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ABSTRACT

This paper considers the requirements that must be satisfied in order to provide a stable and physically based
isoneutral tracer diffusion scheme in a z-coordinate ocean model. Two properties are emphasized: 1) downgradient
orientation of the diffusive fluxes along the neutral directions and 2) zero isoneutral diffusive flux of locally
referenced potential density. It is shown that the Cox diffusion scheme does not respect either of these properties,
which provides an explanation for the necessity to add a nontrivial background horizontal diffusion to that
scheme. A new isoneutral diffusion scheme is proposed that aims to satisfy the stated properties and is found
to require no horizontal background diffusion.

1. Introduction

The mixing of ocean tracers occurs predominantly
along directions tangent to the locally referenced po-
tential density surface (Iselin 1939; Montgomery 1940;
Solomon 1971; Redi 1982; Olbers et al. 1985; McDou-
gall 1987a; Gent and McWilliams 1990; Ledwell et al.
1993; Kunze and Sanford 1996). The analyses from
Ledwell et al. (1993) and Kunze and Sanford (1996)
establish the large degree to which tracer mixing along
these neutral directions dominates the cross or dianeu-
tral mixing. Their results substantiate the long standing
hypothesis that the ocean interior is highly adiabatic in
the sense that tracer properties are only very slowly
mixed across the neutral directions. In turn, the mea-
surements support the relevance of layer models for
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simulating the adiabatic aspects of ocean dynamics (e.g.,
Bleck et al. 1992; Hallberg 1995). Furthermore, they
provide a severe constraint that the z-coordinate models
must satisfy in order to provide physically realistic sim-
ulations of the ocean interior.

As argued by Redi (1982), a large component of
ocean tracer mixing can be parameterized as downgra-
dient diffusion along neutral directions, referred to in
the following as isoneutral diffusion. Redi’s work pro-
vides a conceptual framework allowing the z models to
move away from the physically unrealistic horizontal/
vertical diffusion in which the diffusive fluxes are ori-
ented according to the local geopotential direction. What
is necessary, therefore, is a straightforward rotation of
the diffusion tensor to align the diffusive fluxes along
the neutral directions. Cox (1987, hereafter C87) im-
plemented a diffusion scheme in the Cox (1984) version
of the GFDL ocean model, which attempted to numer-
ically realize Redi’s isoneutral/dianeutral diffusion. The
C87 diffusion scheme improved certain aspects of the
z model’s fidelity when compared to the traditional hor-
izontal diffusion simulations. In particular, C87 pro-
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duced a more realistic thermocline and mitigated the
Veronis effect (Veronis 1975; Gough and Lin 1995;
GFDL Ocean and Climate Groups 1996, personal com-
munication). Cox’s work forms the foundations upon
which numerous other models have grown over the
years, and the original C87 discretization of isoneutral
diffusion has remained fundamentally unchanged.

Over the course of long-term climate integrations (or-
der $ 100 years), the effects from how tracer mixing
is parameterized become especially visible in a numer-
ical simulation. It is on such timescales that the positive
affects from the C87 scheme have been diagnosed. Un-
fortunately, it is on such timescales that the problems
with this scheme are also most apparent. Namely, C87
contains a numerical instability, whose characteristics
are described in this paper, that prevents it from being
run without an added nonneglible amount of horizon-
tally aligned background diffusion. This background
diffusion contributes to the general overly diffused na-
ture of the coarse resolution z models. One result is that
tracer properties are not well preserved over the
thousands of kilometers seen in observations; a problem
intimately related to the models having too much di-
aneutral mixing. Large-scale preservation of tracer
properties is essential in order to utilize the z models
for climate simulations. This paper focuses on the ques-
tion: Is it possible to realize isoneutral diffusion in a z-
coordinate ocean model in a physically based and nu-
merically stable fashion so that no added background
diffusion is required? The new diffusion scheme doc-
umented in this paper indicates that it is possible to do
so within certain limitations.

The problem with background horizontal diffusion is
most apparent when gauged in terms of the smallness
of the measured dianeutral diffusivity. Background dif-
fusion can create a tracer flux that dominates the flux
parameterized with dianeutral diffusivity in regions
where the isoneutral slope S is larger than (AD/Aback)1/2,
where Aback is the horizontal background diffusivity and
AD is the dianeutral diffusivity. The typical background
diffusivity used with the C87 scheme is normally larger
than 10% of the isoneutral diffusivity, which means Aback

ø 106 cm2 s21. With an observed AD ø 0.1 cm2 s21

(Ledwell et al. 1993; Kunze and Sanford 1996), back-
ground horizontal diffusion contributes to a larger di-
aneutral flux than that explicitly parameterized by AD

when the isoneutral slopes are greater than 3 3 1024,
which is a modest slope commonly realized in the ocean.
The problems associated with overly large dianeutral
diffusion have been pointed out in various studies (Ve-
ronis 1975; McDougall and Church 1986; Gough and
Welch 1994; Böning et al. 1995; Gough and Lin 1995;
Hirst et al. 1996). Some of these references point to the
problems with traditional horizontal/vertical diffusion,
for which the C87 scheme was meant to remedy. As
mentioned previously, C87 indeed mitigated the prob-
lems, yet because of the need for background diffusion,
it did not solve them completely [see especially Hirst

et al. (1996) for focus on problems with horizontal back-
ground diffusion]. Additionally, the recent confidence
taken in the AD ø 0.1 cm2 s21 measurements places a
high priority on finding the means to eliminate essen-
tially all background diffusion in the z models.

In addition to diffusive tracer mixing, Gent and
McWilliams (1990, hereafter GM90) argued for the
presence of a quasi-adiabatic stirring mechanism that
conserves all tracer moments between isoneutral layers,
yet systematically reduces the isoneutral slopes and so
acts as a sink for available potential energy. This trans-
port can be parameterized by a divergence-free advec-
tive velocity (Gent et al. 1995), or equivalently with an
antisymmetric stirring tensor (Plumb and Mahlman
1987), which gives rise to a skew-diffusive flux (Griffies
1998). The GM90 stirring therefore complements that
mixing obtained with the symmetric Redi diffusion ten-
sor. Many ocean modelers have implemented the GM90
scheme in z models, in addition to C87 diffusion, and
have found the simulations to have an added amount of
realism over models without GM90 (e.g., Danabasoglu
and McWilliams 1995; Large et al. 1996). As a result,
the GM90 ideas, along with Redi diffusion, may provide
a useful, albeit incomplete, framework for parameter-
izing ocean tracer mixing. It follows that in order to
evaluate the affects of isoneutral diffusion and GM90
eddy-induced advection (or skew diffusion) in z models,
it is necessary to provide a clean numerical realization
of both processes. This paper focuses on the Redi dif-
fusion process, and the paper by Griffies (1998) focuses
on GM90 skew diffusion.

Before entering the main body of this paper, it is
useful to summarize the two central results that provide
a foundation for our new isoneutral diffusion scheme:
First, we find that it is necessary to build the property
of downgradient tracer diffusion, and the consequent
variance reduction, into a numerical isoneutral diffusion
scheme. Otherwise, the scheme can produce uncon-
trollable upgradient fluxes and result in model blowups.
Second, it is necessary to balance the isoneutral fluxes
of the active tracers in order to realize a zero isoneutral
flux of locally referenced potential density. Otherwise,
even for a variance reducing scheme, grid-scale noise
can result. Both of these properties are fundamental to
what is meant by isoneutral diffusion, both in the con-
tinuum and on the numerical lattice.

The plan of this paper is the following. Section 2
presents numerical experiments that illustrate the prob-
lems with the C87 diffusion scheme. In section 3, kin-
ematical properties of isoneutral/dianeutral diffusion are
discussed. In section 4, problems of the C87 scheme are
interpreted in terms of these kinematical properties. Sec-
tion 5 describes a new discretization of isoneutral dif-
fusion based on a functional formalism. Section 6 pre-
sents results from model simulations using this scheme.
Section 7 presents summary and conclusions. There are
five appendices: appendix A critiques a linear stability
analysis that incorrectly concludes that the C87 scheme
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FIG. 1. Temperature after 3400 years of integration with horizontal
(AH 5 107 cm2 s21) and vertical (AV 5 0.5 cm2 s21) diffusion. This
is the initial condition for the experiments in which both temperature
and salinity are active. The initial condition for the cases with only
temperature active is similar, except that the temperature is stably
stratified everywhere.

is unstable for large isoneutral slopes; appendix B dis-
cusses basic mathematical properties of cabbeling and
thermobaricity; appendix C considers issues related to
realizing steep isoneutral slopes and provides a critique
of the commonly used slope clipping scheme of C87;
appendix D discusses what is meant by ‘‘downgradient
diffusion’’ in the new isoneutral diffusion scheme; and
appendix E provides details for discretizing the full Redi
tensor.

Some conventions should be noted. The word ‘‘iso-
neutral’’ is preferred to the more commonly employed
‘‘isopycnal,’’ by which we mean processes occuring in
the neutral directions. ‘‘Temperature’’ refers to potential
temperature u, which is temperature referenced to the
ocean surface. Tensorial notation is employed, in which
the labels m, n, which represent the coordinates x, y, z,
are assumed to be summed if repeated. Vectorial no-
tation is also employed for added clarification. The la-
bels i, j, k refer to discrete spatial grid points in the x,
y, z directions used for expressing equations on the lat-
tice, and no summation will be assumed for these labels.
The diffusive flux discretization is lagged one time step
in order to ensure stability of the time discretization
(Haltiner and Williams 1980); the time step is omitted
for brevity. Model results in this paper are computed
with the GFDL MOM 2 Ocean Model (Pacanowski
1996).

2. Model experiments

For the numerical experiments presented in this paper,
a sector domain is employed that extends from 58N to
658N latitude and 608 wide in longitude. The horizontal
grid resolution is 2.48 3 2.48 and there are 18 unevenly
spaced vertical levels with a flat bottom at 4000 m. A
rigid-lid boundary condition is applied to the surface.
The external mode is solved using the streamfunction
method with a conjugate gradient algorithm and 9-point
numerics for the Laplacian. For the cases in which both
temperature and salinity are active, the surface level is
forced by restoring to the zonally averaged annual mean
Levitus (1982) climatology. When salinity is uniform
and constant, the linear temperature profile of Cox and
Bryan (1984) is used. Both cases use a 50-day timescale
for the restoring, defined over the 35-m top level. The
model diagnoses density by using the Bryan and Cox
(1972) equation of state, which consists of separate cu-
bic approximations to the UNESCO equation of state
(Gill 1982) for each vertical model level. The dianeutral
diffusivity is constant with depth. Momentum is dissi-
pated with constant viscosity of 109 cm2 s21 in the hor-
izontal and 10 cm2 s21 in the vertical and no wind forc-
ing is used. The scheme of Rahmstorf (1993) is em-
ployed to completely gravitationally stabilize the ver-
tical columns at each time step. In regions where the
slopes of the neutral directions steepen, the scaling of
the isoneutral diffusion coefficient as described by Gerdes
et al. (1991) is used in order to maintain linear stability

of the diffusion equation. Further discussion of this scal-
ing is provided in appendix C. The time steps are 1 h
for the momentum and external mode, 16 h for the trac-
ers, and no other acceleration is used. The basic steady-
state thermohaline circulation seen in such a model was
discussed by Bryan (1975).

Using this model configuration, various test problems
are carried out based on the following approach. First,
the model is spun up to a pseudoequilibrium using a
vertical diffusivity of 0.5 cm2 s21 and horizontal dif-
fusivity1 of 107 cm2 s21. The integration is long enough
to establish the thermocline and outcropping in the
northern part of the basin associated with free convec-
tion. Figure 1 provides a meridional snapshot of the
temperature after 3400 years for the case with temper-
ature and salinity both active. After such a spinup, hor-
izontal diffusion is switched to various isoneutral dif-
fusion schemes. These ‘‘switching’’ experiments pro-
vide an inexpensive means to evaluate the integrity of
the numerics. Model years will refer to years subsequent
to this switch.

a. Experiments with C87

The special case of an ocean model with buoyancy
dependent on a single variable, such as a single active
tracer, is a useful place to begin testing the C87 diffusion
scheme. In the continuum, the isoneutral portion of the
diffusion tensor will not act on this tracer since the

1 With a 107 cm2 s21 diffusion coefficient, the horizontal diffusion
equation grid CFL number AHDt/(Dx)2 is 2 3 1024, which is well
within the constraints of stability for the linear diffusion equation
(see appendix C).
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FIG. 2. Potential temperature from four different ‘‘switching’’ experiments, each of which used the C87 diffusion scheme. (a) Upper left
panel: 600 years after the switch was made using a single active tracer (salinity held constant in space and time), 107 cm2 s21 isoneutral
diffusivity, 0.5 cm2 s21 dianeutral diffusivity, and no advective transport. (b) Lower left panel: 300 years after the switch was made using
two active tracers with 107 cm2 s21 isoneutral diffusivity, 0.5 cm2 s21 dianeutral diffusivity, and no advective transport. (c) Upper right panel:
900 years after the switch was made using a single active tracer, 107 cm2 s21 isoneutral diffusivity, 0.5 cm2 s21 dianeutral diffusivity, and
FCT advective transport. (d) Lower right panel: 200 years after the switch was made using two active tracers, 107 cm2 s21 isoneutral diffusivity,
0.5 cm2 s21 dianeutral diffusivity, 107 cm2 s21 thickness diffusivity with the GM90 advective flux. The domain-averaged tracer remained
constant for each of these experiments, thus indicating the absence of false sources in the C87 scheme.

neutral directions are parallel to the isotracer surfaces.
This property is true for both linear and nonlinear equa-
tions of state (section 3 and appendix B provide further
discussion). To test the ability of the C87 scheme to
respect this property, we ran the sector model using
horizontal diffusion with salinity fixed throughout the
domain at 35 psu, and allowed temperature to be active
with the nonlinear equation of state. We then switched
from horizontal to C87 diffusion using 107 cm2 s21 for
the isoneutral diffusion coefficient, removed all surface
forcing, and turned off tracer advection.

Figure 2a shows the solution 600 years after the
switch. As expected, vertical gradients of isotherms are
weakened due to the nonzero dianeutral diffusivity.
However, there is a near complete loss of numerical
integrity. In the north, temperature has undergone a vig-

orous amount of vertical mixing due to convection act-
ing on the unstable solution. In the south, where con-
vection is absent, the presence of unstable grid waves
is clear. These waves grew unbounded in subsequent
years of integration, which caused the solution to even-
tually blow up. Figure 2b shows the temperature at year
300 for the case in which salinity is also allowed to
change. This solution for two active tracers is consistent
with the single active tracer experiment. For both cases,
setting the dianeutral diffusivity to zero increased the
growth rate of the instability by roughly one order of
magnitude.

Dispersion errors associated with grid Peclet number
violations encountered with centered advection (Bryan
et al. 1975; Weaver and Sarachik 1990) have tradition-
ally been considered one of the main reasons for em-
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ploying horizontal background diffusion with C87 (see
comment at the end of C87). Since tracer advection is
removed from these experiments, Peclet grid noise has
nothing to do with this unstable behavior.

Another example of the problems with the diffusion
scheme can be seen when performing the switching ex-
periment while maintaining an Eulerian advective trans-
port. For centered differenced advection, the solution
blows up (not shown) even sooner than without advec-
tion. This behavior might be expected based on grid
Peclet arguments. A reasonable question to ask is wheth-
er a completely monotonic advection scheme, such as
flux corrected transport (FCT) (see Gerdes et al. 1991),
is sufficient to suppress the C87 instability. Although
FCT acts only on the advective fluxes, it might provide
enough dissipation to stabilize the C87 scheme. Figure
2c shows that this possibility is not completely realized,
even with a single active tracer for which the diffusive
fluxes should vanish. After switching the diffusion from
horizontal to C87, switching the advection from cen-
tered to FCT, and releasing the surface forcing the model
undergoes a spindown in which the isotherms eventually
flatten and spread apart due to the dianeutral diffusion
and lack of surface forcing. However, by year 900, there
is a nontrivial grid wave whose growth is able to over-
come the stabilizing aspects of the FCT scheme. The
amplitude of this grid wave continued to grow in sub-
sequent years. Turning off all diffusion and using FCT
alone resulted in smooth and flat isotherms, with no
sign of grid noise.

The implementation of GM90 eddy-induced advec-
tive transport in z-coordinate models has been associated
with the ability to remove the background horizontal
diffusion otherwise necessary with the C87 scheme. It
is noted that GM90 acts to reduce the isoneutral slopes,
thus producing more horizontally aligned diffusive flux-
es. Such a reduction in slopes may provide for increased
numerical stability according to the linear stability anal-
ysis discussed in appendix A. However, that analysis is
in error and, so, is not relevant for isoneutral diffusion.
A different reasoning for why GM90 stabilizes certain
experiments is provided in Griffies (1998). Unfortu-
nately, as seen in Fig. 2d, the switching experiment with
GM90 eddy-induced advection, C87 diffusion, two ac-
tive tracers, and 0.5 cm2 s21 dianeutral diffusivity is not
stable. Indeed, when compared to Fig. 2b, the solution
looks even worse, and it blows up sooner than without
GM90 advection. Such behavior is consistent with the
problems encountered when implementing GM90 eddy-
induced advection as described by Weaver and Eby
(1997). As discussed by Griffies (1998), the problems
with this GM90 experiment are related to the method
of implementing both the GM90 closure as well as iso-
neutral diffusion.

b. Comments on the switching experiments

We performed numerous other switching experiments
in this and other model configurations with various per-

mutations of subgrid-scale parameterizations. Consis-
tently, the only way to eliminate the unstable grid waves
was to add at least 10% background horizontal diffusion
to the C87 diffusion scheme. As discussed in the intro-
duction, such background diffusion is not a viable
choice for realistic climate modeling. It should be noted
that when running the C87 scheme with centered ad-
vection from the start of a spinup from uniform tracer
fields, the sector model remained stable, with only mod-
est grid noise. Therefore, the switching experiments pro-
vide substantially stronger tests of the numerical integ-
rity than the spinup experiments. The reason is that the
diffusive fluxes of the active tracers have the potential
to be much larger in the period after switching between
diffusion processes than during a spin up from rest.
Within the spirit of evaluating the performance of a
scheme under various conditions, some of which could
be realized in more realistic models run under time-
varying forcing and with bottom topography, we con-
clude that the C87 scheme is unsound. The remainder
of this paper is devoted to providing the physical and
numerical understanding necessary to interpret these
problems with C87 and thereafter to derive a new
scheme that aims to rectify them.

3. Kinematics of isoneutral diffusion

a. The diffusion tensor and the diffusion operator

A diffusion tensor K is a symmetric, positive semi-
definite second-order tensor. The components Fm(T) of
the diffusive flux are related to the diffusion tensor
through Fm(T) 5 2Kmn]nT, where T is any tracer and
Kmn are components to the diffusion tensor K. The dif-
fusion tensor therefore acts as a matrix operator that
orients the tracer gradient in the process of defining the
tracer diffusive flux. The tracer will evolve due to di-
vergences of the flux, resulting in the diffusion equation
]tT 5 2]mFm(T) [ R(T), where R(T) is termed the
diffusion operator. The simplest type of diffusion is
isotropic diffusion, for which Kmn 5 Admn, A . 0 is a
positive diffusion coefficient, and dmn is the Kronecker
delta, which equals unity when m 5 n and vanishes
otherwise. For horizontal/vertical diffusion, the tracer
flux in the vertical is distinguished from that in the
horizontal which means the diffusion tensor is aniso-
tropic and has components Kmn 5 AH(dmn 2 ẑmẑn) 1
AVẑmẑn, where AH, AV are nonnegative horizontal and
vertical diffusion coefficients, respectively, and ẑn is the
nth component to the unit vector (0, 0, 1) in the vertical
direction.

Isoneutral/dianeutral diffusion is completely analo-
gous to horizontal/vertical diffusion, only now it is the
dianeutral direction, defined by the dianeutral unit vec-
tor that is distinguished from the isoneutral directions,ĝ,
defined by two unit vectors ê1 and ê2. The diffusion
tensor therefore takes the form

Kmn 5 AI(dmn 2 1 ,m n m nĝ ĝ ) A ĝ ĝD (1)
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where AI, AD are the isoneutral and dianeutral diffusion
coefficients, respectively. Writing the diffusion tensor
in this form provides for a simple geometric interpre-
tation. Namely, the isoneutral piece AI(dmn 2 actsm nĝ ĝ )
as a projection operator that projects out that component
(=T)iso of the tracer gradient within the tangent plane
defined by the two neutral directions. The dianeutral
piece projects out that component (=T)diap par-m nA ĝ ĝD

allel to the dianeutral unit vector Written as a matrix,ĝ.
the isoneutral/dianeutral (Redi) diffusion tensor takes
the form (Redi 1982)

AIK 5
2(1 1 S )

2 21 1 S 1 eS (e 2 1)S S (1 2 e)S y x x y x
 

2 23 (e 2 1)S S 1 1 S 1 eS (1 2 e)S , x y x y y 
2(1 2 e)S (1 2 e)S e 1 S x y

(2)

and the small slope approximation to this tensor
(GM90) is

1 0 S x
 

smallK 5 A 0 1 S . (3) I y 
2S S e 1 S x y

In these expressions, S 5 (Sx, Sy, 0) 5 (2]xr/]zr, 2]yr/
]zr, 0) is the isoneutral slope vector with magnitude S,
and e 5 AD/AI ø 1027 to 1028 is the ratio of the di-
aneutral to isoneutral diffusion coefficients. It is im-
portant to note that the kinematical properties discussed
in the remainder of the section apply to both the full
and small angle diffusion tensors.

b. Tracer variance

Integrating the diffusion equation ]tT 5 2= ·F over
a source-free domain with insulating boundaries (i.e.,
Neumann boundary conditions) indicates that diffusion
will not change the total amount of the tracer. Integrating
the tracer squared ] tT 2 5 22= · (TF) 1 2=T ·F over the
same domain indicates that diffusion will not increase
the tracer variance

2] dx T 5 2 dx =T ·F,t E E
mn5 22 dx ] TK ] T,E m n

# 0. (4)

In this expression, dx is the volume element dx dy dz,
and the inequality follows since the diffusion tensor is
symmetric and positive semidefinite or, equivalently, the
diffusive flux is directed down the tracer gradient (=T ·F
# 0). Note that the diffusion tensor could have a zero
determinant, which is the case for zero dianeutral dif-
fusion with the Redi tensor. Downgradient diffusion,

and the resulting reduction of tracer variance, is the first
of two fundamental properties that we aim to realize in
a numerical diffusion scheme. It will be referred to as
Property I in the subsequent development.

It is useful to explicitly consider the case of diffusion
with the isoneutral/dianeutral diffusion tensor. In this
case, the variance equation takes the form

2 2 2] T dx 5 22 dx [A (|ê ·=T | 1 |ê ·=T | )t E E I 1 2

21 A |ĝ ·=T | ],D

2 25 22 dx [A (|=T | 2 |ĝ ·=T | )E I

21 A |ĝ ·=T | ]. (5)D

The first form is analogous to that resulting from hor-
izontal/vertical diffusion, in which the unit vectors ê1,
ê2, replace the unit vectors x̂, ŷ, ẑ, respectively. Theĝ
second form suggests the following interpretation. The
term 2AI|=T | 2 # 0 represents an isotropic term that acts
to dissipate all gradients, and hence all curvature, just
as that occurring in isotropic diffusion. The second term

$ 0 represents the effects of isoneutral dif-2A |ĝ ·=T |I

fusion acting to align the tracer isolines parallel to the
neutral directions. Through this alignment process,
structure is added to the tracer field, which therefore
acts to increase the tracer variance; hence the positive
sign for this term. When the tracer is perfectly aligned
along the neutral direction, cancellation occurs between
the two components of the isoneutral diffusion term. In
the competition between the dissipative and alignment
components, the dissipative component wins since
2|=T | 2 1 | 5 2|=T 3 5 2|ê1 ·=T | 2 22 2ĝ ·=T | ĝ|
|ê2 ·=T | 2 # 0, thus ensuring that the total tracer variance
will not increase.

The previous discussion suggests the following ex-
ample in order to illustrate an important point. Consider
a tracer field with its power concentrated in the long
wavelengths; that is, it is a smooth yet nonuniform tracer
field. Allow this tracer to diffuse downgradient along
static neutral directions that have a lot of spatial power
in high wavenumbers: for example, the density field has
a grid noise structure. Isoneutral diffusion will result in
the tracer becoming aligned along the neutral directions,
which means that it will have power transferred to the
high wavenumbers. In the process, the total tracer vari-
ance will reduce due to the dissipative nature of dif-
fusion. Therefore, even though tracer variance will not
increase with isoneutral diffusion, it is possible to in-
troduce grid noise into the tracer field if such noise is
in the density field. This point will prove fundamental
in the development of section 4.

c. Balance of the active tracer isoneutral diffusive
fluxes

The isoneutral diffusion operator is a nonlinear func-
tion of active tracers through the dependence of the
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diffusion tensor on temperature and salinity. In this way,
isoneutral diffusion differs fundamentally from more
traditional forms of linear diffusion in which the dif-
fusion tensor is independent of tracers. Since the iso-
neutral/dianeutral diffusion tensor is constructed locally
according to the dianeutral unit vector it is necessaryĝ,
to discuss some ideas about neutral directions and how
to compute ĝ.

In the ocean, neutral directions are those for which
an adiabatic displacement of a parcel is not affected by
buoyancy forces. As a familiar example, note that after
a free convective event, a vertical column is typically
neutrally buoyant and the vertical is correspondingly a
neutral direction. McDougall (1987a) formalized this
idea to all three directions, and argued that because
mixing can act unopposed by buoyancy forces, neutral
directions are relevant for orienting the tracer diffusive
fluxes.

As discussed by McDougall and Jackett (1988), it is
not possible to define a coordinate g that can globally
describe the envelope of neutral directions, unless one
neglects the affects of cabbeling and thermobaricity
through linearizing the equation of state (see appendix
B for further details). However, all that is necessary for
our purposes is a local description, which is available
for the general case of two active tracers with a nonlinear
equation of state. For this description, start by noting
that through any point in the ocean with pressure p,
there passes a potential density surface rp(u, s), which
is referenced to the same pressure p. McDougall (1987a)
showed that the neutral directions at this point lie within
the tangent plane to the rp surface at this point. It follows
that the plane’s unit normal vector =rp|=rp|21 at this
point is perpendicular to the neutral directions within
this plane, so it can be identified with the dianeutral
unit vector ĝ.

It is useful to relate =rp to the active tracer gradients
when computing For this purpose, note that the log-ĝ.
gradient of the locally referenced potential density can
be written in terms of the gradients of the active tracers
through = lnrp(u, s) 5 (] lnrp/]u)=u 1 (] lnrp/]s)=s.
Note the absence of pressure gradients due to the local
referencing. It follows that, since this density gradient
is of interest only when evaluated at the in situ pressure
where the potential density is referenced, the potential
density partial derivatives are equivalent to the thermal
and saline expansion coefficients 2] lnrp/]u 5 ap(u,
s) [ a(u, s, p) and ] lnrp/]s 5 bp(u, s) [ b(u, s, p)
(section 3.7.4 of Gill 1982; McDougall 1987a). For ex-
ample, the vertical component of this gradient yields
the familiar buoyancy frequency N 2 5 2gd lnrp/dz 5
g(a]zu 2 b]zs).

Since it is sufficient to evaluate all quantities in this
section at the local pressure p, the p label can be un-
ambiguously dropped from both the potential density
and the expansion coefficients in order to reduce clutter.
It is important to remember, however, the local refer-
encing used for all subsequent equations. With these

conventions, the log-gradient of the locally referenced
potential density r is written:

= lnr 5 2a=u 1 b=s, (6)

which yields the expression for the dianeutral unit vec-
tor:

a=u 2 b=s
ĝ 5 2 . (7)

|a=u 2 b=s|

A very important consequence of Eqs. (6) and (7) is
that the isoneutral diffusive flux of the locally referenced
potential density vanishes. It follows that the isoneutral
diffusive fluxes of the active tracers are coupled since

r21FI(r) 5 2aFI(u) 1 bFI(s) 5 0. (8)

This relation is taken as the second of two fundamental
properties that we aim to realize in a numerical isoneu-
tral diffusion scheme. It will be referred to as Property
II in the subsequent development.

4. Analysis of the C87 diffusion scheme

a. Grid-scale computational modes

For the small angle approximated diffusion tensor,
the C87 discretization of the isoneutral diffusion flux of
a tracer in a two-dimensional x–z model is

d r x,zx i,kx2F 5 A d T 2 d T , (9)i,k I x i,k z i,k21x,z1 2[ ]d rz i,k21

2x,zd r d r x,zx i21,k z i,kz2F 5 A d T 2 d T . (10)i,k I z i,k x i21,kx,z1 2 1 2[ ]d r d rz i,k x i21,k

The notation is standard for the MOM 2 model (Pa-
canowski 1996) and is defined in Fig. 3. In order to
define the diffusive fluxes consistently on the model’s
grid, the x flux must be placed at the east face of T-cell
(i, k) and the z flux at the bottom of this same cell. For
off-diagonal terms, a double spatial average ( ) x, z brings
the z-derivative term appearing in the x flux onto the
east face of a T-cell, and the x-derivative term appearing
in the z flux onto the bottom face of the T-cell. The grid
stencil used for computing the x component of the flux
is given in Fig. 4. Similar six point stencils are used for
computing the other components of the flux.

The practical difficulty encountered when discretizing
isoneutral diffusion in the z models concerns how to
handle the off-diagonal terms. This issue is not unique
to the B grid used in the GFDL model since the physical
process (tracer diffusion) concerns only tracer points
and tracer cells. The discretization given by C87 con-
siders tracer gradients and the corresponding isoneutral
slopes to be independent, each of which needs to be
spatially averaged in order to bring it onto the relevant
face of the T-cell. In addition, the horizontal and vertical
density gradients appearing in the isoneutral slopes are
handled independently of one another. Therefore, the
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FIG. 3. Grid arrangement in the longitudinal-vertical plane for the
ocean model. The dashed lines represent the boundary of the T-cell,
with Ti,k at the center. The discretized horizontal component of the
diffusive flux F x is located on the vertical boundaries, and the vertical
component Fz on the horizontal boundaries. The grid dimensions are
indicated. Note that the i, k label is used for the flux F x located on
the east boundary of the tracer cell, whose center is the tracer point
Ti,k, and likewise for the flux F z at the bottom of the T-cell. The
difference operators acting on a tracer are given by dxTi,k 5 (Ti11,k 2
Ti,k)/dxui and dzTi,k 5 (Tk,i 2 Tk11,i)/dzwk. On a flux, they are dx 5xF i,k

( 2 )/dxti and dz 5 ( 2 )/dztk. The divergence ofx x z z zF F F F Fi11,k i,k i,k i,k i,k11

the diffusive flux yields the diffusion operator Ri,k 5 2(dx 1xF i21,k

dz ) centered at the tracer point Ti,k.zF i,k21

FIG. 4. Grid stencil for computing the x component of the flux
using the C87 scheme: is located in between the two tracerx xF Fi,k i,k

points Ti,k and Ti11,k. There are six grid points necessary since, in
addition to the horizontal gradient, the average of four vertical gra-
dients is used to define a z gradient on the east face of the T-cell.
Densities are referenced to level k. The arrows denote the pairs of
points used for computing the horizontal gradient and the four vertical
gradients.average operator appears individually on only the nu-

merator or denominator. There is nothing fundamental
about this particular discretization. Rather, it merely rep-
resents a series of convenient choices based on details
of the model grid.

To start our critique of the C87 discretization, con-
sider the z derivative of the tracer appearing in the x
component to the flux

x,z T 2 T 1 T 2 Ti,k21 i,k11 i11,k21 i11,k11d T 5 . (11)z i,k21 4dztk

The same form appears for the z derivative of the density
appearing in the calculation of the slope. It is apparent
that the combination of a z average and a z derivative
allows for the presence of 2Dz structures Ti,k21 5 Ti,k11

and ri,k21 5 ri,k11 for which the discretized z derivative
on the east face will vanish. Therefore, this wave, or
computational mode, will be invisible to the x com-
ponent of the computed isoneutral diffusive flux. Like-
wise for the z flux, 2Dx computational modes exist due
to the combination of an x average with an x derivative.
Indeed, for the 2Dx modes in the density field, the z
component to the isoneutral flux vanishes identically!
This property of the C87 scheme will prove to be crucial
to understanding why the scheme is unstable.

In general, when working on the B grid and acting
on a single field, such combinations of an average in
one direction combined with a derivative in the same

direction introduce computational modes. The potential
for grid splitting and possible amplification of the modes
must be addressed when such modes exist. Namely, if
these modes are either completely invisible to the dis-
sipation, or worse if they are amplified, then they can
be very harmful to the integrity of the numerical so-
lution. In particular, when appearing in the active tracer
fields, and therefore in the density field, certain com-
putational modes can lead to model instabilities, as we
now show.

b. Increasing tracer variance

Consider a two-dimensional configuration with den-
sity containing the 2Dx form ri11,k 5 ri21,k. For this
field configuration or mode, the previous discussion
showed that the z component of the discretized isoneu-
tral flux is identically zero. Therefore, the projection of
the diffusive flux onto the tracer gradient is entirely
zonal and consists of the product

x,z
d T d rz xx 2F d T 5 2A (d T ) 1 2 . (12)x I x x,z1 2d Td rx z

Hence, if slopes of the isoneutrals Sr and tracer ST satisfy
the inequality
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d r d Tx x|S | [ . x,z [ |S |, (13)r ) ) ) ) Tx,zd r d Tz z

then the flux on the east face will be directed up the
tracer gradient.

In general, an upgradient component to the diffusive
flux vector can be the result of projecting the down-
gradient isoneutral flux vector onto orthogonal Cartesian
axes. As such, it is important to distinguish between
particular flux components, which may be upgradient,
and the diffusive flux vector, which should be down-
gradient with respect to the tracer gradient (Property I
in section 3b). The above discrete configuration is an
example of how, in the C87 numerical scheme, an up-
gradient component in the x direction is not compen-
sated by a downgradient component in the z direction,
since the z component identically vanishes. Therefore,
the numerically realized diffusive flux vector is upgra-
dient. Furthermore, this upgradient flux can in general
be distributed over the extent of the model domain, thus
ensuring the increase in tracer variance. The rate of
increasing variance is directly proportional to the dif-
ference between the slopes, and to the value of the dif-
fusion coefficient. Since the strength of the growth in
variance is proportional to AI, the larger the isoneutral
diffusivity, the larger the background horizontal diffu-
sivity needed to suppress the variance increase.

Figure 5 shows a simple realization of this discussion
in which a passive tracer field is diffused in the back-
ground of a density held constant in time with a 2Dy
structure (ri,j11,k 5 ri,j21,k), constant in longitude, and

stratified in depth. The passive tracer is initialized with
unity on the surface level and zero below. There is no
surface forcing, advection is turned off, and there is
zero dianeutral diffusivity. As anticipated, the result is
a uniform increase in tracer variance.

c. Active tracer fluxes and the basic problem with
C87

Consider a single active tracer for which the isoneu-
tral diffusive flux of this tracer should vanish. For ex-
ample, the x component of the flux in the small angle
limit is given by

] rxxF (u) 5 2A ] u 2 ] uI I x z1 2] rz

a] ux5 2A ] u 2 ] u 5 0. (14)I x z1 2a] uz

The diffusive flux vanishes because the thermal expan-
sion coefficient a cancels between the numerator and
denominator, thus providing an equivalence between the
slope Sr 5 2]xr/]zr of the neutral direction and the
slope Su 5 2]xu/]zu of the isotherms. Importantly, this
result is valid for both linear and nonlinear equations
of state.

In C87, the density gradients are computed by refer-
encing each density to the same depth level. For ex-
ample, the x slope of the neutral direction is computed
on the east face of a T-cell through

(k) (k)d r r 2 r 4dztx i21,k i,k i21,k k2Sx 5 5 3 , (15)i,k x,z (k) (k) (k) (k)d r dxu r 2 r 1 r 2 rz i,k21 i21 i,k21 i,k11 i11,k21 i11,k11

where the superscript on r symbolizes the depth ref-
erence level. This expression does not provide for can-
cellation of the thermal expansion coefficient as occurs
in the continuum, unless the equation of state is linear.
The reason is that density gradients are not computed
explicitly in terms of the expansion coefficients, which
would allow for the proper alignment of the temperature
isolines (which define the correct neutral directions for
this example) and the computed neutral directions.
Hence, the computed neutral directions, as determined
by the slope calculation, are not aligned with the isolines
of locally referenced potential density. The effect pro-
duces a spurious flux of locally referenced potential den-
sity along the misaligned neutral directions. Note that
it is common to check the integrity of isoneutral dif-
fusion schemes by inserting the symbol ‘‘r’’ into the
discretized expression for the isoneutral flux. Such an
assessment would lead to the incorrect conclusion that

C87 will not flux locally referenced potential density.
The present analysis therefore points to the problem
with this approach to deducing the self-consistency of
the discretization.

The misalignment of the computed neutral directions
might be harmless were it not for the following property
of seawater. For a stably stratified column, and es-
pecially for a stretched grid in the vertical for which
level k 1 1 is further below level k than level k 2 1 is
above it, the C87 computation of the neutral directions
can produce an effective expansion coefficient in the
numerator that is greater than that in the denominator.
This behavior is typical since a is an increasing function
of temperature (Gill 1982). Therefore, the discretized
slope of the neutral direction has a tendency to be steep-
er than the slope of temperature

warma
|S | ø S . |S |. (16)r u ucold) )a
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FIG. 5. Variance [V21 ∫ u2 dV 2 (V21 ∫ u dV)2] for a passive tracer
diffused with C87 in the background of a constant density field with
a 2Dy structure (ri,j11,k 5 ri,j21,k) and with zero dianeutral diffusivity.
Shown here is the result for a single year of integration.

FIG. 6. Unstable profile associated with not properly orienting the
isoneutral diffusive fluxes of the active tracers. The dashed lines are
temperature isolines, which define the proper neutral directions for
the case of an equation of state dependent only on temperature. The
solid line is the surface determined by the neutral direction computed
using the C87 scheme. For the case of two active tracers, the dashed
lines denote isolines of locally referenced potential density. For both
cases, a physically correct orientation produces no difference between
the solid and dashed lines. These lines should be parallel.

This inequality is identical to Eq. (13) for which the
C87 scheme will produce upgradient diffusion if the
2Dx computational mode ri11,k 5 ri21,k is present.

Figure 6 illustrates an unstable profile corresponding
to the above inequality combined with a 2Dx compu-
tational mode. With stable stratification, u1 . u2, and
so point A is a local minimum with respect to the hor-
izontal direction x̂. Upgradient fluxes along x̂, with zero
compensating vertical flux (recall that the vertical flux
vanishes for this 2Dx mode), will cause point A to cool.
The converse occurs at point B. The tendency is to
increase the amplitude of the wave thus providing for
its instability. The upgradient fluxes induce an unbound-
ed increase in temperature variance so long as inequality
(16) is maintained. The situation for two active tracers
is similar, only now the dashed lines in Fig. 6 denote
isolines of locally referenced potential density. In effect,
the nonlinear equation of state, combined with the up-
gradient fluxes and computational modes, feeds ‘‘en-
ergy’’ into the numerical solution, which causes the trac-
er variance to grow unbounded. It is this instability that
must be stabilized by the introduction of Aback ø AI

background horizontal diffusion.

d. A nonlinear instability due to spurious density
fluxes

Upgradient diffusive fluxes are generally destabiliz-
ing in a numerical diffusion scheme. Furthermore, they
do not correspond to the physical process of interest.
Therefore, in developing the new isoneutral diffusion
scheme, much effort is focused toward correcting this
problem (see section 5). As discussed here, however,
reducing tracer variance is not sufficient to stabilize the
profile shown in Fig. 6, or any wave structure in which
the inequality (16) is respected. Stability is realized only
if there is exact alignment between the locally refer-

enced potential density surfaces (dashed lines) and the
computed neutral directions (solid line).

To see why this profile is generally unstable, consider
any profile in which the inequality (16) is satisfied, for
which Fig. 6 provides a particular case. Point A is a
local temperature maximum with respect to the solid
line. A downgradient diffusive flux of temperature
aligned along the solid line causes point A to cool, and
the converse occurs at point B. This downgradient tem-
perature flux amplifies the initial wave since as the tem-
perature tries to align with the neutral direction, the
neutral direction in turn steepens. This steepening is due
to the nonlinear nature of isoneutral diffusion, for which
the diffusion tensor is a function of the active tracers,
which are themselves being diffused. Therefore, the pro-
file is nonlinearly unstable to downgradient diffusion
aligned along the spurious neutral directions. The in-
stability will occur regardlesss of the linearity or non-
linearity of the equation of state as long as inequality
(16) is satisfied. For two active tracers, the instability
generalizes with the dashed lines representing locally
referenced potential density isolines.

The instability represented by Fig. 6 is equivalent to
the following analytical discussion. Consider a temper-
ature profile that in some local interior region of the
ocean takes the form u 5 uo 1 bz 1 B(t) cos(2px/L)
and let the directions along which u is diffused down-
gradient be determined by r 5 ro 1 az 1 A(t) cos(2px/
L). Here r surfaces equal neutral surfaces when the slope
ratio Sr/Su 5 (Ab)/(Ba) is unity. As suggested by Fig.
6, let r be directly coupled to u, yet let it be an imperfect
approximation to locally referenced potential density.
The misalignment introduces an unphysical degree of
freedom. The zonal wavelength L corresponds to the
grid scale over which the slopes are computed in the
numerical case, and the constants a, b determine a stable
linear vertical stratification. Assume the isoneutral flux-
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FIG. 7. (a) Upper panel: Meridional-depth snapshot after 300 years
from a switching experiment in which the slopes of the neutral di-
rections were computed using the relation = lnr 5 2a=u 1 b=s
[see Eqs. (6) and (17)]. (b) Lower panel: Same slice for the case in
which the salinity flux is computed just as in C87, yet the temperature
flux is diagnosed through aF(u) 5 bF(s).

es are computed with the small slope tensor and a con-
stant diffusivity. The downgradient diffusion of tem-
perature along the r surfaces induces the evolution
]tB(t) 5 AI(2p/L)2(Ab/a 2 B). A normal diffusive ad-
justment to the misaligned slopes causes the temperature
wave amplitude to change. However, because the neutral
directions are directly dependent on temperature, as the
temperature wave changes, so does the r wave. The
amplitude of both waves grows as long as Sr/Su . 1.
Even if the slope misalignment is small, the diffusivity
AI ø 107 cm2 s21 can provide a nontrivial growth. This
growth is largest when the wave is short, as for the case
when L corresponds to the grid scale in a numerical
model. Variance is reduced if the diffusion is downgra-
dient and the boundaries are either insulated or held
with a fixed tracer value (see section 5). Therefore, all
waves in a model will not grow; only those for which
the slope misalignment is relevant. What occurs, there-
fore, is a reduction in variance with some of the original
spectral density of variance being transferred prefer-
entially to the grid scale. This process must saturate
since variance is bounded from below (i.e., it is $0).
At saturation, the amount of small-scale spectral density
is bounded above by the variance in the initial condition.

To illustrate the importance of balancing the isoneu-
tral fluxes of the active tracers, consider two methods
that act to squelch the instability. Prescription A em-
ploys the relation = lnr 5 2a=u 1 b=s [see Eq. (6)]
for the computation of the neutral direction slope in the
x direction

(i,k) (i,k)a d u 2 b d sx i21,k x i21,kSx 5 x,z , (17)i,k x,z(i,k) (i,k)a d u 2 b d sz i,k21 z i,k21

where a (i,k) and b (i,k) are evaluated using the temperature,
salinity, and pressure values at grid point (i, k) in both
the numerator and denominator. Referring to Fig. 6, this
prescription corrects the alignment of the computed neu-
tral directions (solid line) so that it is now parallel to
the locally referenced potential density isolines (dashed
lines). Prescription B employs the C87 discretization of
the salinity diffusive flux, including the C87 calculation
of the slopes, yet the temperature flux is diagnosed
through imposing the constraint aFI(u) 5 bF(s) [see
Eq. (8)]. This prescription performs an alignment com-
plementary to that done with prescription A. For a single
active tracer, both prescriptions trivially stabilize the
solution since all active tracer diffusive fluxes vanish.
Figures 7a and 7b show the solution for the two active
tracer switching experiments, which should be com-
pared to that obtained with C87 in Fig. 2b. Almost all
of the unstable behavior has been eliminated.

Ideally, both prescriptions A and B eliminate the nu-
merical instability by zeroing out the isoneutral diffusive
flux of locally referenced potential density along the
computed neutral directions; that is, they balance the
active tracer fluxes and hence provide a self-consistent
discretization of isoneutral diffusion. In practice, pre-

scription A performs slightly less satisfactorily than B
perhaps due to truncation errors allowing for slight im-
balances. Additionally, as discussed in appendix C, in
order to solve the diffusion equation in regions of steep
isoneutral slopes it is necessary to solve the vertical
piece of the diffusion equation implicitly. The effect is
to split the vertical flux Fz(T) 5 Kzn]nT into a piece
(Kzz]zT) solved implicitly and another (Kzx]xT 1
Kzy]yT) solved explicitly. The split introduces the pos-
sibility of numerical mismatch between the two parts
and, so, cannot in general ensure (u) 5 (s). Thisz zaF bFI I

result explains the localization to the far north of prob-
lems seen using prescription A since it is in this region
that there are stronger vertical isoneutral fluxes, thus
allowing more opportunity for truncation errors to pro-
duce this mismatch. Closer analysis of the solution pro-
duced with prescription B (not shown) also indicates
some residual instability in the far north, thus pointing
to the generality of this residual instability encountered
when splitting the vertical flux.
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5. The new isoneutral diffusion scheme

a. Functional formalism

This section presents the mathematical framework al-
lowing for a systematic incorporation of the downgra-
dient and variance nonincreasing properties of diffusion
into a discretization of the isoneutral diffusion operator
(Property I of section 3). This framework is based on
the property that, for any linear self-adjoint operator, it
is possible to associate a functional, whose functional
derivative is equal to that operator [Courant and Hilbert
(1953); see also Goloviznin et al. (1977), Tishkin et al.
(1979), Korshiya et al. (1980) for examples similar to
the following]. The functional corresponding to the dif-
fusion operator R(T) is given by

1 1mnF 5 2 dx ] TK ] T 5 dx =T ·F. (18)E m n E2 2

Since the diffusion tensor is symmetric and positive
semidefinite at every point in the ocean, the functional
defined over any arbitrary volume is negative semide-
finite (F # 0). Correspondingly, the downgradient prop-
erty (=T ·F # 0) of diffusive mixing is equivalent to a
negative semidefinite functional. This is an important
equivalence that will hold, within a finite volume in-
terpretation (clarified in the subsequent development),
in the discrete case as well.

The total ocean is an important special volume of
interest for defining the functional. Assuming no sources
and using insulating boundaries,

2] dx T 5 4F # 0, (19)t E
where the tracer variance given by Eq. (4) was em-
ployed. Hence, for this particular volume, 4F can be
interpreted as the sink of tracer variance arising from
the effects of downgradient diffusion.

To motivate the form for the functional derivative
relating F to R(T), consider an infinitesimal perturba-
tion, or variation, of the tracer field T → T 1 dT. This
tracer variation induces a variation in the functional,
which is given by [see Courant and Hilbert (1953) for
more discussion]

dL dL dL
dF 5 dx dT 1 ] dT 2 ] dTE m m1 2 1 2[ ]dT dT dTm m

dL dL
5 dx 2 ] dT, (20)E m1 2[ ]]T dTm

where 2L 5 =T ·F(T) 5 2]mTKmn]nT is a negative
semidefinite quadratic form, and Tm 5 ]mT. Dropping
the total divergence term ]m(dTdL /dTm) requires the ap-
plication of either one of the natural boundary condi-
tions: 1) dT(x, t) 5 0 on the boundaries of the domain
or 2) N̂mdL /dTm 5 0, where N̂ is the boundary’s normal.
Here dT(x, t) 5 0 corresponds to taking a Dirichlet

condition for the tracer (tracer specified on the bound-
aries), whereas N̂mdL /dTm 5 0 corresponds to a Neu-
mann or no-flux boundary condition, where dL/dTm are
the components to a generalized flux. These results are
valid for any functional F, which can be written as ∫ dx
L. Specializing now to the case of the diffusion func-
tional with a diffusion tensor independent of the tracer—
that is, linear diffusion of passive tracers—yields dL /
dT 5 0 and dL /dTm 5 2Kmn]nT 5 Fm(T). Therefore,
using dT(x)/dT(y) 5 d(x 2 y), the desired relation be-
tween the functional and the diffusion operator is given
by the compact expression

dF
5 R(T ). (21)

dT

This continuum relation has a natural finite volume gen-
eralization

dF
5 = ·F(T ) dV , (22)E i,j,kdTi,j,k Vi,j,k

where Vi,j,k is a finite cell volume associated with tracer
Ti,j,k. It is over this finite volume that the discretized
operator possesses the downgradient properties. We
elaborate on this important point in the subsequent de-
velopment and in appendix D.

As previously mentioned, the functional formalism is
strictly useful for the case of linear diffusion of the
passive tracers. Since the active tracers are diffused with
the same operator as the passive tracers, this restriction
is of no substantial limitation. Yet, in order to prevent
the nonlinear computational instability described in sec-
tion 4, it is crucial to add to the functional formalism
the constraint that the slopes be computed so that the
active tracers closely approximate the self-consistency
or balance condition on the isoneutral diffusive fluxes
aFI(u) 5 bFI(s). Otherwise, even though the scheme
will not increase tracer variance, it will be subject to
grid noise.

In summary, for any symmetric and positive semi-
definite diffusion tensor, the functional formalism al-
lows for a straightforward incorporation of the variance
reducing properties implied by such a mixing tensor to
be readily built into a discretization scheme. The pro-
cedure is to first discretize the functional F and then to
take the discrete version of the functional derivative
given by Eq. (22). The power of the formalism is that
for any consistent discretization of F, the corresponding
discretization of the diffusion operator inherits the de-
sired downgradient properties over the corresponding
finite volume. Additionally, this result means that the
discrete diffusion operator R(T) will not increase the
tracer variance, the eigenvalues of R(T) will all be pos-
itive, and the scheme is ensured to be at least condi-
tionally stable in a linear sense. It follows that because
the C87 diffusion operator can increase tracer variance,
it does not correspond to a semidefinite functional.

The expressions for the case of isoneutral/dianeutral
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FIG. 8. The grid stencil for discretizing the piece of the func-(x2z)Fi,k

tional. There are a total of 12 triads, with 12 corresponding quarter-
cells (shaded regions), to which the central point Ti,k contributes. The
slightly darker shading is used for the four central quarter-cells (4,
5, 8, 9), which make up the T-cell whose center is the tracer point
Ti,k. Each of the 12 triads is indicated by a pair of lines with arrows
on the end extending outward from the vertex of the triad. Four of
the triads have Ti,k as a vertex.

diffusion will prove necessary for the subsequent dis-
cussion. Writing the components of the diffusion tensor
given in Eq. (1) as Kmn 5 (AI 2 AD)(dmn 2 1m nĝ ĝ )
ADdmn brings the functional for isoneutral/dianeutral dif-
fusion into the convenient form

1 1
2 2F 5 2 dx (A 2 A )|ĝ 3 =T | 2 dx A |=T |E I D E D2 2

1
5 2 dx =T · [(A 2 A )(ĝ 3 =T ) 3 ĝ 1 A =T ],E I D D2

(23)

which allows for the identification of the diffusive flux

F (T ) 5 2(A 2 A )(ĝ 3 =T ) 3 ĝ 2 A =T. (24)I D D

In the small slope approximation, the functional is giv-
en by

smallF

1
2 25 2 dx A (] T 1 S ] T ) 1 (] T 1 S ] T )E I x x z y y z2

1
22 dx A (] T )E D z2

1
5 2 dx =T ·A [x̂(] T 1 S ] T ) 1 ŷ(] T 1 S ] T )E I x x z y y z2

21 ẑ(S ] T 1 S ] T 1 (e 1 S )] T )],x x y y z (25)

and the corresponding small angle flux components are

F (T ) 5 2A (= 1 S] )T (26)h I h z

zF (T ) 5 S ·F (T ) 2 A ] T, (27)h D z

where Fh 5 (Fx, Fy, 0) is the horizontal diffusive flux
vector, S is the isoneutral slope vector, e 5 AD/AI, and
=h 5 (]x, ]y, 0) is the horizontal gradient operator.

b. Discretizing the functional

The functional given by either Eq. (23) for the full
tensor, or (25) for the small angle approximation, con-
sists of quadratic terms that take the form (]mT]nr 2
]nT]mr)2, with m ± n. Their discretization defines grid
stencils in the corresponding two-dimensional (m, n)
plane. This observation motivates a discretization of the
functional where its different pieces are discretized sep-
arately within their respective two-dimensional plane.
The exception to this two-dimensionality arises from
the term |=r|22, which occurs due to the two factors of
the dianeutral unit vector 5 =r|=r|21 appearing inĝ
the full tensor. This gradient contains all three differ-
ential operators, which means that in discretizing the
full tensor we must consider extending the stencil to
points off a given plane. How we handle this detail will
be discussed in appendix E.

In the longitudinal–depth plane, consider the term
(]xT]zr 2 ]zT]xr)2. A simple discretization is to use
nearest neighbor tracer grid points for constructing the
discrete differential operators. Since the model grid is
staggered, such a choice employs second-order accurate
difference operators in the functional, and will likewise
be the case for the corresponding diffusion operator.
Higher order in accuracy schemes can be derived by
extending the stencil outward to include more points.
Using the nearest neighbors, a typical component of the
discretizaton of (]xT]zr 2 ]zT]xr)2 consists of triads of
tracer and density values. For example, one such triad
contains contributions from the grid points (i 2 1, k),
(i, k), and (i, k 2 1), where the corresponding term in
the functional is (dxTi21,kdzri,k21 2 dzTi,k21dxri21,k)2. As
seen in Fig. 8, this triad is one of 12 that contain con-
tributions from the central tracer point Ti,k.

The triads partition the area of the longitudinal–depth
plane into a series of quarter-cells (see Fig. 8). There
is a single unique quarter-cell for each of the triads. For
example, the triad (i 2 1, k), (i, k), and (i, k 2 1) is
associated with the quarter-cell 4, and triad (i, k), (i, k
1 1), and (i 2 1, k 1 1) with quarter-cell 11. The areas
(actually, the volume when considering the third di-
mension) of each quarter-cell define the volume element
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FIG. 9. The grid stencil for the x component of the diffusive flux
as computed using the new scheme. Four density triads are drawn,
with reference points taken at their corners located at the tracer points
Ti,k and Ti11,k. The flux component is defined in between thesexF i,k

two tracer points, which is also the center of the east face of the T-
cell Ti,k.

associated with the triad to be used in discretizing the
functional. Therefore, the discretization of the func-
tional corresponding to that contribution from the x–z
plane is given by

121
(x2z)F 5 2 A(n)V(n)O O

2 i,k n51

(n) (n) (n) (n) 2(] T ] r 2 ] T ] r )x z z x3 , (28)
(n) 2|=r |

where V(n) is the volume of the nth quarter cell and
A(n) is the corresponding nonnegative diffusion co-
efficient. The superscript (n) on the tracer and density
refers to the particular finite-difference discretization
of the gradient for the nth quarter-cell. For example,
in quarter-cell 1 shown in Fig. 8, ]xT (1) symbolizes the
discrete derivative dxTi21,k21 , and ] zT (1) 5 dzTi,k21 .
Equation (28) means that the discretization of the func-
tional F (x2z) 5 S i,k is built by summing over the(x2z)Fi,k

tracer points Ti,k on the lattice and, for each tracer point,
summing over the 12 triads/quarter-cells that contain
some contribution from the tracer point Ti,k . For pur-
poses of discretizing the diffusion operator R(T ) i,k at
a particular tracer point, it is only necessary to consider
the terms appearing inside the sum over the triads12Sn51

since the derivative ]F (x2z) /]Ti,k will eliminate the S i,k

sum over all tracer points. Note that each of the 12

contributions to the functional vanishes individ-(x2z)F i,k

ually when the tracer T is replaced by locally refer-
enced potential density r. This is an important property
that must be respected when the detailed discretization
of the density derivatives is specified (next subsection).

These details about quarter-cells, triads, and their
respective volumes are important since they make pre-
cise the notion about downgradient diffusion on the
lattice. Namely, these 12 quarter-cells define the finite
size volume, mentioned in the discussion of Eq. (22),
for which the new scheme provides downgradient flux-
es of the tracer. Since the finite volume encompasses
many grid cells, the locally defined diffusive fluxes
discretized on the faces of the T-cell (next subsection)
will not generally satisfy the downgradient property
individually. In other words, the new scheme is not
‘‘positive definite’’ for each cell, rather it is positive-
definite only over the semilocal finite volume defined
by the 12 quarter-cells. This is an important qualifi-
cation that must be kept in mind when interpreting
results from this scheme. Note, however, that the new
scheme will not increase tracer variance since variance
reduction depends only on the negative semidefinite-
ness of the globally defined functional. The finite vol-
ume interpretation of downgradient diffusion in the
new scheme is made more mathematically precise in
appendix D.

c. Flux discretization with density triads

After discretizing the functional, it is necessary to
take its derivative with respect to the tracer in order
to obtain the discrete diffusion operator [Eq. (22)]

(x2z)1 dF
5 R(T ) , (29)i,kV dTT i,ki,k

where is the volume of the T-cell whose center isVTi,k

the tracer point Ti,k . The effect from this derivative is
to break or separate the tracer triads. However, it pre-
serves the integrity of the density triads. The preser-
vation of the density triads suggests a heuristic ap-
proach to directly discretizing the individual diffusive
fluxes on the cell faces. Namely, construct the pieces
of this flux using density triads as fundamental building
blocks. The result of this derivation, presented in the
following, is identical to that obtained when the func-
tional derivative is directly computed and the resulting
terms are combined into the divergence of a tracer flux
across the T-cells [details placed in an appendix to
Pacanowski (1996)]. One thing to note immediately is
that the use of unbroken density triads, when weighted
by their respective tracer gradients (described below),
removes the computational modes. The reason is that
there is no splitting of the grid, which is a characteristic
of the computational modes. As discussed in section
4, density computational modes are fundamentally re-
lated to the problems with the C87 scheme. Therefore,
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by eliminating these modes, we already see the crucial
role the density triads play in the new scheme.

For the purpose of describing the discretization, it
is sufficient to discretize the diffusion flux from the
small angle tensor since the basic ideas are the same
for both the small angle and full slope diffusion ten-
sors. It is also sufficient to continue considering the
two-dimensional longitudinal–depth geometry. We
start by discretizing the x component F x(T ) 5 2AI(]xT
1 Sx] zT ) on the east face of the T-cell (i, k) (see Fig.
3). Recall that in the C87 discretization discussed in
section 4, the central practical difficulty is how to han-
dle the off-diagonal term AISx] zT 5 2AI(]xr/] zr)] zT.
When employing density triads as fundamental units,
notice that there are four triads surrounding the east
face of each T-cell. Each defines a discretization of the
isoneutral slope Sx , so each has an associated diffusion
coefficient AI . The diffusion coefficients are selected
according to one of the chosen slope constraints dis-
cussed in appendix C in order to satisfy the require-
ments of linear stability for steep isoneutral sloped

regions. In addition, for each triad it is necessary to
choose a reference point for calculating the locally ref-
erenced potential densities. This point can be chosen
anywhere as long as there is a unique point for each
of the triads. Since the equation of state is already
computed for each tracer point, it is convenient to
choose the corner of the triad as the reference point.
By constructing AISx] zT as an average over these four
triads, each multiplied by their respective vertical trac-
er gradient, the discretized diffusive flux component
F x is correctly placed at the east face of the T-cell.
Additionally, in order to account for nonuniform grids,
it is important to weight each term in the average by
its associated vertical grid spacing. Figure 9 summa-
rizes this discussion by showing the stencil for the new
scheme. Importantly, it requires the same six densities
and tracers as for the C87 scheme (see the C87 stencil
in Fig. 4), so the grid ‘‘footprint’’ is identical to that
of C87.

Putting the pieces together yields the discretized x
component of the small angle tensor isoneutral diffu-
sion flux:

1 11
(i1ip,k) (i1ip,k)xsmall2F (T ) 5 dzw A (d T 1 Sx d T ), (30)O Oi,k k211kr (i,k | i1ip,k211kr) x i,k (i,k | i1ip,k211kr) z i1ip,k211kr4dzt kr50 ip50k

(refer to Fig. 3 for definitions of the grid spacing factors
dzt and dzw and difference operators). The sum over
ip and kr represents the sum over the four triads shown
in Fig. 9. The isoneutral slope is computed through the
relation

(i1,k1)d rx i2,k2(i1,k1)Sx 5 2 . (31)(i2,k2 | i3,k3) (i1,k1)1 2d rz i3,k3

The corresponding diffusion coefficient is set(i1,k1)A(i2,k2|i3,k3)

according to the relevant slope criteria discussed in
appendix C. The superscripts (i1, k1) refer to the corner
point of the triad, which is used for determining the
reference points in calculating the densities. It is im-
portant to note the use of the same reference point for
density gradients in both the numerator and denomi-
nator. Accordingly, the density gradients are computed as

dm 5 (ru) i1,k1dmui2,k2 1 (rs)i1,k1dmsi2,k2,(i1,k1)ri2,k2 (32)

where the labels on the density partial derivatives in-
dicate the grid point for which the temperature, salinity,
and pressure are used in evaluating these terms. In the
model, the coefficients ru 5 (]r/]u) and rs 5 (]r/]s)
are computed by analytically differentiating the cubic
polynomial used for approximating the UNESCO equa-
tion of state (Bryan and Cox 1972), thus producing
quadratic expressions which are diagnosed.

It is important to highlight the direct computation of

the expansion coefficients ru and rs for the purposes of
computing the density gradients and, hence, for com-
puting the isoneutral slopes. As discussed in section 4,
a proper alignment of the computed neutral directions
will eliminate spurious and unstable fluxing of locally
referenced potential density. Otherwise, the new
scheme, even though it cannot increase tracer variance,
would be exposed to a form of the nonlinear instability
described in section 4d and hence subject to grid noise.
A viable alternative to computing the density gradients
as given in Eq. (32) is to directly diagnose one of the
active tracer fluxes from the other (i.e., prescription B
discussed in section 4d). Such a scheme was tested, but
it did not alter the solution substantially. The choice of
computing the slopes in terms of the expansion coef-
ficients represents a decision to emulate as closely as
possible the kinematics discussed in section 3, and in
particular Eq. (7) for the dianeutral unit vector. The
direct calculation of ru and rs is therefore a fundamental
and novel aspect of the new scheme.

The diagonal piece of the flux consists of the hori-
zontal gradient of the tracer weighted by the four dif-
fusion coefficients, which correspond to the four triads
used for constructing the off-diagonal term. Should the
slopes for the four triads all lie within the stability range
and therefore not require scaling, then the sum collapses
and the diagonal piece becomes AIdxTi,k, where AI is the
unscaled diffusion coefficient.
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The resulting diffusive flux can be thought of as an
average of four ‘‘subfluxes’’ associated with each of the
four triads. Each of the subfluxes correctly vanishes
individually when locally referenced potential density
is substituted for the tracer. In this manner, the new
scheme provides for a completely symmetric or dem-
ocratic sampling of the diffusive fluxes associated with
each of the four vertical tracer gradients surrounding
the east face of the T-cell. Should any one of these
subfluxes lie adjacent to a solid boundary, its contri-
bution to the average over the four triads is eliminated.
Additionally, the vertical tracer gradient and the cor-

responding density triad are fundamentally coupled.
Therefore, it is not possible to identify a discretization
of the Kxz off-diagonal diffusion tensor component in-
dependently of the particular tracer, whereas it was pos-
sible to do so with the C87 scheme. The resulting dis-
cretization of the diffusion operator recovers the tra-
ditional five-point Laplacian in the limit of flat isoneu-
tral directions. This operator has well-known stability
properties; that is, it fluxes tracer downgradient and it
has no computational modes.

The z component of the small angle tensor flux is
given by

1 11
zsmall (i,k1kr) (i,k1kr) (i,k1kr)2F (T ) 5 dxu A Sx (Sx d T 1 d T ). (33)O Oi,k i211ip (i211ip,k1kr | i,k) (i211ip,k1kr | i,k) (i211ip,k1kr | i,k) z i,k x i211ip,k1kr4dxt ip50 kr50i

The construction of the z component is based on the
same arguments as the x component, through the use of
the density triads. The new scheme does allow for the

diagonal terms in the diffusion tensor to be identified
independently from the tracers. Most importantly,

1 11
(i,k1kr) (i,k1kr)zzsmall 2K 5 dxu A (Sx ) , (34)O Oi,k i211ip (i211ip,k1kr | i,k) (i211ip,k1kr | i,k)4dxt ip50 kr50i

which means the implicit in time algorithm for solving
the vertical diffusion equation is identical to C87.

6. Numerical tests of the new diffusion scheme

As described in section 4 and illustrated in Fig. 7,
the switching experiments to isoneutral diffusion are
greatly stabilized upon providing a self-consistent bal-
ance of the isoneutral diffusive fluxes of the active trac-
ers so that aFI(u) 5 bFI(s). This stabilization was
achieved independently of discretizing with the density
triads. Analogous tests with the new scheme show sim-
ilar results (not shown). Furthermore, they indicate that
it is possible to remove all explicit dianeutral diffusivity
when solving the isoneutral diffusion problem, even in
the especially difficult case of strongly evolving active
tracers.2 The ability to do so in a z-coordinate model
opens up interesting possibilities for exploring mixing
effects due to the nonlinear equation of state (see ap-
pendix B), which have heretofore been swamped by the
horizontal background diffusion. This section briefly il-

2 Dispersion errors from advective fluxes may qualify this state-
ment.

lustrates further aspects of the new scheme. All exper-
iments are conducted with zero horizontal background
diffusivity.

a. Effects due to the triad discretization

Consider the effects in a two-dimensional model with
a 2Dx profile in salinity yet vertical stratification in tem-
perature and allow the equation of state to be linear.3

The 2Dx salinity structure induces a 2Dx density struc-
ture. With this structure, C87 produces a zero vertical
flux [Eq. (12)] and an upgradient horizontal flux, which
means that the variance created in the x direction is not
removed in the z direction. The effect is to move water
parcels along neutral directions in u–s space until there
is a 1–1 relationship between u and r. The initial spread
in salinity is replaced by a spread in temperature, with
the densest water colder than any water initially in the
domain, and the lightest water warmer than any initially
in the domain. The final range is roughly aDu ø bDs.
In cold water, a is small so that small horizontal vari-

3 This is the only model result in this paper not computed with
MOM 2.
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FIG. 10. Results in the temperature (vertical)–salinity (horizontal) diagram of diffusing an initially 2Dx salinity
profile and vertically stratified temperature profile. The initial condition (V) and 1-yr (3) results are shown for a two-
dimensional diffusion model with horizontal spacing of 100 km and vertical spacing of 100 m: (a) Left panel: C87
scheme. Note that the point cloud on the right divides into two point clouds because points on the boundaries feel
one column, while those in the interior feel two. (b) Right panel: New diffusion scheme.

ations in salinity will drive large horizontal variations
in temperature, thus creating very cold water. By con-
trast, the new scheme has no computational mode and
so diffuses temperature and salinity in both the vertical
and horizontal. The result is the more reasonable tem-
perature–salinity distribution shown in Fig. 10b. All the
temperatures now lie within the initial range. There are
a few points, however, where the salinity is slightly
outside the initial range. These unphysical results may
be attributed to small amounts of upgradient diffusion
occurring for the individual cell faces (see discussion
of the finite volume interpretation of downgradient flux-
es in section 5 and appendix D).

Now reconsider the passive tracer experiment shown
in Fig. 5 using the new scheme. The tracer variance for
this experiment, shown in Fig. 11a, reduces immedi-
ately. Figure 11b shows a meridional slice at the surface
in the middle of the basin for both the C87 and new
results. This figure shows unphysical values (those val-
ues outside the range [0, 1]) for the tracer associated
with the increasing variance in the C87 scheme. The
new scheme produces physically realistic values.

b. Diffusion and GM90 advection

The unsuccessful relaxation experiment with GM90
advection and C87 diffusion shown in Fig. 2d, which
used 0.5 cm2 s21 dianeutral diffusivity, was cleanly sim-
ulated with the new diffusion scheme (not shown). A
more difficult problem to solve with the C87 scheme is
the case with identically zero dianeutral diffusivity.
Such an experiment is possible with the new diffusion
scheme (as seen in Fig. 12). The solution relaxes toward
a horizontally uniform state, as expected since the
GM90 scheme acts to reduce the available potential en-
ergy of the system. We found a similar smooth relax-
ation when allowing the Eulerian velocity to act on the

tracers through the addition of a centered difference
advective flux, in addition to the GM90 advection and
isoneutral diffusion (not shown).

c. Computational timing requirements

The computational requirements of the new diffusion
scheme are more than the C87 scheme. With the ide-
alized sector model used in this study, the new diffusion
scheme using the small angle tensor took roughly 10%–
20% more computational time than the MOM 2 imple-
mentation of the C87 scheme. These numbers represent
the time for the model as a whole. This result is con-
sistent with comparisons made in a realistic coarse-res-
olution global ocean model (not shown). The discreti-
zation provided in appendix E for the full isoneutral
diffusion tensor took roughly six times longer than the
new small angle tensor. If further justification is pro-
vided for employing the full tensor (see appendix C for
more discussion), then some sort of approximation to
the scheme provided in appendix E should be considered
in order to reduce the large time requirements for using
this tensor. In general, for the small tensor, the 10%–
20% increased time requirements over the C87 scheme
appear modest considering the substantially improved
numerical representation of the isoneutral diffusion pro-
cess.

7. Summary and conclusions

The main purpose of this paper was to present the
physical and numerical properties that are necessary in
order to stably and accurately realize isoneutral/dianeu-
tral diffusion of tracers in z-coordinate ocean models.
Model tests with the C87 (Cox 1987) diffusion scheme
were seen to result in unphysical and unstable solutions.
In addition to showing problems when diffusing with
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FIG. 11. (a) Passive tracer variance for an experiment in which the
density field is held constant with a 2Dy structure (ri,j11,k 5 ri,j21,k),
there is zero dianeutral diffusivity, and the isoneutral flux is computed
using the new diffusion scheme. Shown here is the result for a single
year of integration. (b) Surface values in the middle of the basin for
the passive tracer experiment corresponding to (a) at the end of one
year. Isoneutral diffusion will introduce the 2Dy structure into the
passive tracer field since this profile is fixed in the density field.
However, diffusion ideally should not introduce unphysical values,
which for this case are those with values outside the range [0, 1].
Shown here are the results from the C87 scheme (dashed line) and
the new diffusion scheme (solid line). Subsequent integration did not
change the solutions substantially.

the C87 scheme, problems occured when C87 diffusion
was run with either FCT Eulerian advection or the
GM90 eddy-induced advective transport. Although ex-
ceptions to these negative results may occur in other
flow regimes, the goal of our study was to provide a
diffusion scheme that performs well under a broad spec-
trum of flows, including those undergoing large per-
turbations such as might occur in realistic climate vari-
ability and climate change experiments. Therefore, our
evaluation of the C87 scheme leads us to conclude that
it does not generally provide a numerically sound or
physically realistic simulation of isoneutral diffusion in
z-coordinate ocean models.

After the model tests with the C87 scheme, some

basic kinematical properties of isoneutral/dianeutral dif-
fusion were discussed. From this analysis, two central
properties desired from a numerical diffusion scheme
were identified: (I) It should flux tracers downgradient,
which implies that it will not increase tracer variance.
(II) It should provide for a proper orientation of the
neutral directions so that there is a balance between the
isoneutral fluxes of the active tracers, thus providing for
a zero isoneutral diffusive flux of locally referenced
potential density. Property II is a self-consistency con-
dition for isoneutral diffusive fluxes. This property dis-
tinguishes isoneutral diffusion of active tracers, which
is a nonlinear process due to the dependence of the
diffusion tensor on the active tracers, from linear dif-
fusion processes such as that for passive tracers. Based
on this discussion, the following core problems with the
C87 scheme were identified: (i) The presence of com-
putational grid-scale modes and (ii) the ability to in-
crease tracer variance when (a) these computational
modes appear in the density field and (b) the equation
of state is nonlinear, which results in a computed neutral
direction that is steeper than the isolines of locally ref-
erenced potential density. The nonlinear equation of
state, combined with the upgradient flux associated with
the computational mode, feeds the growth in the nu-
merical instability that causes the active tracer variance
to grow unbounded.

Besides upgradient fluxes, there is another problem
with the unstable density profile associated with the C87
instability (Fig. 6). The problem is fundamentally as-
sociated with the misalignment of the computed neutral
directions and isolines of locally referenced potential
density. A result of the misalignment is that the iso-
neutral diffusive flux of the active tracers is not con-
strained to satisfy the balance aFI(u) 5 bFI(s). The
imbalance of active tracer fluxes in C87 effectively pro-
vides for an extra computational degree of freedom. This
extra degree of freedom will manifest as an unstable
mode if the computed neutral directions are steeper than
the isolines of locally referenced potential density. Any
scheme satisfying this misalignment, even if it reduces
variance, will produce an accumulation of power at high
wavenumbers; that is, grid noise. We have seen this
result in tests with the variance reducing scheme in
which we purposefully computed the neutral directions
as in C87 (not shown). What occurs amounts to an un-
stable form of self-diffusion, where the scheme attempts
to diffuse locally referenced potential density downgra-
dient along spuriously computed neutral directions. The
process will saturate since variance reduces, yet variance
is nonnegative. Depending on the initial variance, the
result could be a substantial amount of power at the grid
scale: an effective ripping apart of the solution. The
instability depends on the nonlinear nature of active
tracer diffusion with the Redi diffusion tensor. The rea-
son is that, if there were no feedback, locally referenced
potential density isolines would simply align with the
spurious neutral directions, as will occur for a passive
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FIG. 12. Potential density, referenced to the surface, shown in the middle of the basin over the upper 400 m of the model. These plots
were obtained from a switching experiment in which both the new isoneutral diffusion and GM90 advection act on two active tracers. There
is zero dianeutral diffusivity and zero Eulerian advection. The panels show the solution after 20 years (upper-left panel), 40 years (lower-
left panel), 100 years (upper-right panel), and 200 years (lower-right panel) of integration.

tracer in the background of a static density field. Instead,
as the locally referenced potential density tries to align,
the spurious neutral directions are themselves altered,
thus leading toward a continued growth in grid-scale
waves until the process finally saturates.

As a corollary, this nonlinear instability does not oc-
cur in isopycnal layer models since, when they employ
two active tracers, the evolution of the second tracer is
diagnosed from the first in such a way to preserve the
integrity of the potential density layers. The z models
can either perform an analogous diagnosis (prescription
B in section 4c), or properly compute the neutral di-
rections (prescription A in section 4c) in order to elim-
inate the instability.

An appropriate framework for building the downgra-
dient property of diffusive mixing into the discretized
isoneutral diffusion operator is a functional formalism.
Use of this formalism produces a scheme that does not

increase tracer variance. Furthermore, it will diffuse
tracers downgradient when considering the net effects
over a finite volume region of the grid (see Fig. 8 and
appendix D). A central strength of the formalism is that
the functional is negative semidefinite, which means that
any consistent discretization will also be negative semi-
definite. Since the negative semidefiniteness is the cru-
cial property that ensures the downgradient nature of
the resulting diffusive flux, any consistent discretization
starting from the functional will yield a conditionally
stable diffusion operator.

We derived the discretized diffusion operator both
through performing the discrete functional derivative
[details given in Pacanowski (1996)], as well as more
heuristically by identifying triads of density points as
fundamental building blocks for use in constructing the
isoneutral slopes. The triads, when weighted by their
respective tracer gradients, eliminate computational
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modes since there is no longer any grid splitting. By
building in the constraint that the scheme properly ori-
ents the neutral directions so that the isoneutral fluxes
of the active tracers are balanced, the formalism readily
incorporates both the active and passive tracers. The
result is a diffusion operator that is consistent, stable,
and aims to satisy physical properties that are funda-
mental to isoneutral diffusion.

There are five appendices that clarify certain details
not central to the discussion in the main text. We point
to appendix C as being quite important as it provides
arguments for employing more sensible and physically
based numerical techniques for maintaining linear sta-
bility in regions of steep isoneutral slopes. Most notably,
the commonly used slope clipping scheme introduced
by C87 was shown to be especially unphysical in con-
vective regions. This analysis motivated slope scaling,
as suggested by Gerdes et al. (1991), Danabasoglu and
McWilliams (1995), or the full slope isoneutral diffusion
tensor, as a sensible alternative to slope clipping. Cur-
rently, we have no arguments motivating one form of
scaling over another [however, see Large et al. (1996)
for one argument].

Model tests with the new diffusion scheme indicate
that it effectively eliminates the problems with the C87
scheme and, hence, allows for removal of horizontal
background diffusivity. The effects from the finite vol-
ume downgradient fluxing of tracers, as rendered by use
of density triads, provides for a more physically rea-
sonable simulation of passive tracer diffusion as well
as a more sensible action on water mass properties. Tests
of the new scheme alone or combined with the GM90
advection allow for a clean separation of the effects due
to isoneutral diffusion and GM90.

In closing, it is important to highlight some of the
shortcomings of the new diffusion scheme. Most no-
tably, the two fundamental physical properties described
in this paper that we aimed for in the numerical diffusion
scheme are not completely realized. First, the scheme
does not satisfy a ‘‘downgradient’’ property at each of
the tracer cells. Rather it does so only over a finite
volume that incorporates more than one cell (see section
5a and appendix D). As such, for a pure diffusion prob-
lem, it is possible to realize tracer values within a par-
ticular tracer cell that are outside a physically realistic
range due to spurious upgradient fluxes at the cell face.
Preliminary experiments suggest that this problem may
be most severe for passive tracers (Gnanadesikan 1998,
manuscript submitted to J. Mar. Res.) since they are not
constrained in a manner similar to the active tracers.
The results of Beckers et al. (1997, personal commu-
nication) suggest that it is not possible to do better with-
in the constraints of a consistent, linear, numerical iso-
neutral diffusion operator whose grid stencil extends
over the nine points (for a two-dimensional small angle
tensor) used here. Second, the new diffusion scheme
does not precisely balance the active tracer fluxes in the
vertical due to the splitting of the vertical flux into a

temporally explicit and implicit piece. The degree to
which each of these problems arise will depend on the
particulars of the experimental configuration. Some pre-
liminary results reported in Griffies (1998) and Gnan-
adesikan (in preparation 1997) indicate that in simula-
tions with isoneutral diffusion combined with eddy-ad-
vection processes, the solutions are less problematical
than with only isoneutral diffusion. Given these caveats,
it remains our conclusion that the new diffusion scheme
provides a sound tool for systematically addressing var-
ious subgrid-scale parameterization theories, including
isoneutral diffusion, in z coordinate ocean climate mod-
els.
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APPENDIX A

Clarification of a Linear Stability Analysis

Bell (1994) provides a linear numerical stability anal-
ysis of the equation ]tT 5 AI(]xxT 1 S]zxT), where S
is spatially constant. His analysis, assuming an explicit
time step and the usual discretized spatial derivatives,
indicates the presence of linear modes whose amplitude
grows when |S| . 2Dz/Dx. Assuming that this equation
is a relevant idealization of isoneutral diffusion, Bell
concluded that the discretization of isoneutral diffusion
as given by C87 is linearly unstable if the given slope
condition is satisfied. However, the assumption that this
equation is relevant for isoneutral diffusion in a z model
is incorrect since it neglects an essential diagonal term.
Namely, the simplest form of isoneutral diffusion is giv-
en by ] tT 5 AI(]xxT 1 S 2]zzT 1 2S]zxT) 5 AI(]x 1
S]z)2T, where S is some constant slope. With the ]zzT
term added, a linear analysis of the discrete equation
allows for a conditionally stable scheme. Another way
to understand this result is to note that with the extra
term, it is possible to produce a variance reducing
scheme as shown in this paper. Through the usual energy
arguments, such a scheme is at least conditionally stable.

APPENDIX B

Cabbeling and Thermobaricity

It is useful to present the explicit form for the mixing
effects induced by the nonlinear equation of state. It is
worth noting that these effects are trivially implemented
within a z-coordinate ocean model by simply employing
a nonlinear equation of state when diagnosing density.
These effects provide irreversible changes to the locally
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referenced potential density. An alternative formulation
of the following, in much more detail, can be found in
McDougall (1991).

Using the notation from section 3, the time tendency
of locally referenced potential density, when consider-
ing just the effects due to isoneutral diffusion of the
active tracers, is given by

] r 5 r(2a] u 1 b] s)t t t

5 r[a= ·F (u) 2 b= ·F (s)]I I

5 2=(ra) ·F (u) 1 =(rb) ·F (s), (B1)I I

where aFI(u) 5 bFI(s) was used to reach the last equal-
ity. The forcing terms, which vanish for a linear equation
of state and which cannot be written as the divergence
of a flux, represent cabbeling and thermobaricity. These
processes provide irreversible, nondiffusive forms of
mixing (McDougall 1987b). For the special case of a
single active tracer, the neutral directions are aligned
parallel to the isotracer surfaces, thus providing for a
zero isoneutral diffusive flux of the single active tracer
and therefore an absence of cabbeling and thermobar-
icity. As a corollary, an adiabatic ocean model, in which
locally referenced potential density is materially con-
served, necessarily employs a linear equation of state
or a single active tracer with either a linear or nonlinear
equation of state.

To isolate the cabbeling and thermobaricity processes,
use the identities

=s ·FI(u) 5 =u ·FI(s),

=(2ra) 5 ruu=u 1 rus=s 1 rup=p

and likewise for =(rb). Note the presence of pressure
gradients. These terms represent the effects of probing
different pressure surfaces, and hence different potential
density surfaces; that is, these are the thermobaric terms.
Such a probing of different pressure surfaces is nec-
essary when computing the spatial gradients of the ther-
mal and saline expansion coefficients.4 With these sub-
stitutions, the evolution of locally referenced potential
density takes the form

] r 5 r =u ·F (u) 1 r =s ·F (s) 1 2r =s ·F (u)t uu I ss I us I

1 =p · (r F (u) 1 r F (s))up I sp I

25 =u ·F (u)[r 2 2r (r /r ) 1 r (r /r ) ]I uu us u s ss u s

1 =p · (r F (u) 1 r F (s)). (B2)up I sp I

The first part of this expression can be written as the
product of two quadradic forms by introducing a vector
V 5 (1, a/b) and a metric rab 5 ]a]br, where the labels
a, b represent the two tracer fields u, s. This definition
renders

4 We thank T. McDougall for emphasizing this point.

] r 5 =u ·F (u)∗V ·V 1 (r F (u) 1 r F (s)) ·=p, (B3)t I up I sp I

where the inner product
a bV ·V 5 r V Vab

25 r 2 2r (r /r ) 1 r (r /r )uu su u s ss u s

25 2a 2 2(a/b)a 1 (a/b) b (B4)u s s

represents the squared length of the vector V on the
curved potential density surface characterized locally
by the metric rab.

The term

cabbeling 5 =u ·FI(u) ∗ V ·V (B5)

represents the effects from cabbeling. As written here,
cabbeling is seen to be the product of a piece associated
with the downgradient isoneutral flux of temperature
(=u ·FI(u) # 0) and a piece associated with the local
geometric properties intrinsic to the potential density
surface (V ·V). In the ocean, the total or Gaussian cur-
vature det(rab)(1 1 1 )21 is negative. This negative2 2r ru s

curvature renders V ·V # 0, which, when combined with
downgradient isoneutral diffusion of temperature, al-
ways results in a nonnegative tendency for r and a con-
sequent downward dianeutral advection (McDougall
1987b).

The terms proportional to the pressure gradient

thermobaricity 5 (rupFI(u) 1 rspFI(s)) ·=p (B6)

represent the effects from thermobaricity, which depend
on the pressure dependence of the equation of state for
seawater. Note that the thermobaric term rupFI(u) ·=p
dominates the halobaric term rspFI(s) ·=p; hence the
common name thermobaricity used for the sum of both
terms (McDougall 1987b). In contrast to cabbeling, ther-
mobaricity does not provide a sign-definite source for r.

In the manner written here, both cabbeling and ther-
mobaricity effects can be readily diagnosed in z-level
models. Use of the new isoneutral diffusion scheme de-
scribed in this paper, which does not rely on background
horizontal diffusion, allows for a potentially clean man-
ifestation of these sometimes subtle effects on the for-
mation and transformation properties of water masses.

APPENDIX C

Linear Stability Constraints Related to Steep
Slopes

Traditionally, the implementation of isoneutral dif-
fusion in the z-coordinate models has assumed that
slopes of the neutral directions are small (C87, GM90).
Additionally, this assumption is implicit in potential
density (isopycnal) layer models of the type described
by Bleck et al. (1992) or Hallberg (1995), which employ
a diagonal diffusion tensor (see GM90 for the full, non-
diagonal diffusion tensor in isopycnal coordinates). The
small slope approximation is valid over a good part of
the World Ocean where slopes larger than 1/100 are
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uncommon. Computationally, it allows fewer terms to
be computed in the diffusion operator and so results in
significant computational savings. However, in order to
satisfy a linear numerical stability condition described
below, it is necessary to incorporate ad hoc prescriptions
in order to admit steep slopes. The importance of steep
slope regions in the ocean are related to their largely
determining air–sea exchange processes especially rel-
evant for climate modeling. In addition, recent studies
indicate that effects of mesoscale eddies are important
in regions near areas of active deep convection where
isoneutral slopes are essentially infinite (e.g., Send and
Marshall 1995). Therefore, it could be that parameter-
izing dynamics in steep sloped regions will include qua-
si-adiabatic stirring, such as GM90, and isoneutral dif-
fusion. For example, Visbeck et al. (1997) have em-
ployed the full slope tensor in their simulations of mix-
ing within convection regions since this tensor is valid
for all slopes. The purpose of this extended appendix
is to provide a linear stability analysis for the full iso-
neutral tensor. In the process, we provide a summary of
the various means available for enforcing the constraints
implied from the linear stability analysis relevant for
steep isoneutral sloped regions.

a. Linear stability analysis

Numerically realizing isoneutral diffusion along steep
slopes is difficult partly because of the small vertical to
horizontal aspect ratio in the ocean and hence the ocean
model grid. As slopes steepen, the projection of diffusive
fluxes onto the vertical become stronger, pushing up
against the limits of the linear stability criteria for the
diffusion equation. This issue is relevant for discretizing
both the small and full tensors. In particular, the linear
numerical constraint from the diffusion equation, as dis-
cussed in C87, indicates that an explicit numerical scheme
with a leapfrog time step will be stable if the grid CFL
number satisfies

mn|K |Dt 1
# , (C1)

Dx Dx 4m n

where Kmn are the components of the diffusion tensor K
[Eqs. (2) and (3)], and there is no sum implied in this
expression. Assuming a geophysically relevant vertical to
horizontal aspect ratio for the grid (Dz/Dx # 1/1000), the
two-dimensional horizontal subsystem is stable when the
diffusion equation in the horizontal is stable. In general,
satisfying this stability constraint in the horizontal is trivial
and so will not be considered further. Solving the vertical
Kzz diagonal piece implicitly, as done by C87, points to
the Kxz and Kyz cross terms as setting the most restrictive
constraint. From these terms, the diffusion equation using
the fluxes from the full tensor will be linearly stable when,
for each grid cell,

|S | DaDza
# [ d, (C2)

2 21 1 S 1 S 4A Dtx y I

where a is either x or y. The small tensor’s stability is
determined with the 1 1 1 denominator set to unity.2 2S Sx y

The slope check parameter d is the same as used in the
stability analysis of C87. For the small angle tensor, d
represents the maximum allowable slope that can be used
before some prescription must be employed to ensure nu-
merical stability. For many large-scale ocean model con-
figurations, this slope check parameter is roughly 1/100,
thus providing for the self-consistency of the discretization
of the small slope tensor. For the full tensor, consider the
case where |Sx| $ |Sy| at some point. If the constraint |Sx|(1
1 )21 # d is satisfied, then the constraint in Eq. (C2)2Sx

is satisfied. In order to derive a conservative stability con-
straint, drop the extra term and introduce the notation S
[ max(|Sx|, |Sy|).

Just as for the small angle tensor, the stability constraint
for the full tensor is satisfied for small isoneutral slopes.
Additionally, the (1 1 S2)21 self-regulating factor allows
the numerical constraint to also be satisfied for large an-
gles. Thus, the full tensor has two domains of numerical
stability: 0 # S # S(2) and S(1) # S , `. The slopes S(6)

are determined from solutions to S 5 d(1 1 S2). This
equation has two roots S(6) 5 [1 6 (1 2 4d2)1/2]/(2d).
Note that S(1)S(2) 5 1, and so S(2) 5 . The special case21S (1)

when d $ 1/2 means that the slope range vanishes; that
is, the full tensor is stable over all slopes 0 # S # `, no
numerical slope check need be applied, and all diffusion
coefficients are set to the unscaled value AI. Written as a
constraint on the isoneutral diffusion coefficient, satisfying
d $ 1/2 requires AI # min(DxDz/2Dt).

The above analysis is based on the conservative as-
sumption that, if all components to the diffusion tensor
produce linearly stable diffusion, then the scheme is lin-
early stable. Although conservative, our experience has
shown that violation of these constraints can result in un-
acceptably large numerical inaccuracies. These inaccura-
cies are of special concern since they make it more difficult
to realize the balance (u) 5 (s), thus exposing thez zaF bFI I

solution to the instability discussed in section 4.
As slopes steepen to greater than the grid aspect ratio,

the slope that is estimated by the scheme becomes less
accurate due to the need to extrapolate outside of the dif-
ferencing scheme’s stencil. However, in so far as the
scheme is respecting the balance in the active tracer fluxes
along the computed neutral directions, the scheme is re-
specting the integrity of the neutral directions. In other
words, the new scheme provides a self-consistent dis-
cretization of isoneutral diffusion regardless of the neutral
direction slopes. In this sense, the errors from this extrap-
olation are no different in principle than the errors incurred
with isopycnal layer models in regions where the neutral
directions depart from the isopycnal layers. In addition,
as seen in the discussion of section 4, these extrapolation
errors are not the cause of the instability in the C87
scheme.

b. Comparing the slope checking prescriptions
There are various methods employed for preserving lin-

ear numerical stability in non–small slope regions when
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FIG. C1. Comparison of the effective isoneutral diffusion coeffi-
cient used in the full and small slope isoneutral tensors for the sector
model described in section 2. The region in which 107 cm2 s21 is
available is only for slopes ,d 5 0.02 for the small angle tensor and
S , 0.02, S . 1/0.02 for the full Redi tensor. Other regions require
the scaling as indicated in this figure. Shown is the quadratic scaling
(dashed) AI(d/S)2 of Gerdes et al. (1991) (GKW), the exponential
scaling (dot–dashed) 0.5AI(1 2 tanh[(|S|2d )/Sd] of Danabasoglu and
McWilliams (1995) (DM) with Sd 5 0.002, and the d(S 1 1/S) scaling
for the full tensor (solid). We emphasize that for a slope of 0.1, for
example, the components of the small angle and full tensor do not
differ by more than 0.01. However, as seen in this figure, the dif-
ference in the isoneutral diffusion coefficients that are used for the
different scaling functions range over many orders of magnitude.

using the small slope tensor. The first, and perhaps most
widely employed, is known as slope clipping and was
introduced in C87. Slope clipping limits the slope along
which isoneutral diffusion occurs. Namely, when the slope
|Sx| . Sclip, with Sclip some maximum slope usually taken
as a fraction of the grid parameter d given in Eq. (C2),
then dzr is replaced by rzc so that |dxr/rzc| 5 Sclip. The
same sort of clipping is applied independently to the y
component of the slope. Limiting the slopes along which
the fluxes are directed introduces significant false dianeu-
tral fluxes in those regions where the actual slopes exceed
the clipped slope. There are arguments supporting the pres-
ence of increased dianeutral fluxes in regions of steep
slopes where there is the potential for enhanced energy
release at all scales. Therefore, one may guess that slope
clipping is a reasonable parameterization of these effects.
However, the dianeutral fluxes implied through slope clip-
ping can be rather large and unphysical. For example,
consider the case where density is a linear function only
of temperature and there is no vertical stratification. The
vertical component to the clipped isoneutral flux of tem-
perature becomes

5 AI|dx |Sclip . 0.zclip x,zF ui,k i21,k (C3)

For a case with AI 5 107 cm2 s21, Sclip 5 0.01, and ]xu
5 1027 K cm21, the vertical flux of temperature is 0.01
K cm s21, which, when multiplied by roCp ø 4 3 106 J

(m3 K)21, corresponds to a heat flux of roughly 400 W
m22. This is a substantial upward flux, which is unphysical
since it occurs in an unstratified column. This effect pro-
vides strong motivation to seek other means of satisfying
the linear stability constraints in steeply sloping regions.

Rather than slope clipping, Gerdes et al. (1991) pro-
posed a quadratic scaling of the isoneutral diffusion co-
efficient: AI → AI(d/S)2, as the slope reaches values greater
than d. In this manner, it is possible to preserve the iso-
neutral orientation of the diffusive flux while maintaining
linear numerical stability. The quadratic dependence of the
scaling is suggested by the (1 1 S2)21 factor, which appears
in the full tensor. For this prescription, isoneutral diffusion
in the limit of |S| k d reduces to ]z(d2AI]zT), that is, just
vertical diffusion. This result is reasonable as it yields a
zero isoneutral diffusive flux in the limit of vertically un-
stratified columns, and so completely decouples convec-
tion and isoneutral diffusion. Danabasoglu and Mc-
Williams (1995) proposed an exponential scaling of the
form

|S| 2 d
0.5A 1 2 tanh ,I 1 2[ ]Sd

where Sd prescribes the half-width over which the tran-
sition from a diffusion coefficient near AI to a near-zero
diffusion coefficient occurs. This scaling exponentially
shuts off all the isoneutral diffusion above a critical slope.
Such scaling, as discussed by (Large et al. 1997), appears
to be necessary for smoothly coupling isoneutral diffusion
with the GM90 scheme to a mixed layer scheme.

For the case when the full tensor is employed with the
grid parameter d , 1/2, a prescription for stably realizing
intermediate slopes must be given. For this purpose, we
seek some function m(S) that preserves the condition
m(S)(S21 1 S)21 # d. A function that satisfies the equality
in a smooth fashion is given by

1 if S # S(2)
21m(S) 5 d(S 1 S ) if S # S # S (C4)(2) (1)

1 if S # S , `. (1)

Note that m(S) is smooth since d(S(1) 1 ) 5 d(S(2) 121S (1)

) 5 1. The scaling function m(S) decreases from unity21S (2)

to a minimum of 2d at S 5 1. As seen by the comparison
in Fig. C1, this scaling is significantly more mild than that
necessary for stabilizing the small angle tensor. Again,
such a mild scaling is allowed since the full tensor has an
intrinsic scaling through the (1 1 S2)21 factor.

Although perhaps cleaner from a numerical perspective
due to its natural rescaling properties, it is not clear whether
the full tensor is a physically relevant alternative to the
small slope tensor. Further studies are necessary to clarify
this issue.

APPENDIX D

Downgradient Diffusion over Finite Volumes
The discussion in section 5 argued for an interpretation

of ‘‘downgradient diffusion’’ in the new scheme in a finite
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volume context. The relevant finite sized volume is given
by the shaded region in Fig. 8 for the x–z plane. It is useful
to be more mathematical in what is actually meant by such
an interpretation. For this purpose, consider the discretized
functional for isoneutral diffusion

361
(n) (n) 2F 5 2 A(n)V(n)|=T 3 ĝ |O O

2 i,j,k n51

361
(n) (n) (n) (n)5 2 =T ·A(n)V(n)[(ĝ 3 =T ) 3 ĝ ].O O

2 i,j,k n51

(D1)

The notation corresponds to that used in Eq. (28). Note
that each term in the sum over the 36 quarter-cells is
negative semidefinite. This expression is completely anal-
ogous to that provided for the continuous case in section

5a. Correspondingly, the discretized scalar product of the
tracer gradient and tracer flux associated with the finite
volume Vi,j,k 5 V(n) is given by36Sn51

[=T ·F]Vi,j,k

36

(n) (n) (n) (n)[ 2 =T ·A(n)V(n)[(ĝ 3=T ) 3ĝ ] # 0.O1 2n51

(D2)

This expression provides an explicit form for what is
meant by ‘‘downgradient diffusion’’ in the new
scheme. It is only in such a coarse-grained sense that
the new scheme can be said to provide a downgradient
isoneutral diffusive flux. The corresponding result for
the small tensor diffusive flux is (restricting to the x–
z plane for the sake of brevity)

121
small (n) (n) (n) 2F 5 2 A (n)V (n)(] T 1 S ] T )O O x x z2 i,k n51

121
(n) (n) (n) (n) (n) (n) (n) 2 (n) (n)5 2 A (n)V (n)[] T (] T 1 S ] T ) 1 ] T (S ] T 1 (S ) ] T )], (D3)O O x x x z z x x z2 i,k n51

and the corresponding finite volume ‘‘downgradient’’ interpretation is given by

12

small (n) (n) (n) (n) (n) (n) (n) 2 (n) (n)[=T · F] [ 2 A (n)V (n)[] T (] T 1 S ] T ) 1 ] T (S ] T 1 (S ) S )] # 0, (D4)OV x x x z z x x xi,k 5 6n51

where Vi,k 5 V(n).12Sn51

APPENDIX E

Full Tensor Diffusive Flux

The basic grid stencil that was discussed in the main
text for the small tensor is also employed for the full

tensor. The only added step requires the discretization
of the |=r| 2 term occurring in the denominator of the
functional. It is sufficient to discuss only the results
for the x component since the y and z components
follow similarly. This component takes the discretized
form

1 11
(i1ip,k, j )x U2F 5 dyu cosf A SyO Oi,k, j j211jq j211jq I (i1ip,k, j211jq | i1ip,k, j )T4dyt cosf jq50 ip50j j

(i1ip,k, j ) (i1ip,k, j )Sy d T 2 Sx d T(i1ip,k, j211jq | i1ip,k, j ) x i,k, j (i,k, j | i1ip,k, j ) y i1ip,k, j211jq
3

(i1ip,k, j ) (i1ip,k, j ) (i1ip,k, j ) (i1ip,k, j )2 2 2 2(Sx ) 1 (Sy ) 1 0.5[1 1 (d r ) /(d r ) ](i,k, j | i1ip,k, j ) (i1ip,k, j211jq | i1ip,k, j ) z i1ip,k21, j z i1ip,k, j

1 11
(i1ip,k, j )1 dzw AO Ok211kr (i,k, j | i1ip,k211kr, j )4dzt kr50 ip50k

(i+ip,k, j )d T 1 Sx d Tx i,k, j (i,k, j | i1ip,k211kr, j ) z i1ip,k211kr, j
3 .

(i1ip,k, j ) (i1ip,k, j ) (i1ip,k, j )2 2 21 1 (Sx ) 1 0.5[(Sy ) 1 (Sy ) ](i,k, j | i1ip,k211kr, j ) (i1ip,k, j21 | i1ip,k211kr, j ) (i1ip,k, j | i1ip,k211kr, j )
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The x–y cross term (the first term) vanishes in the
small slope limit. Additionally, the diffusion coeffi-
cient for the x–y cross term has been set to the uns-
caled value AI based on the stability analysis given
in appendix C. In the denominators, the discretization
for the density gradient extending in the direction or-
thogonal to the gradients in the numerator are con-
structed as an average of squares. This averaging
brings the discretized gradients back onto the plane
corresponding to the other part of the denominator.
Performing the average after taking the square avoids
introducing computational modes. In the denominator
of the second term, 1 k |Sx|, |Sy| in the small slope
limit, thus reducing this term to the result given by
Eq. (30). Further details can be found in Pacanowski
(1996).

Note added in proof. Soon after this paper was ac-
cepted, the work of Kershaw (1981) and that of Beck-
ers et al. (1998) came to our attention. The functional
approach employed in this paper was also used by
Kershaw for his discretization of a diffusion operator.
Beckers et al. provide a general proof that the re-
sulting linear rotated diffusion scheme cannot main-
tain positive definiteness of a tracer field.
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Gerdes, R., C. Köberle, and J. Willebrand, 1991: The influence of
numerical advection schemes on the results of ocean general
circulation models. Climate Dyn., 5, 211–226.

Gill, A. E., 1982: Atmosphere–Ocean Dynamics. Academic Press,
662 pp.

Goloviznin, V. M., A. A. Samarskii, and A. P. Favorskii, 1977: A
variational approach to constructing finite-difference mathe-
matical models in hydrodynamics. Sov. Phys. Dokl., 22, 432–
434.

Gough, W. A., and W. J. Welch, 1994: Parameter space exploration
of an ocean general circulation model using an isopycnal mixing
parameterization. J. Mar. Res., 52, 773–796.
, and C. A. Lin, 1995: Isopycnal mixing and the Veronis effect
in an ocean general circulation model. J. Mar. Res., 53, 189–
199.

Griffies, S. M., 1998: The Gent–McWilliams skew flux. J. Phys.
Oceanogr. 28, 831–841.

Hallberg, R., 1995: Some aspects of the circulation in ocean basins
with isopycnals intersecting the sloping boundaries. Ph.D. dis-
sertation, University of Washington, 244 pp.

Haltiner, G. J., and R. T. Williams, 1981: Numerical Prediction and
Dynamic Meteorology. 2d ed. Wiley, 477 pp.

Hirst, A. C., D. R. Jackett, and T. J. McDougall, 1996: The meridional
overturning cells of a World Ocean model in neutral density
coordinates. J. Phys. Oceanogr., 26, 775–791.

Iselin, C. O., 1939: The influence of vertical and lateral turbulence
on the characteristics of the waters at mid-depth. Trans. Amer.
Geophys. Union, 20, 414–417.

Kershaw, D. S., 1981: Differencing of the diffusion equation in La-
grangian hydrodynamical codes. J. Comput. Phys., 39, 375–395.

Korshiya, T. K., V. F. Tishkin, A. P. Favorskii, and M. Y. Shashkov,
1980: Flow-variational difference schemes for calculating the
diffusion of a magnetic field. Sov. Phys. Dokl., 25, 832–834.

Kunze, E., and T. B. Sandford, 1996: Abyssal mixing: Where it is
not. J. Phys. Oceanogr., 26, 2286–2296.

Large, W. G., G. Danabasoglu, S. C. Doney, and J. C. McWilliams,
1997: Sensitivity to surface forcing and boundary layer mixing
in a global ocean model: Annual-mean climatology. J. Phys.
Oceanogr., 27, 2418–2447.

Ledwell, J. R., A. J. Watson, and C. S. Law, 1993: Evidence for slow
mixing across the pycnocline from an open-ocean tracer-release
experiment. Nature, 364, 701–703.

Levitus, S., 1982: Climatological Atlas of the World Ocean. NOAA
Prof. Paper No. 13, U.S. Govt. Printing Office, Washington, DC,
173 pp.

McDougall, T. J., 1987a: Neutral surfaces. J. Phys. Oceanogr., 17,
1950–1967.
, 1987b: Thermobaricity, cabbeling, and water-mass conversion.
J. Geophys. Res., 92, 5448–5464.
, 1991: Parameterizing mixing in inverse models. Dynamics of
Oceanic Internal Gravity Waves, Proc. Sixth ’Aha Huliko ’a
Hawaiian Winter Workshop, P. Müller and D. Henderson, Eds.,
Manoa, HI, University of Hawaii at Manoa, 355–386.
, and J. A. Church, 1986: Pitfalls with numerical representations
of isopycnal and diapycnal mixing. J. Phys. Oceanogr., 16, 196–
199.
, and D. R. Jackett, 1988: On the helical nature of neutral tra-
jectories in the ocean. Progress in Oceanography, Vol. 20, Per-
gamon, 153–183.

Montgomery, R. B., 1940: The present evidence on the importance
of lateral mixing processes in the ocean. Bull. Amer. Meteor.
Soc., 21, 87–94.

Olbers, D. J., M. Wenzel, and J. Willebrand, 1985: The inference of



830 VOLUME 28J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

North Atlantic circulation patterns from climatological hydro-
graphic data. Rev. Geophys., 23, 313–356.

Pacanowski, R. C., 1996: MOM 2 documentation, user’s guide and
reference manual. GFDL Ocean Tech. Rep. 3.1, Geophysical
Fluid Dynamics Laboratory/NOAA. [Available from GFDL,
Princeton University, Princeton, NJ 08542.]

Plumb, R. A., and J. D. Mahlman, 1987: The zonally averaged trans-
port characteristics of the GFDL general circulation/transport
model. J. Atmos. Sci., 44, 298–327.

Rahmstorf, S., 1993: A fast and complete convection scheme for
ocean models. Ocean Modelling, (unpublished manuscripts),
101, 9–11.

Redi, M. H., 1982: Oceanic isopycnal mixing by coordinate rotation.
J. Phys. Oceanogr., 12, 1154–1158.

Send, U., and J. Marshall, 1995: Integral effects of deep convection.
J. Phys. Oceanogr., 25, 855–872.

Solomon, H., 1971: On the representation of isentropic mixing in
ocean models. J. Phys. Oceanogr., 1, 233–234.

Tishkin, V. F., A. P. Favorskii, and M. Y. Shashkov, 1979: Variational-
difference schemes for the heat-conduction equation on nonre-
gular grids. Sov. Phys. Dokl., 24, 446–448.

Veronis, G., 1975: The role of models in tracer studies. Numerical
Models of Ocean Circulation, Natl. Acad. Sci., 133–146 pp.

Visbeck, M., J. Marshall, T. Haine, and M. Spall, 1997: Specification
of eddy transfer coefficients in coarse resolution ocean circu-
lation models. J. Phys. Oceanogr., 27, 381–402.

Weaver, A. J., and E. S. Sarachik, 1990: On the importance of vertical
resolution in certain ocean general circulation models. J. Phys.
Oceanogr., 20, 600–609.
, and M. Eby, 1997: On the numerical implementation of ad-
vection schemes for use in conjunction with various mixing par-
ameterizations in the GFDL ocean model. J. Phys. Oceanogr.,
27, 369–377.


