
Ocean Sci., 15, 21–32, 2019

https://doi.org/10.5194/os-15-21-2019

© Author(s) 2019. This work is distributed under

the Creative Commons Attribution 4.0 License.

Isoneutral control of effective diapycnal mixing in numerical ocean

models with neutral rotated diffusion tensors

Antoine Hochet1, Rémi Tailleux1, David Ferreira1, and Till Kuhlbrodt1,2

1Department of Meteorology, University of Reading, Reading, UK
2National Center for Atmospheric Science, Reading, UK

Correspondence: Antoine Hochet (a.hochet@reading.ac.uk)

Received: 13 July 2017 – Discussion started: 28 August 2017

Revised: 26 November 2018 – Accepted: 29 November 2018 – Published: 9 January 2019

Abstract. It is well known that there is an infinite number of

ways of constructing a globally defined density variable for

the ocean, with each possible density variable having, a pri-

ori, its own distinct diapycnal diffusivity. Because no glob-

ally defined density variable can be exactly neutral, numeri-

cal ocean models tend to use rotated diffusion tensors mixing

separately in the directions parallel and perpendicular to the

local neutral vector at rates defined by the isoneutral and di-

aneutral mixing coefficients respectively. To constrain these

mixing coefficients from observations, one widely used tool

is inverse methods based on Walin-type water mass analyses.

Such methods, however, can only constrain the diapycnal dif-

fusivity of the globally defined density variable γ – such as

σ2 – that underlies the inverse method. To use such a method

to constrain the dianeutral mixing coefficient therefore re-

quires understanding the relations between the different di-

apycnal diffusivities. However, this is complicated by the fact

that the effective diapycnal diffusivity experienced by γ is

necessarily partly controlled by isoneutral diffusion owing

to the unavoidable misalignment between iso-γ surfaces and

the neutral directions. Here, this effect is quantified by eval-

uating the effective diapycnal diffusion coefficient pertain-

ing to five widely used density variables: γ n of Jackett and

McDougall (1997); the Lorenz reference state density ρref

of Saenz et al. (2015); and three potential density variables

σ0, σ2 and σ4. Computations are based on the World Ocean

Circulation Experiment climatology, assuming either a uni-

form value for the isoneutral mixing coefficient or spatially

varying values inferred from an inverse calculation. Isopy-

cnal mixing contributions to the effective diapycnal mixing

yield values consistently larger than 10−3 m2 s−1 in the deep

ocean for all density variables, with γ n suffering the least

from the isoneutral control of effective diapycnal mixing and

σ0 suffering the most. These high values are due to spatially

localised large values of non-neutrality, mostly in the deep

Southern Ocean. Removing only 5 % of these high values on

each density surface reduces the effective diapycnal diffusiv-

ities to less than 10−4 m2 s−1. The main implication of this

work is to highlight the conceptual and practical difficulties

of relating the diapycnal mixing diffusivities inferred from

global budgets or inverse methods relying on Walin-like wa-

ter mass analyses to locally defined dianeutral diffusivities.

Doing so requires the ability to separate the relative contri-

bution of isoneutral mixing from the effective diapycnal mix-

ing. Because it corresponds to a special case of Walin-type

water mass analysis, the determination of spurious diapycnal

mixing based on monitoring the evolution of the Lorenz ref-

erence state may also be affected by the above issues when

using a realistic nonlinear equation of state. The present re-

sults thus suggest that part of previously published spurious

diapycnal mixing estimates could be due to isoneutral mixing

contamination.

1 Introduction

Tracers in the oceans are stirred and mixed preferentially

along isopycnal surfaces (e.g. Iselin, 1939; Montgomery,

1940; Solomon, 1971). This process is associated with a

forward cascade of tracer variance to smaller scales, ulti-

mately leading to molecular diffusion. In coarse-resolution

ocean models this is a sub-grid-scale process that must be

parameterised. In such models, it is common practice (Redi,

1982) to mix potential temperature (alternatively conserva-
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tive temperature) and salinity1 by means of a rotated diffu-

sion tensor aligned with the local neutral direction. Note that

sub-grid-scale mixing processes in ocean models include two

other important components: dianeutral mixing and eddy-

induced advection. It is now well-established that sub-grid-

scale mixing processes are of key importance for climate

change simulations, as they directly control ocean heat up-

take, the strength of the Atlantic meridional overturning cir-

culation and the poleward heat transport (e.g. Kuhlbrodt and

Gregory, 2012; Pradal and Gnanadesikan, 2014; Gnanade-

sikan et al., 2015).

A conceptual difficulty with neutral rotated diffusion ten-

sors, however, is that it is not possible to construct a well-

defined and materially conserved density variable γ (S,θ)

whose gradient is parallel to the neutral direction everywhere

(McDougall and Jackett, 1988b). Mathematically, the prob-

lem arises because the local concept of neutral mixing cannot

be extended globally (see Appendix A).

This implies that the “effective cross-isopycnal mixing”

experienced by a material density variable γ (S,θ), that is,

the local diffusive flux of γ through an iso-γ surface (i.e.

γ = constant) must at least be partly controlled by isoneutral

mixing. This control depends on the degree of non-neutrality

of the density variable considered (Fig. 1).

In other words, the diapycnal mixing seen by any isopyc-

nal surface, including the neutral surfaces γ n of Jackett and

McDougall (1997), is “contaminated” by the isoneutral mix-

ing.

Although the issue was raised before (Lee et al., 2002; Mc-

Dougall and Jackett, 2005), the idea that the effective diapy-

cnal diffusivity experienced by any mathematically globally

defined density variable might be contaminated by isoneu-

tral mixing is not widely recognized in studies estimating

diapycnal mixing, whether it is spurious numerical mixing

in models (Griffies et al., 2000; Ilıcak et al., 2012; Lee et al.,

2002; Megann, 2018) or an inversion and Walin-like estimate

of effective mixing in models or observations (Nurser et al.,

1999).

A quantification of this effect in terms of diapycnal diffu-

sion is the first aim of this work. To do so, we develop a math-

ematical framework to estimate the implied diapycnal mix-

ing due to isoneutral mixing on any density surface. Using

the observed ocean climatology, we then quantify the con-

tamination of diapycnal diffusion by isoneutral mixing for a

series of commonly used density surfaces. We will consider

the following: γ n of Jackett and McDougall (1997); three

potential density variables σ0, σ2 and σ4; and the Lorenz ref-

erence state density ρref. Note that although the ω surfaces

1We assume fixed composition, thus allowing one to treat practi-

cal (conductivity) salinity and Absolute Salinity as equivalent, since

the two are then linked to each other by a fixed conversion factor.

Note that all the arguments could be reformulated using the more

recent conservative temperature 2 if desired without changing the

conclusions.

of Klocker et al. (2009) are more neutral than γ n, no density

variable associated with ω surfaces has been constructed yet.

This makes the use of the latter impractical for the present

purposes. These density variables have been chosen because

they are widely used in the oceanographic community and

thus deserve special attention.

Our results provide the first estimate of the uncertainties

associated with diagnosing diapycnal mixing in the pres-

ence of isoneutral mixing. They further suggest that their ef-

fect might, in fact, be more important than usually assumed,

therefore warranting more attention than it has received. An-

other motivation stems from a recent justification for the

well-known one-dimensional advection–diffusion model for

heat uptake in the ocean, e.g. Huber et al. (2015), in which

the diapycnal diffusivity diffusing heat downward is the ef-

fective diapycnal diffusivity discussed in a current paper

(see https://arxiv.org/abs/1708.02085 – last access: 2 January

2019).

The present work also raises questions about how to mea-

sure and interpret the measurement of diapycnal mixing. In-

deed measured diapycnal mixing is not easily separated from

isoneutral mixing and depends on the choice of density sur-

face used for the diagnostic. Related to that, the mathematical

framework we use below clearly reveals that for a given tur-

bulent flux, an infinite number of projections and thus of iso-

diapycnal diffusion coefficients, each associated to a choice

of density surface, are possible.

Section 2 presents the theoretical framework used for

defining effective diffusivities for each variable. We also dis-

cuss how our framework relates to similar concepts and ap-

proaches previously published. Section 3 presents estimates

of the diapycnal diffusion contamination due to isoneutral

mixing for the aforementioned five density variables. The

sensitivity of the results to the choice of isoneutral mixing

and location is also discussed. In Sect. 4, we discuss the

wider implications of our findings and the related issue of

defining, measuring and comparing mixing coefficients. Sec-

tion 5 summarizes and discusses the results.

2 Method

2.1 Effective diffusivity

Thermodynamic properties in numerical ocean models are

commonly formulated in terms of θ and S, whose evolution

equations can in general be expressed as:

Dresθ

Dt
= ∇ ·(K∇θ)+fθ ,

DresS

Dt
= ∇ ·(K∇S)+fS, (1)

where K = Ki(I − d · dT ) + Kdd · dT is the neutral rotated

diffusion tensor of Redi (1982) (with Ki and Kd being the

isoneutral and dianeutral turbulent mixing coefficients re-

spectively, d = N/|N| is the locally defined normalised neu-

tral vector), fS and fθ are respectively the forcing terms
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for salinity and potential temperature, and Dres/Dt = ∂/∂t+

(v+v⋆) ·∇ is the advection by the residual velocity (the sum

of the Eulerian velocity and the mesoscale eddy-induced ve-

locity). A common parameterisation for v⋆ is that of Gent

and McWilliams (1990; see also Griffies, 2004), however the

following arguments are independent of the precise form of

v⋆. Note here that Ki and Kd are implicitly defined in terms

of the orthogonal projections of the turbulent heat and salt

fluxes on the isoneutral and dianeutral directions; for an al-

ternative and more recent definition of Ki and Kd aimed at

making dianeutral mixing appear to be isotropic, see Mc-

Dougall et al. (2014). For clarity, the directions parallel and

perpendicular to the local neutral tangent planes are referred

to as “dianeutral” and “isoneutral” respectively, with the

terms “diapycnal” and “isopycnal” being used when isopy-

cnal surfaces are defined in terms of a material density vari-

able γ (S,θ) = constant.

The evolution equation of any material density variable

γ (S,θ) is

Dresγ

Dt
= ∇ · (K∇γ )

−
(

γθθ∇θT K∇θ + 2γSθ∇ST K∇θ + γSS∇ST K∇S
)

︸ ︷︷ ︸

NL

. (2)

Unless γ (S,θ) is a linear function of S and θ , its evolu-

tion equation will generally contain non-vanishing nonlinear

terms (denoted as NL in Eq. 2) related to cabbeling and ther-

mobaricity, e.g. McDougall (1987), Klocker and McDougall

(2010) and Urakawa et al. (2013).

The diffusive flux of γ is

F
γ
diff

= −K∇γ = −Ki(∇γ − (∇γ · d)d)
︸ ︷︷ ︸

F i
diff

−Kd(∇γ · d)d
︸ ︷︷ ︸

F d
diff

, (3)

where F i
diff and F d

diff are respectively the diffusive flux of γ

in the isoneutral and dianeutral direction. For clarity, Fig. 1

shows a schematic of the neutral plane, of the γ = const.

plane, of the ∇γ and neutral direction, and of F i
diff and F d

diff.

We define the effective diffusive flux of γ as the integral

of the diffusive flux across the isopycnal surface γ (x, t) =

constant, viz.,

Feff = −

∫

γ=const

K∇γ · ndS, (4)

where n =
∇γ
|∇γ |

is the local unit normal vector to the γ sur-

face. Now, it is easily established after some straightforward

algebra that

K∇γ · n =
[

Ki(∇γ − (∇γ · d)d) + Kd(∇γ · d)d
]

·
∇γ

|∇γ |
=
[

Ki

(

|∇γ |2 − (∇γ · d)2
)

+ Kd(∇γ · d)2
]

/|∇γ |

= |∇γ |
[

Kisin2(∇γ,d) + Kdcos2(∇γ,d)
]

.

(5)

Figure 1. Schematic showing the neutral plane and neutral direction

d in blue, the γ = const. plane and ∇γ direction in black, and the

projection of the diffusive flux of γ in the isoneutral
(

F i
diff

)

and

dianeutral
(

F d
diff

)

direction.

Equation (5) establishes that the locally defined effective

diapycnal diffusivity experienced by the density variable γ

is affected by both isoneutral and dianeutral mixing, the con-

tribution from isoneutral mixing being akin to a Veronis-like

effect, as discussed in Tailleux (2016). Because we are pri-

marily interested in the latter effect, we discard the effect of

dianeutral mixing on the effective diapycnal diffusivity of γ

and hence assume Kd = 0 in the rest of the paper. As a result,

the expression for the effective diapycnal diffusive flux of γ

due to isoneutral mixing becomes

Feff = −

∫

γ=const

|∇γ |Kisin2(∇γ,d)dS. (6)

The integrand of Eq. (6) is mathematically equivalent to what

McDougall and Jackett (2005) refer to as “fictitious diapyc-

nal mixing”. However, here the integrand is integrated on γ

surfaces and is then used to calculate an effective diffusivity

coefficient, which is easier to interpret than a collection of

local values of the (∇γ,d) angle.

2.2 Reference profile

To construct an effective turbulent diffusivity Keff associated

with the effective diffusivity flux Feff, we need to define an

appropriate mean gradient for the density variable γ . This is

done by constructing a reference profile for γ , as explained

in the next paragraph.

Let zr(γ, t) be the reference profile for the particular ma-

terial density γ (S,θ) (which can always be written as a func-

tion of space x and time t as γ ∗(x, t) = γ (S(x, t),θ(x, t)),

constructed to be the implicit solution to the following prob-

lem:

∫

V (zr)

dV =

∫

V (γ,t)

dV =

0∫

zr(γ,t)

A(z)dz, (7)

where A(z) is the depth-dependent area of the ocean at depth

z, and V (γ, t) is the volume of water for all parcels with
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density γ0 such that γ0 ≤ γ . The knowledge of the refer-

ence profile allows one to regard the volume V (γ, t) of water

masses with density lower than γ as a function of zr only as

V (γ, t) = V (zr(γ, t)). Physically, Eq. (7) defines the refer-

ence depth zr(γ, t) at which the volume of water with den-

sity lower than γ is equal to the volume of water between

the ocean surface and zr; this definition is equivalent to that

used by Winters and D’Asaro (1996) (see also Griffies et al.,

2000; Saenz et al., 2015) to construct the Lorenz reference

state, but it is generalised here in the case of an arbitrary ma-

terially conserved density variable γ (S,θ). Once zr(γ, t) is

constructed, it can be inverted to define, in turn, the refer-

ence profile γr(zr, t) as γr(zr(x, t), t) = γ ∗(x, t). As a result,

we can always write a relation such as

∇γ =
∂γr

∂zr
∇zr. (8)

However, the choice of γ (S,θ) influences the local projec-

tion of the iso-dianeutral diffusion on the γ gradient and thus

the effective diapycnal coefficient. We now define the effec-

tive diffusivity Keff. Using Eq. (8) in Eq. (6), we get

Feff = −

∫

γ=const

|∇γ |Kisin2(∇γ,d)dS =
∂γr

∂zr
,

∫

zr=const

|∇zr|Kisin2(∇zr,d)dS = A(zr)Keff
∂γr

∂zr
, (9)

where we have used |∇γ | = −
∂γr

∂zr
|∇zr| (because

∂γr

∂zr
< 0).

Keff is defined as follows:

Keff(zr) =

∫

zr=constKi|∇zr|sin2(∇zr,d)dS

A(zr)
, (10)

which is independent of the gradient of γr in the reference

space. A detailed description of the steps required to obtain

Keff is provided in Appendix B. Equation (10) is one of the

key results of this study.

It should be noted that Keff is not the surface average of

the local mixing coefficient across γ = const. surfaces but

rather the mixing coefficient linked to the time variation of

γr, as can be seen from the following equation (proof shown

in Appendix C):

∂γr

∂t
=

1

A(zr)

∂

∂zr

(

A(zr)Keff(zr)
∂γr

∂zr

)

+ NL + F, (11)

where NL represents the nonlinearity of γ (S,θ), and F rep-

resents the heat and haline fluxes at the ocean surface. In

Speer (1997) and in Lumpkin and Speer (2007), the effec-

tive diffusivity is defined as the integral of the local diapyc-

nal flux on a γ surface over the integral of the local gradient

of γ on the same γ surface, i.e.

K
speer

eff =

∫

zr=constK∇γ · ndS
∫

zr=const∇γ · ndS
. (12)

This is different from our formulation because of the differ-

ent mean gradient formulation. The relationship between the

Keff described in this article (a generalization of the formula-

tion of Winters and D’Asaro, 1996) and K
speer

eff is, from for-

mula (10) and (12),

Keff = K
speer

eff

(∫

zr=const|∇zr|dS

A(zr)

)

. (13)

We have checked that the quantity between brakets in

Eq. (13) is smaller than 1 for all the density variables un-

der consideration here, so that Keff can be seen as a lower

bound of K
speer

eff .

In Lee et al. (2002), the effective diapycnal coefficient for-

mulation is similar to that of Speer (1997), except that the

mean gradient is approximated by an average of the vertical

gradient of γ on a γ surface (which is valid as long as the γ

slope is small).

3 Isoneutrally controlled effective diapycnal

diffusivities for σ0, σ2, σ4, γ n and ρref

In this section we estimate the effective diffusivity (10) de-

rived in the previous section for five different density vari-

ables: σ0, σ2, σ4, the Jackett and McDougall (1997)’s γ n and

the Lorenz reference density ρref obtained with the Saenz

et al. (2015) method. All the calculations presented in this

section are performed with annual mean potential tempera-

ture and salinity data from the World Ocean Circulation Ex-

periment (Gouretski and Koltermann, 2004). Since γ n is not

well defined north of 60◦ N, the latter region was excluded

from our analysis for all five density variables. We also re-

stricted our calculation to the ocean below the mixed layer,

because eddies mix the fluid horizontally in the mixed layer,

rather than perpendicular to the neutral vector. In this study,

the depth of the mixed layer is taken from the de Boyer Mon-

tégut database (de Boyer Montégut et al., 2004). The refer-

ence density for each of the five variables is shown in Fig. 2.

As expected, the range of values taken by the reference

density of the three potential density variables increases with

the reference pressure. γ n has a reference density similar to

that of σ0, with a slightly smaller gradient in the reference

space. ρref has a gradient much larger than all other density

variables. It crosses σ0 at the surface, σ2 at around −2000 m

and σ4 at around −4000 m. This is due to the fact that the

volume above the surface σp(θ,S) = σ r
p(Z) is, by definition,

the same as the volume above ρ(θ,S,p) = ρref(Z), where

p = −Zρ0g is the reference pressure linked to the reference

depth Z, and σ r
p is the reference density linked to σp.

Figure 3 shows the histogram of the decimal logarithm of

the squared sine of the angle between ∇γ and d (calculated

using Eq. B1 in Appendix B; log10[sin2 (∇γ,d)]). This plot

is similar to that discussed by McDougall and Jackett (2005)

in their discussion of fictitious diapycnal mixing.
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Figure 2. Reference density for ρref (black), γ n (red), σ0 (blue), σ2

(yellow) and σ4 (green) as a function of the reference depth.

Figure 3. Histogram of the decimal logarithm of the squared sine

between the gradient of γ and the neutral vector d weighted by

the volume of each point. log10

(

sin2 (∇γ,d)
)

for ρref (black), γ n

(red), σ0 (blue), σ2 (yellow) and σ4 (green).

ρref, σ2 and σ4 give similar angles, with most of their val-

ues slightly larger than 10−5. γ n gives the smallest angles

among the variables under consideration here, with most of

its values smaller than 10−5, while σ0 gives the largest, with

a large number of points having values larger than 10−4. Al-

together, these observations could suggest that the effective

diffusivity of γ n should be the smallest overall, that the ef-

fective diffusivity of ρref should be of the same order as that

for σ2 and σ4, and that the effective diffusivity for σ0 should

be the largest of all. It is, however, hard to predict the val-

ues of the effective diffusivity coefficient for each density

variable from Fig. 3, only since the small number of points

with very large angle values (hardly visible in Fig. 3) could

dominate the large number of points with small angles, and

since the spatial variability of the isoneutral mixing coeffi-

cient could correlate with the spatial variability of the angle.

We thus calculate the effective diffusivity coefficient using

these angle values for each density variable.

Figure 4 shows the decimal logarithm of the effective dif-

fusivity Keff for the five variables as a function of the refer-

ence depth under two possible choices of Ki.

The first case (Fig. 4a) assumes a constant isoneutral co-

efficient: Ki = 1000 m2 s−1. Under this assumption, for ev-

ery density variable, Keff increases, on average, with the ref-

erence depth, from values between 10−12 and 10−8 m2 s−1

close to surface reference depth to values between 10−6 and

0 m2 s−1 at the deepest reference depths. This increase in

Keff reflects that the largest discrepancy between the neu-

tral vector and the gradients of the five density variables

are generally located in the Antarctic Circumpolar Current

(ACC), where the highest densities, and thus deepest refer-

ence depths, outcrop (see below). Keff for γ n and σ0 are

similar between −800 and 0 m depth, with values ranging

from 10−8 m2 s−1 at the surface to 10−6 m2 s−1 at −800 m.

σ2, σ4 and ρref give values up to 100 times larger in the same

depth range. Between −4000 and −800 m depth, γ n gives

the smallest Keff which is slowly increasing from 10−6 to

10−5 m2 s−1 as the depth decreases. In the same depths, ρref,

σ0, σ2 and σ4 give values at least 10 times larger (up to 1000

times larger for σ0 below −2000 m). Below −4000 m depth,

all density variables have a Keff larger than 10−4 m2 s−1.

Note that 10−4 m2 s−1 is the widely cited canonical estimate

of diapycnal mixing inferred from the global heat and me-

chanical energy budgets seen in Munk (1966) and Munk and

Wunsch (1998). At the deepest levels, under −5000 m, σ0

and ρref have a smaller Keff than γ n, suggesting that their

local gradients are very nearly aligned with the neutral vec-

tor at these deep reference depths. The second case (Fig. 4b)

assumes a spatially variable isoneutral coefficient given by

the inverse calculation of Forget et al. (2015), which gives

a three-dimensional distribution of Ki at about 1◦ resolution

for the global ocean. This database contains values ranging

from 9000 m2 s−1 (in the Atlantic deep water formation zone

at the surface, in western boundary currents and in the ACC)

to values close to 0 (in the deep pelagic ocean). The esti-

mated Keff values for this choice are very close to those ob-

tained under the previous assumption of constant diffusivity

for all variables, showing the small sensitivity of our results

to spatial variations of isoneutral diffusion, which is further

discussed below.

To investigate the importance of the localised large depar-

ture from neutrality in the construction of Keff, we removed

5 % of the largest non-neutral values of the angle for each

reference surface (Fig. 4, panel c). Without 5 % of the largest

values, Keff is much smaller than the previous one for ev-

www.ocean-sci.net/15/21/2019/ Ocean Sci., 15, 21–32, 2019
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.

Figure 4. log10 of the effective diapycnal diffusivity coefficient Keff as a function of the reference depth (meters; and as defined by Eq. 10) for

ρref (black), γ n (red), σ0 (blue), σ2 (yellow) and σ4 (green). Panels (a), (b) and (c) correspond to a Keff calculated with different isoneutral

diffusivity coefficient. (a) Kiso = 1000 m2 s−1; (b) variable isoneutral diffusivity coefficient given by Forget et al. (2015). (c) Same as (b), but

without 5 % of the largest angles. (d) log10Keff calculated from a variable dianeutral diffusivity coefficient given by the inverse calculation

of Forget et al. (2015).

ery density variable with values at every depth smaller than

10−4 m2 s−1. As before, the effective diffusivity increases

rapidly when close to the surface and then more slowly below

−1000 m (except at a few depths for σ2 and σ4 and at deep

reference depths for ρref and σ0) with the reference depth for

all density variables. γ n gives the smallest values for almost

all reference depths, with values from 10−10 m2 s−1 close to

the surface of the reference space to 10−6 m2 s−1 at the deep-

est levels. σ2 gives the second smallest values for reference

depths smaller than −1500 m but is overtaken by σ0 and ρref

at larger depths. ρref, σ0, σ2 and σ4 all give effective diffusiv-

ities of the order of or larger than 10−5 m2 s−1 at some depths

below −2000 m.

This calculation shows that the isoneutral contribution to

effective diapycnal mixing is very localised spatially with

5 % of each surface accounting for most of the effective dif-

fusivity for all the density variables under consideration here.

However, even without this top 5 %, Keff remains close to or

above 10−5 m2 s−1 for all variables except γ n. Returning to

the similarity between panels (a) and (b) in Fig. 4, the loca-

tion of the top 5 % values are correlated with local Ki values

(from the Forget et al., 2015, database) around 1000 m2 s−1

which therefore explain the lack of sensitivity of our results

to the choice of Ki between (a) and (b). Panel (d) shows Keff

calculated using a dianeutral mixing coefficient given by For-

get et al. (2015), where the inverse calculation assumes no

isoneutral mixing. The formula for this calculation is ob-

tained by replacing the sine by a cosine and Ki by Kd in

formula (10), following formula (5), i.e.

Keff(zr) =

∫

zr=constKd|∇zr|cos2(∇zr,d)dS

A(zr)
. (14)

Keff values are smaller or close to 10−5 m2 s−1 at all refer-

ence depths for all density variables. For reference depths

deeper than 1000 m, these values are much smaller than the

effective diffusivity estimated from the isoneutral mixing co-

efficient as shown in panel (a) or (b). Without the 5 % of the

largest values on each density surface, Keff estimated from

variable Ki (Fig. 4c) is smaller than the one estimated from

variable Kd for all density variables above 1000 m. The ex-
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Figure 5. Decimal logarithm of the sine between the neutral vec-

tor, and the gradient of ρref (a), γ n (b) and σ0 (c) as a function of

latitude and depth at 30◦ W (in the Atlantic).

ception is γ n, which gives the Keff estimated from Ki ap-

proximately 10 times smaller than Keff from Kd at all ref-

erence depths below 1000 m. The values obtained from the

dianeutral coefficient are much less sensitive to the choice of

density variable than the values obtained from the isoneutral

mixing coefficient, because for small angles, cos2(∇zr,d) ≈

1 − (∇zr,d)2 depends on the angle only at second order.

The largest angles between the neutral vector and the gra-

dient of the density variable are found mostly in the ACC

at all depths for ρref and γ n and at all depths for σ0, as il-

lustrated in Fig. 5. This suggests that, in this region, all the

density variables studied above introduce significant biases

to the estimation of diapycnal mixing.

4 Conclusions

Mixing of heat and salt in numerical ocean models is com-

monly parameterised by means of a neutral rotated diffusion

tensor using the dianeutral and isoneutral mixing coefficients

Kd and Ki relating to density surfaces that are only defined

locally. In contrast, inverse methods based on Walin-type wa-

ter mass analyses produce observationally constrained diapy-

cnal diffusivities Kγ for the globally defined density variable

γ underlying the isopycnal analysis. Since inverse methods

give us information about Kγ , while what we need in nu-

merical ocean models is Kd, our ability to use Walin-type

inverse approaches to constrain neutral rotated diffusion ten-

sors therefore depends on our ability to understand how the

various diffusivities Kγ and Kd are interrelated.

In this paper, we have presented a new framework for as-

sessing the contribution of isoneutral diffusion to the effec-

tive diapycnal mixing coefficient Keff for five different den-

sity variables, chosen for their widespread use in the oceano-

graphic community, namely γ n, ρref, σ0, σ2 and σ4. Our re-

sults reveal that the contribution of isoneutral mixing to the

effective diapycnal mixing experienced by each density vari-

able can be as large as 10−4 and up to 0.1 m2 s−1 for refer-

ence depths deeper than 2000 m. These values are typically

10 to 100 times larger below −1000 m and up to 1000 times

larger below −4000 m than estimations for the effective di-

apycnal mixing due to the dianeutral mixing alone (which are

around or below 10−5 m2 s−1). As expected, γ n, constructed

to be as neutral as practically feasible, is the least affected

by isoneutral diffusion of all density variables considered.

Nevertheless, it still appears to experience values larger than

10−4 m2 s−1 for reference depths below −4000 m. These val-

ues are 10 to 100 times larger than the corresponding effec-

tive mixing due to the direct effect of a (variable) dianeutral

mixing coefficient. Note that an added difficulty pertaining

to the use of γ n stems from its non-material character. As a

result, the validity of defining an effective diapycnal diffusiv-

ity for γ n using the present approach depends on such non-

material effects to be small, or at least much smaller than the

contribution from isopycnal diffusion discussed here, which

is difficult to evaluate.

Our results thus suggest that the potential contamination

due to isoneutral mixing should always be assessed for any

inference of diapycnal mixing based on the use of any den-

sity variable γ (S,θ), in Walin-like water mass analysis, for

instance. In agreement with previous studies (e.g. McDougall

and Jackett, 2005), the regions of large discrepancy between

the neutral vector and the gradient of each surface are lo-

calised in space and mainly confined to the deep Southern

Ocean. However, while representing a very small amount of

volume of the ocean, these discrepancies are important in

setting the effective diffusivity values. Indeed, without 5 %

of the largest angle values between the neutral vector and

the local γ gradient, all variables give an effective diapycnal

mixing smaller than 10−4 m2 s−1. Moreover, the estimated

values everywhere are comparable to or smaller than the ef-

fective mixing estimated from dianeutral mixing only. Note

that, even after removal of the largest angles, isoneutral and

dianeutral mixing equally contribute to the effective diapyc-

nal mixing. In the context of inverse methods, this still rep-

resents a potential uncertainty of up to a factor of 2 in the

estimation of diapycnal mixing due to the contamination by

isoneutral mixing. The concentration of discrepancies is even
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stronger for γ n, since the effective diffusivity coefficient af-

ter the removal of the 5 % of the largest values decreases be-

low 10−6 m2 s−1. This is a contamination of only 10 % for

the typical diapycnal mixing values of 10−5 m2 s−1 found in

the thermocline and abyssal plains (Ledwell et al., 1998) and

is much less for enhanced mixing values found above rough

topography (Polzin et al., 1997).

Overall, the Keff profiles for each density variable become

similar without the 5 %, suggesting that the choice of the den-

sity variable is less important when the Southern Ocean is

not taken into account. However, when no part of the ocean

is removed (as in the case of a type of calculation like Walin,

1982, for instance), the effective diffusivities found in this

article are very sensitive to the density variable under con-

sideration. This is at odds with the results of Megann (2018)

and could suggest that their effective diffusivities are mainly

driven by spurious numerical mixing.

Our results show that the evaluation of effective diapyc-

nal mixing using a sorting algorithm of density (e.g. Griffies

et al., 2000; Hill et al., 2012; Ilıcak et al., 2012), which

amounts to diagnosing the diapycnal flux through ρref, is

likely to be significantly contaminated by isoneutral diffusion

owing to the large departure from the neutrality of ρref in the

polar regions if a nonlinear equation of state is used (which

is not the case in the studies cited above). Note that this is a

distinct effect from the density sinks and sources due to the

nonlinear equation of state influencing the time variation of

the reference density (see Eq. 11), which are also a source

of contamination of the diapycnal flux from the isoneutral

diffusion when using a sorting algorithm. It follows that di-

agnosing the spurious diapycnal mixing resulting from nu-

merical advection schemes for a nonlinear equation of state

remains an outstanding challenge and that progress related

to this topic must take into account the theoretical consider-

ations developed here.

This work advocates for the construction of a density func-

tion γ (θ,S) that would minimize the influence of isoneutral

mixing on the effective diapycnal diffusivity coefficient. As

shown by Tailleux (2016), so far the best material density

variable is a function of Lorenz reference density, but it ap-

pears theoretically possible to construct an even more neutral

one. Whether the ω surfaces of Klocker et al. (2009) can be

used for global inversions is unclear, because their improved

neutrality might be achieved at the expense of materiality,

which remains to be quantified.

Data availability. The World Ocean Atlas dataset used in this study

is available on the NOAA website: https://www.nodc.noaa.gov

(Gouretski and Koltermann, 2004).
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Appendix A

A conceptual difficulty in the ocean is the impossibility of

constructing a mathematically well-defined materially con-

served variable γ (S,θ) allowing us to write N = C0∇γ with

C0 as an integrating factor. In the spatial domain, this can be

attributed mathematically to the non-zero helicity of N (see

McDougall and Jackett, 1988a). More instructive and illumi-

nating, however, is proving the result directly in thermoha-

line space. To that end, let us assume that such a variable

γ = γ (S,θ) exists and show that it leads to a contradiction.

To that end, let us perform a change of variables from (S,θ)

space to (γ,θ) space, similarly to Tailleux (2016). Let us de-

note this J = ∂(γ,θ)/∂(S,θ), the Jacobian of the transfor-

mation. It is easy to see that J = ∂γ /∂S, which we assume

to be non-zero so that the transformation is invertible. This

makes it possible to regard S = Ŝ(γ,θ) as a function of γ and

θ . Likewise, we can define ρ = ρ(S,θ) = ρ(Ŝ(γ,S),θ) =

ρ̂(γ,S), where the hat notation refers to the variables viewed

as functions of γ and θ instead of S and θ . As a result, the

neutral vector can be equivalently written as

N = −
g

ρ

(
∂ρ

∂S
∇S +

∂ρ

∂θ
∇θ

)

=

−
g

ρ

(
∂ρ̂

∂γ
∇γ +

∂ρ̂

∂θ
∇θ

)

. (A1)

In order for N to align with ∇γ , one would need the quantity

∂ρ̂/∂θ to vanish. An expression for ∂ρ̂/∂θ can be obtained

using the following series of identities:

∂ρ̂

∂θ
=

∂(ρ̂,γ )

∂(θ,γ )
=

∂(ρ,γ )

∂(S,θ)

∂(S,θ)

∂(θ,γ )
=

1

J

∂(γ,ρ)

∂(S,θ)
, (A2)

where we used the usual properties of Jacobian operators,

including composition and anti-symmetry. Equation (A2)

shows that for ∂ρ̂/∂θ = J−1∂(γ,ρ)/∂(S,θ) to be zero, this

would require ρ to be a function of γ (S,θ) alone, but this

cannot be true, because ρ also depends on pressure.

Appendix B: Calculation of Keff

The following steps describe the calculation of the effective

diffusivity coefficient for a given γ (S,θ) in detail:

1. The reference depth zr(S,θ) is calculated following for-

mula (7), and its gradient |∇zr| is then computed every-

where.

2. The neutral vector is calculated as the gradient of the

locally referenced potential density.

3. The sinus of the angle between ∇zr and d , sin(∇zr,d),

is calculated using the cross product between ∇zr and

d:

|sin(∇zr,d)| =
|∇zr × d|

|∇zr|
, (B1)

where × is the cross product and d the normalised neu-

tral vector d = N/|N|.

4. The product Ki|∇zr|sin2(∇zr) is interpolated to and in-

tegrated with zr(S,θ) = const. surfaces.

5. Keff is then equal to the integral obtained at the previous

step divided by the area of the ocean at depth zr, i.e.

A(zr).

Appendix C: Equation (11)

The evolution equation for γ is:

dγ

dt
=

∂γ

∂θ

dθ

dt
+

∂γ

∂S

dS

dt
=

∂γ

∂θ
∇ (K∇θ)

+
∂γ

∂S
∇ (K∇S) +

∂γ

∂θ
fθ +

∂γ

∂S
fS (C1)

= ∇ (K∇γ ) − K∇θ · ∇

(
∂γ

∂θ

)

− K∇S · ∇

(
∂γ

∂S

)

+ fγ , (C2)

where fθ and fS are the surface heat and haline fluxes and

where fγ =
∂γ
∂θ

fθ +
∂γ
∂S

fS. Then let zr(X, t) be the reference

level of γ defined by Eq. (7) so that γ can now be written as

γ (S,θ) = γr(zr, t). Then, integrating Eq. (C2) on a volume

V (zr) defined by water parcels of a reference level larger than

or equal to zr gives
∫

V (zr)

∂γ

∂t
dV + γr(zr, t)

∫

zr=const

u · ndS =

∫

zr=const

K∇γ · ndS

−

∫

V (zr)

K∇θ · ∇

(
∂γ

∂θ

)

+ K∇S

· ∇

(
∂γ

∂S

)

dV +

∫

V (zr)

fγ dV, (C3)

where zr = const refers to the constant zr surface. n =
∇γ
|∇γ |

=

− ∇zr
|∇zr|

is the local normal to the surface γ = const, and the

minus sign arises because the integration is done toward

deeper values of zr. The second term on the left-hand side

is zero because of the non-divergence of the velocity, and the

first term can be written as
∫

V (zr)

∂γ

∂t
dV =

∂

∂t

∫

V (zr)

γrdV ′ − γr
∂V (zr)

∂t
︸ ︷︷ ︸

=0

. (C4)

The second term on the right-hand side is zero, because the

total volume at constant zr is independent of time (see for-

mula 7). Using Eq. (C4) and the zr derivative of Eq. (C3) we

get

∂γr

∂t
=

1

A(zr)

∂

∂zr

(

A(zr)Keff(zr)
∂γr

∂zr

)

+NL+ forcing, (C5)
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where we have used formula (7) and the fact that the vol-

ume integral of a function of only zr can be expressed as an

integral over the reference depth

∂

∂zr






∂

∂t

∫

V (zr)

γrdV ′




=

∂

∂t




∂

∂zr

0∫

zr

A(z′
r)γr(z

′
r, t)dz′

r



=

− A(zr)
∂γr

∂t
, (C6)

and where

NL =
1

A(zr)

∂

∂zr





∫

V (zr)

(

K∇θ · ∇

(
∂γ

∂θ

)

+ K∇S · ∇

(
∂γ

∂S

))

dV




 , (C7)

forcing = −
1

A(zr)

∂

∂zr






∫

V (zr)

fγ dV




 , (C8)

and, finally, Keff is given by formula (10).

Ocean Sci., 15, 21–32, 2019 www.ocean-sci.net/15/21/2019/



A. Hochet et al.: Isoneutral control of effective diapycnal mixing in ocean models 31

Competing interests. The authors declare that they have no conflict

of interest.

Acknowledgements. This work was supported by the grant

NE/K016083/1 “Improving simple climate models through a trace-

able and process-based analysis of ocean heat uptake (INSPECT)”

and its follow-up NE/R010536/1 “New prOcess-based Under-

sTanding of ocean heat Uptake with an application to improved

Climate pRojections for pOlicy and Planning” (OUTCROP) of the

UK Natural Environment Research Council (NERC). Modeling

results presented in this study are available upon request to the

corresponding author.

Edited by: Eric J. M. Delhez

Reviewed by: Sjoerd Groeskamp and two anonymous referees

References

de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and

Iudicone, D.: Mixed layer depth over the global ocean: An ex-

amination of profile data and a profile-based climatology, J. Geo-

phys. Res.-Oceans, 109, https://doi.org/10.1029/2004JC002378,

2004.

Forget, G., Ferreira, D., and Liang, X.: On the observabil-

ity of turbulent transport rates by Argo: supporting evi-

dence from an inversion experiment, Ocean Sci., 11, 839–853,

https://doi.org/10.5194/os-11-839-2015, 2015.

Gnanadesikan, A., Pradal, M.-A., and Abernathey, R.: Isopycnal

mixing by mesoscale eddies significantly impacts oceanic an-

thropogenic carbon uptake, Geophys. Res. Lett., 42, 4249–4255,

2015.

Gouretski, V. and Koltermann, K. P.: WOCE global hydrographic

climatology, Berichte des BSH, 35, 1–52, 2004 (data available

at: https://www.nodc.noaa.gov, last access: 1 July 2018).

Griffies, S. M., Pacanowski, R. C., and Hallberg, R. W.: Spurious di-

apycnal mixing associated with advection in az-coordinate ocean

model, Mon. Weather Rev., 128, 538–564, 2000.

Hill, C., Ferreira, D., Campin, J.-M., Marshall, J., Abernathey, R.,

and Barrier, N.: Controlling spurious diapycnal mixing in eddy-

resolving height-coordinate ocean models–Insights from virtual

deliberate tracer release experiments, Ocean Model., 45, 14–26,

2012.

Huber, M., Tailleux, R., Ferreira, D., Kuhlbrodt, T., and

Gregory, J.: A traceable physical calibration of the ver-

tical advection-diffusion equation for modeling ocean

heat uptake, Geophys. Res. Lett., 42, 2333–2341,

https://doi.org/10.1002/2015gl063383, 2015.

Ilıcak, M., Adcroft, A. J., Griffies, S. M., and Hallberg, R. W.: Spuri-

ous dianeutral mixing and the role of momentum closure, Ocean

Model., 45, 37–58, 2012.

Iselin, C. O.: The influence of vertical and lateral turbulence on the

characteristics of the waters at mid-depths, EOS T. Am. Geo-

phys. Un., 20, 414–417, 1939.

Jackett, D. R. and McDougall, T. J.: A neutral den-

sity variable for the world’s oceans, J. Phys.

Oceanogr., 27, 237–263, https://doi.org/10.1175/1520-

0485(1997)027<0237:andvft>2.0.co;2, 279, 1997.

Klocker, A. and McDougall, T. J.: Influence of the Nonlin-

ear Equation of State on Global Estimates of Dianeutral Ad-

vection and Diffusion, J. Phys. Oceanogr., 40, 1690–1709,

https://doi.org/10.1175/2010jpo4303.1, 2010.

Klocker, A., McDougall, T. J., and Jackett, D. R.: A new method for

forming approximately neutral surfaces, Ocean Sci., 5, 155–172,

https://doi.org/10.5194/os-5-155-2009, 2009.

Kuhlbrodt, T. and Gregory, J.: Ocean heat uptake and its conse-

quences for the magnitude of sea level rise and climate change,

Geophys. Res. Lett., 39, https://doi.org/10.1029/2012GL052952,

2012.

Ledwell, J. R., Watson, A. J., and Law, C. S.: Mixing of a tracer

in the pycnocline, J. Geophys. Res.-Oceans, 103, 21499–21529,

1998.

Lee, M.-M., Coward, A. C., and Nurser, A. G.: Spurious diapycnal

mixing of the deep waters in an eddy-permitting global ocean

model, J. Phys. Oceanogr., 32, 1522–1535, 2002.

Lumpkin, R. and Speer, K.: Global ocean meridional overturning,

J. Phys. Oceanogr., 37, 2550–2562, 2007.

McDougall, T. J.: thermobaricity, cabbeling, and water-mass

conversion, J. Geophys. Res.-Oceans, 92, 5448–5464,

https://doi.org/10.1029/JC092iC05p05448, 134, 1987.

McDougall, T. J. and Jackett, D. R.: On the helical nature of neu-

tral trajectories in the ocean, Prog. Oceanogr., 20, 153–183,

https://doi.org/10.1016/0079-6611(88)90001-8, 26, 1988a.

McDougall, T. J. and Jackett, D. R.: On the helical nature of neutral

trajectories in the ocean, Prog. Oceanogr., 20, 153–183, 1988b.

McDougall, T. J. and Jackett, D. R.: An assessment of orthobaric

density in the global ocean, J. Phys. Oceanogr., 35, 2054–2075,

2005.

McDougall, T. J., Groeskamp, S., and Griffies, S. M.: On geomet-

rical aspects of interior ocean mixing, J. Phys. Oceanogr., 44,

2164–2175, 2014.

Megann, A.: Estimating the numerical diapycnal mixing in an

eddy-permitting ocean model, Ocean Model., 121, 19–33,

https://doi.org/10.1016/j.ocemod.2017.11.001, 2018.

Montgomery, R.: The present evidence on the importance of lateral

mixing processes in the ocean, B. Am. Meteorol. Soc., 21, 87–

94, 1940.

Munk, W. and Wunsch, C.: Abyssal recipes II: energetics of

tidal and wind mixing, Deep-Sea Res. Pt. I, 45, 1977–2010,

https://doi.org/10.1016/s0967-0637(98)00070-3, 1998.

Munk, W. H.: Abyssal recipes, in: Deep Sea Research and Oceano-

graphic Abstracts, 13, 707–730, Elsevier, 1966.

Nurser, A. J. G., Marsh, R., and Williams, R. G.: Diagnosing wa-

ter mass formation from air-sea fluxes and surface mixing, J.

Phys. Oceanogr., 29, 1468–1487, https://doi.org/10.1175/1520-

0485(1999)029<1468:dwmffa>2.0.co;2, 1999.

Polzin, K. L., Toole, J. M., Ledwell, J. R., and Schmitt, R. W.: Spa-

tial variability of turbulent mixing in the abyssal ocean, Science,

276, 93–96, https://doi.org/10.1126/science.276.5309.93, 1997.

Pradal, M.-A. and Gnanadesikan, A.: How does the Redi parameter

for mesoscale mixing impact global climate in an Earth system

model?, J. Adv. Model. Earth Sy., 6, 586–601, 2014.

Redi, M. H.: Oceanic isopycnal mixing by coordinate rotation, J.

Phys. Oceanogr., 12, 1154–1158, 1982.

Saenz, J. A., Tailleux, R., Butler, E. D., Hughes, G. O., and Oliver,

K. I. C.: Estimating Lorenz’s Reference State in an Ocean with

www.ocean-sci.net/15/21/2019/ Ocean Sci., 15, 21–32, 2019

https://doi.org/10.1029/2004JC002378
https://doi.org/10.5194/os-11-839-2015
https://www.nodc.noaa.gov
https://doi.org/10.1002/2015gl063383
https://doi.org/10.1175/1520-0485(1997)027<0237:andvft>2.0.co;2
https://doi.org/10.1175/1520-0485(1997)027<0237:andvft>2.0.co;2
https://doi.org/10.1175/2010jpo4303.1
https://doi.org/10.5194/os-5-155-2009
https://doi.org/10.1029/2012GL052952
https://doi.org/10.1029/JC092iC05p05448
https://doi.org/10.1016/0079-6611(88)90001-8
https://doi.org/10.1016/j.ocemod.2017.11.001
https://doi.org/10.1016/s0967-0637(98)00070-3
https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2
https://doi.org/10.1175/1520-0485(1999)029<1468:dwmffa>2.0.co;2
https://doi.org/10.1126/science.276.5309.93


32 A. Hochet et al.: Isoneutral control of effective diapycnal mixing in ocean models

a Nonlinear Equation of State for Seawater, J. Phys. Oceanogr.,

45, 1242–1257, https://doi.org/10.1175/jpo-d-14-0105.1, 2015.

Solomon, H.: On the representation of isentropic mixing in ocean

circulation models, J. Phys. Oceanogr., 1, 233–234, 1971.

Speer, K. G.: A note on average cross-isopycnal mixing in the

North Atlantic ocean, Deep-Sea Res. Pt. I, 44, 1981–1990,

https://doi.org/10.1016/s0967-0637(97)00054-x, 1997.

Tailleux, R.: Neutrality Versus Materiality: A Thermo-

dynamic Theory of Neutral Surfaces, Fluids, 1, 32,

https://doi.org/10.3390/fluids1040032, 2016.

Urakawa, L., Saenz, J., and Hogg, A.: Available potential energy

gain from mixing due to the nonlinearity of the equation of state

in a global ocean model, Geophys. Res. Lett., 40, 2224–2228,

2013.

Walin, G.: On the relation between sea-surface heat flow and ther-

mal circulation in the ocean, Tellus, 34, 187–195, 180, 1982.

Winters, K. B. and D’Asaro, E. A.: Diascalar flux and the rate of

fluid mixing, J. Fluid Mech., 317, 179–193, 1996.

Ocean Sci., 15, 21–32, 2019 www.ocean-sci.net/15/21/2019/

https://doi.org/10.1175/jpo-d-14-0105.1
https://doi.org/10.1016/s0967-0637(97)00054-x
https://doi.org/10.3390/fluids1040032

	Abstract
	Introduction
	Method
	Effective diffusivity
	Reference profile

	Isoneutrally controlled effective diapycnal diffusivities for 0, 2, 4, n and ref
	Conclusions
	Data availability
	Appendix A
	Appendix B: Calculation of Keff
	Appendix C: Equation (11) 
	Competing interests
	Acknowledgements
	References

