∗ R ∨ C ⊆∗ R] and therefore, UC is maximal.

To prove (2) we will show that for every partial computable function ϕ for
which C ⊆∗ dom(ϕ), there is a computable function fϕ such that [ϕ]C = [fϕ]C .

We simply define

fϕ(n) =

{
ϕ(n), if ϕ(n) ↓ first;

0, if n is enumerated into C first.
Obviously, fϕ(n) is defined for all but finitely many n. For the finitely many

n for which fϕ(n) is not defined, we let fϕ(n) = 0. It is immediate that fϕ is
computable and [ϕ]C = [fϕ]C . It is also immediate that if [ϕ]C = [ψ]C , then
A = {n : fϕ(n) = fψ(n)} is a computable set such that C ⊆∗ A and so A ∈ U
and [fϕ] =U [fψ].

Then the map Φ :
∏
C

N → F1/UC given by Φ([ϕ]C) = [fϕ]UC
is an isomor-

phism.

Corollary 1. The structure
∏
C

N is rigid.

Theorem 4. The structure
∏
C

Q is rigid.

Proof. IfM1 =
∏
C

N andM3
∼=
∏
C

Q, thenM1 is definable inM3 by Proposition

1, andM1 is rigid by Proposition 4. Then the rigidity ofM3 follows from Lemma
1, part (4).

Corollary 2. If co-maximal powers
∏
M1

Q and
∏
M2

Q are isomorphic, then there

is a unique isomorphism between them.



Proof. If f1 and f2 are isomorphisms that map
∏
M1

Q to
∏
M2

Q, then f−12 ◦f1 must

be the identity automorphism of
∏
M1

Q.
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