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A FEM for unsaturated transient seepage is established by using a quadrilateral isoparametric element, considering the fact that
the main permeability does not coincide with the axis situation. It creates a function by using the element’s node hydraulic head
and shape function instead of the real head in the Richard seepage control equation. With the help of the Galerkin weighted
residual method, a FEM equation is given for analyzing 2-dimensional transient seepage problem. Further, based on the Jacobi
matrix and Gauss numerical integral, it determines the elements of stiffness and capacitance matrices. )is FEM equation
considers not only the anisotropic of soil but also the uncoincidence between permeability and the axis. It is a common form of
transient seepage. In the end, two examples illustrate the node accuracy of the quadrilateral element and the correctness of this
FEM equation.

1. Introduction

Transient seepage of unsaturated soils is a hot issue of research
currently [1–3], For instance, dam seepage [4, 5], subgrade
moisture field, the steadiness of rainfall side slope [6], and
other unsaturated seepage problems can be considered
according to two-dimensional seepage problems. )e finite
element method (FEM) is a highly valued analysis method.
Lam et al. [7] have used the triangular element to obtain

the finite element equation and stiffness and capacitance
matrices of transient seepage of unsaturated soils. )is re-
search literature is widely referenced [8–10], and the es-
tablishment of a great deal of computational and analytical
work is based on the triangular element. In the analysis of
some symmetry problems, the triangular element has rel-
atively large errors, which is caused by the asymmetry of the
triangular element itself.
Under the condition of shape functions sharing the same

power, approximate functions constructed by values on the
nodes and shape functions are defective, while the quadrilateral
element has no similar problem. In this regard, some scholars
begin to use the rectangular element to calculate some complex
engineering problems [11, 12], which demonstrates an

excellent trend; however, the commercial software constituted
of opaque principles is used for calculation, no determination
method of stiffness and capacitance matrices is provided, and
literature studies related to stiffness and capacitancematrices of
the rectangular element are still scarce.
Further research [13, 14] gives the calculating idea and

method of the finite element of homogeneous isotropic soils
using the three-dimensional isoparametric finite element.
Due to the anisotropy and heterogeneity of soils, the phe-
nomenon of the main seepage coefficient not coinciding
with the coordinate axis often appears. In addition to using
the triangular element method, existing studies have not
been involved in how to establish the finite element equation
when the direction of the main seepage coefficient does not
coincide with the coordinate axis. Its geometric shapes of the
boundary are mostly oblique lines, so the one-dimensional
isoparametric element is able to meet the precision re-
quirements of simulated geometric conditions.
At present, triangular element is still the simplest ele-

ment form in the FEM of unsaturated soil’s transient seepage
problem. )e stiffness matrix and capacitance matrix of the
triangular element can be used to code a calculation pro-
gram. But the triangular element has relatively large errors
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when analyzing some symmetry problems.)e quadrilateral
element is symmetric, so it is more accurate than the tri-
angular element in the condition of symmetrical flow.
Quadrilateral element is also widely used in various seepage
analysis software, but its stiffness matrix and capacitance
matrix have not been reported yet. )is makes it difficult for
geotechnical engineers who need to code a calculation
program to analyze seepage problems. In addition, soil
anisotropy also needs to be reflected.
Based on this, this paper attempts to consider the

phenomenon of the anisotropy of soils and main seepage
coefficient not coinciding with the coordinate axis and adopt
one-dimensional quadrilateral isoparametric element to
research on establishing the calculating method of the finite
element for transient seepage of unsaturated soils.
On this basis, by using the Galerkin weighted residual

method, this paper establishes a transient seepage finite element
calculation method of unsaturated soils. )is method uses the
one-dimensional quadrilateral isoparametric element and gives
its stiffness matrix and capacitance matrix. )is method also
considers the anisotropy coefficient of soil and seepage is not
consistent with the coordinate axis. Two examples are given:
one is to illustrate the difference between triangular element and
quadrilateral element and the other one gives a calculation of
certain dam seepage to clarify the accuracy of the proposed
method in seepage flow.

2. Transient Seepage of Anisotropic Soils

Assume that, in the plane problem, the seepage coefficients
of soils are, respectively, known to be k1 and k2 in two
mutually perpendicular directions s1 and s2. )ey are
functions of matric suction of unsaturated soils (ua−uw) and
have an angle α to the coordinate axis, as shown in Figure 1.
According to Darcy’s law,

v1 � −k1
zh

zs1
, (1)

where h is the total head, i.e., the sum of the gravity head and
pore water pressure head. )e continuous derivative rule
and the simple relation of trigonometric functions are used
to change the hydraulic gradient in the s1 direction

zh

zs1
� zh

zx

zx

zs1
+ zh

zy

zy

zs1
� zh

zx
cos α + zh

zy
sin α. (2)

Formula 2 is introduced into formula (1); then, the flow
velocity v1 in the s1 direction can be written as

v1 � −k1
zh

zx
cos α + zh

zy
sin α( ). (3)

Similarly, the flow velocity v2 in the s2 direction can be
obtained as

v2 � −k2 −zh
zx
sin α + zh

zy
cos α( ). (4)

v1 and v2 are orthogonally decomposed in the direction
of the coordinate axis, and their components on the x-axis

and y-axis make up the flow velocity vx and vy along the
direction of the axis:

vx � v1 cos α − v2 sin α,
vy � v1 sin α + v2 cos α.

(5)

At present, introducing formula (3) and (4) into (5), the
following forms are obtained:

vx � − kxx
zh

zx
+ kxy

zh

zy
( ),

vy � − kyx
zh

zx
+ kyy

zh

zy
( ),

(6)

where

kxx � k1cos
2 α + k2sin

2 α,

kxy � kyx � k1 − k2( )sin α cos α,
kyy � k1sin

2 α + k2cos
2 α.

(7)

On the other hand, the continuity condition of seepage
of unsaturated soils contains

zvx
zx

+
zvy

zy
+mw

2

zu

zt
� 0, (8)

where mw
2 is called the change coefficient of the water yield

associated with matric suction (ua− uw) change. Formula (6)
is introduced into (8), and the relation between pore water
pressure and the total head is as follows:

u � ρwg(h − y). (9)

)en, the control equation of transient seepage for
anisotropic can be written as follows:

z

zx
kxx

zh

zx
+ kxy

zh

zy
( ) + z

zy
kyx

zh

zx
+ kyy

zh

zy
( ) − λ zh

zt
� 0,

(10)
where λ � ρwgm

w
2 . For unsaturated soils, the seepage co-

efficient is not constant but synergistically varies with the
suction head. Besides, the total head on the Dirichlet
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Figure 1: Permeability not coinciding with the axis in an aniso-
tropic unsaturated soil.
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boundary (Γ1) and the normal flow velocity on the Neumann
boundary (Γ2) are known as

h|Γ1 � h,

vn|Γ2 � v,
(11)

where n represents the normal direction.

3. Discreteness of Spatial Domain

When the quadrilateral one-dimensional isoparametric el-
ement is adopted, as shown in Figure 2, the shape function
on each node and the displacement mode at any point in the
element, respectively, are

Ni �
1

4
1 + ζ iζ( ) 1 + ηiη( ),

x �∑4
i�1
Nixi; y �∑4

i�1
Niyi, (i � 1, 2, 3, 4),

(12)

where (xi, yi) and (ζ i, ηi) are global and local coordinate
values of point i.
In the element, an approximate head function is con-

structed by means of the product of the node head and the
shape function to approach the real head of any point on the
nodes, such as

H �∑4
i�1
Nihi. (13)

To replace formula (10) and the head h in formula (11)
representing the boundary condition, for similar reasons,

formula (10) will produce margin in the integral surface do-
main Ω, denoted as RΩ; formula (11) will produce margin on
the boundary of Γ2, denoted as RΓ2. When shape functions of
the quadrilateral element are used to multiply these margins,
respectively, the integral sum of RΩ and RΓ2 in each integral
domain should be zero, and this method is called Galerkin
weighted residual method. According to the Galerkin method,
the following mathematical expression can be obtained:

∫
Ω
NiRΩdΩ − ∫Γ2NiRΓ2dΓ � 0, (i � 1, 2, 3, 4). (14)

)e method of subsection integration is adopted to the
first item of formula (14), and the surface integral is con-
verted into the curve integral combined with the Green
formula to obtain the “weak” form of its equivalent integral.
After finishing formula (14) by the above method,

∫
Ω
∑
m�x,y

∑
n�x,y

z[N]T

zm
kmn

z[N]
zn
dΩ  h{ } + ∫

Ω
[N]Tλ[N]dΩ[ ] z h{ }

zt
� ∫
Γ2
[N]TvdΓ, (15)

where the subscriptsm� x, y and n� x, y indicate thatm and
n should be taken as x and y, respectively, and [N] is the
matrix of shape functions of the quadrilateral isoparametric
element: [N] � [N1N2N3N4].
In formula (15), stiffness matrix [D], capacitancematrix [E],

and flux boundary condition [F] are stipulated as follows:

[D] � ∫
Ω
∑
m�x,y

∑
n�x,y

z[N]T

zm
kmn

z[N]
zn
dΩ,

[E] � ∫
Ω
[N]Tλ[N]dΩ,

[F] � ∫
Γ2
[N]T · vdΓ.

(16)

)en, formula (15) can be simplified as

[D] h{ } +[E] z h{ }
zt

�[F]. (17)

3.1. StiffnessMatrix [D]. For the isoparametric quadrilateral
element, there are a total of 4× 4�16 elements in the
stiffness matrix, among which

Dij � ∫Ω ∑
m�x,y

∑
n�x,y

zNi

zm
kmn

zNj

zn
dΩ, (i, j � 1, 2, 3, 4).

(18)
To desire for the expression of stiffness matrix, first of all,

it is necessary to convert the integral into the local coor-
dinate system, which requires the assistance of the transition
of Jacobi matrix.
)e partial derivative of the global coordinate to the local

coordinate can be written as

zx

zζ
� a1 + Axη;

zx

zη
� a2 + Axζ,

zy

zζ
� a3 + Ayη;

zy

zη
� a4 + Ayζ.

(19)
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Figure 2: Diagram of coordinate transformation for a 4-node
quadrilateral isoparametric element.
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)e coefficients in the formula are

a1 �
1

4
∑4
i�1

ζ ixi; a2 �
1

4
∑4
i�1

ηixi,

a3 �
1

4
∑4
i�1

ζ iyi; a4 �
1

4
∑4
i�1

ηiyi,

Ax �
1

4
∑4
i�1

ζ iηixi; Ay �
1

4
∑4
i�1

ζ iηiyi.

(20)

All of them are only related to the node coordinates,
which are constant for the local coordinates. )en, the
determinant of the Jacobi matrix is given by

|J| � zx

zζ

zy

zη
− zx

zη

zy

zζ
� a5 + a6ζ + a7η. (21)

)e coefficients among them are

a5 � a1a4 − a2a3,
a6 � a1Ay − a3Ax,

a7 � a4Ax − a2Ay.
(22)

Similarly, these coefficients are constant.
)e relation between the shape function and the partial

derivative of global and local coordinates is obtained by
using Jacobi matrix:

zNi

zx

zNi

zy




�[J]− 1

zNi

zζ

zNi

zη




, (23)

where [J]−1 represents the inverse matrix of Jacobi matrix.
Formula (23) is expansively written, in which the shape
function on the partial derivative of x is

zNi

zx
� 1|J|

zNi

zζ

zy

zη
− zNi

zη

zy

zζ
( )

� 1

4|J| bxi + cxiζ + dxiη( ) � 1

4|J|Bxi.

(24)

)e coefficients in the formula are

bxi � ζ ia4 − ηia3,

cxi � ζ i Ay − ηia3( ),
dxi � ηi ζ ia4 − Ay( ).

(25)

Similarly, the shape function on the partial derivative of y
can be obtained as

zNi

zy
� 1|J|

zNi

zη

zx

zζ
− zNi

zζ

zx

zη
( )

� 1

4|J| byi + cyiζ + dyiη( ) � 1

4|J|Byi.

(26)

)e coefficients in the formula are

byi � ηia1 − ζ ia2,

cyi � ζ i ηia1 − Ax( ),
dyi � ηi Ax − ζ ia2( ).

(27)

)e integral domain is transformed by Jacobi matrix

dΩ � dxdy � |J|dζdη. (28)

)e results obtained by formulas (24)∼(28) are intro-
duced into formula (18), and the integral form of Dij can be
obtained as follows:

Dij � ∫
1

−1

∫1
−1

∑
m�x,y

∑
n�x,y

BmikmnBnj

16|J| dζdη. (29)

)e integrand fDij (ζ, η) in formula (29) is expanded as

fDij(ζ, η) � ∑
m�x,y

∑
n�x,y

kmn
16

bmi + cmiζ + dmiη( ) bnj + cnjζ + dnjη( )
a5 + a6ζ + a7η

.

(30)
In formula (30), only ζ and η are variable, and the

remaining coefficients are constant, in which the con-
stants are only related to global and local coordinates of 4
nodes in the element, according to the foregoing calcu-
lation discussion of these coefficients, when the Gauss
numerical method is used to evaluate the integral in
formula (29).

Dij �∑l
s�1
∑l
t�1
hshtfDij ζs, ηt( ), (31)

where hs and ht are weighting coefficients, ζs and ηt are
integral points, and l is the number of integral points being
adopted. Generally, for the 4-node isoparametric element,
the number of integral points is l× l� 2× 2, which is suffi-
cient to meet the precision requirement. At this point, re-
spectively, values of the weighting coefficient and the
integral point should be

h1 � h2 � 1,

ζ1 � −ζ2 �
1�
3

√ ,

η1 � −η2 �
1�
3

√ .

(32)

After being introduced into formula (31), the final form
of the stiffness matrix is

Dij �∑2
s�1

∑2
t�1
fDij [−1]s 1�

3
√ ; [−1]t 1�

3
√( ). (33)

Among them, the expression of the integrand fDij is
shown in formula (30).
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3.2. Capacitance Matrix [E]. )e capacitance matrix is the
same as the stiffness matrix, which also has 16 items. Among
them, the calculation formula of the element at any position
is

Eij � ∫ΩNiλNjdΩ � ∫
1

−1

∫1
−1
λNiNj|J|dζdη. (34)

By using the Gauss integral method, each element in the
capacitance matrix can be obtained. Considering that the
form of the integrand is relatively simple in the capacitance
matrix, the expression of its integral form can be presented
by simplification.
For any element in the capacitance matrix, after the

expression of formula (12) and the determinant of formula
(21) of Jacobi matrix are introduced, the integrand is written
as

fEij(ζ, η) �
λ

16
1 + ζ i + ζj( )ζ + ζ iζjζ2[ ]

· 1 + ηi + ηj( )η + ηiηjη2[ ] a5 + a6ζ + a7η( ).
(35)

If formula (35) is fully expanded, a high-order poly-
nomial related to ζ and η can be obtained. Considering the
symmetry of range of integration in the capacitance matrix,
the odd polynomials containing ζ or η are equal to zero after
the integral, then these items with the integral of zero are
deleted directly after the expansion, and formula (35) can be
simplified as follows:

E(ζ , η) � λ

16
a5 + aζζ

2 + aηη
2 + aζηζ

2η2( ). (36)

)e coefficients in the formula are

aζ � ζ iζja5 + ζ i + ζj( )a6,
aη � ηiηja5 + ηi + ηj( )a7,
aζη � ζ iζjηiηja5 + ηiηj ζ i + ζj( )a6 + ζ iζj ηi + ηj( )a7.

(37)

Formula (36) is introduced into formula (34) to conduct
the integral, and after being finished, the expression for each
element in the capacitance matrix is as follows:

Eij �
λ

4
1 + 1
3
ζ iζj( ) 1 + 1

3
ηiηj( )a5 + ζ i + ζj3 1 + 1

3
ηiηj( )a6[

+
ηi + ηj
3

1 + 1
3
ζ iζj( )a7].

(38)
After local coordinates on nodes are introduced, the

capacitance matrix can be simplified as

[E] � λ

9
E5[ ]a5 + E6[ ]a6 + E7[ ]a7( ). (39)

Among which matrices [E5], [E6], and [E7] are all
constant matrices, they, respectively, are

E5[ ] �
4 2 1 2

2 4 2 1

1 2 4 2

2 1 2 4


,

E6[ ] �
2 0 0 1

0 −2 −1 0
0 −1 −2 0
1 0 0 2


,

E7[ ] �
2 1 0 0

1 2 0 0

0 0 −2 −1
0 0 −1 −2


.

(40)

3.3. Flux Boundary Conditions [F]. Matrix [F] is the matrix
reflecting Neumann boundary conditions, which represents
equivalent nodal flow in the normal direction.

4. Analysis of Calculation Cases

)e above method can be used to calculate unsaturated
seepage under various conditions. Because all of the existing
calculating methods are not involved in the problem of the
main seepage coefficient not coinciding with the coordinate
axis, for the convenience of comparative analysis, so does
validate calculation examples, which can be achieved by
demanding Corner α in formula (7) to be zero. When an-
alyzing the isotropic problem, k1� k2, and at this time, no
matter how Corner α changes, it will not affect the seepage
coefficient value. For the one-dimensional seepage problem,
the seepage coefficient (k1 or k2) in a certain direction can be
further demanded to be zero. )e coefficients simplified by
formula (7) under different operating conditions can also
obtain different forms of stiffness matrix expressions after
being introduced into formula (30). In the case of steady
seepage, as the nodal head does not vary from the time, the
partial derivative of the head to the time in formula (17) is
zero, which means the item of capacitance matrix can be
ignored.
At present, based on the formula derivation in this paper,

Fortran language self-compiled program is applied to cal-
culate two different problems.

4.1. Node Errors of the Triangular Element. Due to the
asymmetry of the triangle element, node errors will appear
in the analysis of some symmetric problems, while the
quadrilateral element can overcome these errors. Consid-
ering the one-dimensional unsaturated seepage problem on
a horizontal soil column, the linear triangular and quadri-
lateral elements are used to conduct discretization, as shown
in Figure 3.
)e length of the soil column is 1m, and the boundary

condition of the head is given on both sides: the suction head
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on the left side is maintained at zero, and the suction head on
the right side is maintained at −10m. Side lengths of the
element are 0.1m without exception. )e quadrilateral el-
ement is composed of 10 elements and 22 nodes. )e tri-
angular element needs 20 elements and 22 nodes. In the
process of seepage calculation, because the seepage coeffi-
cient k is the function of the suction head h, the value of the
nodal head cannot be obtained when seepage is steady unless
many iteration computations have been conducted. Among
which, the relation between the seepage coefficient k and the
suction head h can be obtained by referring to literature [15],
as shown in Figure 4.
)e two values of upper and lower nodal heads in two

different elements away from the same position on the left
side are shown in Figure 5. )e tri-1 curve in the figure
represents the variation conditions of the head of the tri-
angular element beside the next row of nodes in Figure 3,
while the tri-2 curve represents the head beside the top row
of nodes at the same position. )e tri-aver curve represents
the average value of the two nodal heads. It can be seen that,
for the triangular element, the two nodal heads at the same
position are not the same, which does not accord with the
law of symmetric seepage. )e rec-1 and rec-2 in the figure
are the values of nodal heads calculated by the quadrilateral
element. At the same location, they are exactly the same, and
the sizes of them are basically equal to the average value of
the two nodal heads. It is shown that, for the triangular
element, the two nodal water heads at the same position are
not the same, which does not accord with the law of
symmetric seepage. )e rec-1 and rec-2 in the figure are the
node head values calculated by the quadrilateral element. At
the same location, they are exactly the same. And the sizes of
them are basically equal to the average value of two nodal
heads of the triangle, which indicates node errors of the
triangular element objectively exist, and the reason of errors
is mainly for the asymmetry of the triangle in the calculation
of symmetry problem.

4.2. Seepage Caused by the Water Flowing through the Earth-
Rock Dam. In order to verify the correctness of the formula
deriving and program compiling in this paper, the condition
of two-dimensional seepage of earth-rock dam in literature
[15] is calculated particularly, whose calculation results are
compared with the original paper. )e quadrilateral iso-
parametric element is used to discretize the dam body, of
which the body contains a total of 312 units and 351 nodes.
Discrete graphics can be seen in Figure 6.
In the calculation, in order to be consistent with the

conditions in the literature, it is assumed that the seepage
coefficient of the soil is isotropic, and the seepage coefficient

function used in the analysis is still given out by Figure 4.
Select the dam bottom as a reference surface; in addition, the
value of λ used in the analysis is adopted for 0.01m–1. )e
water level of the initial reservoir is above the reference
surface 4m and the earth dam is in steady state. From the
beginning of the zero moment, the water level of the water
reservoir suddenly rises to the position above the reference
surface 10m.Water seeps into the dam under the new raised
water pressure. )e amount of evaporation and infiltration
on the boundary is not considered in the process of dam
seepage. Besides, in the subsequent transient process, the
water level remains unchanged. )e rise condition of the
phreatic line within the dam from the initial steady state to
the delaying 511 days is shown in Figure 7. )e variation
trend of the phreatic line reflected by the figure is basically
the same as that in literature [15]. )e velocity field and
equipotential line can be calculated after the nodal head is

10

y

x

Figure 3: Discretization of one-dimensional seepage.
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obtained, and the same details will not be explained any
more.

5. Conclusion

In view of the fact that the main seepage coefficient not
coinciding with the coordinate axis is not considered in the
existing numerical calculation of the moisture field of un-
saturated soils, this paper adopts the calculating method of
the finite element for transient seepage of unsaturated soils.
By using the shape function on the element node and the
head value, an approximate function can be constructed to
replace the head function in the Richard seepage control
equation. Galerkin weighted residual method is used to
construct finite element equations by making the integral of
the error generated by the approximation in the element
equal to zero. )e “weak” form of weighted residual method
is obtained by the further application of multivariate
function integral method and Green formula transforming
the equation form, based on which, the finite element form is
presented to analyze the seepage problem by using the
quadrilateral isoparametric element, and stiffness matrix and
capacitance matrix are determined by the Gauss numerical
integration method. )is finite element method takes the
anisotropy of soils, the main seepage coefficient not coin-
ciding with the coordinate axis, and other cases into account,
which is the general form of transient seepage of unsaturated
soil analysis.
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