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This paper is concerned with the following eigenvalue
problem

( 1 ) {x(Zn) + (-1)"“21)@)90 — 0

2®(0) = 0 = (1), k=01---,n—1,

where p(t) is assumed to be positive and continuous in [0, 1].
For the class of functions ¢(t) which are equimeasurable to
p(t), we shall show that the rearrangement of p(f) in sym-
metrically increasing order maximizes the least positive
eigenvalue of (1), while the rearrangement of p(f) in sym-
metrically decreasing order minimizes it.

Rearrangements of sets of numbers and functions are defined
and investigated in detail in the book by Hardy, Littlewood and
Pélya [11, Chapter X] and the book by Pélya and Szego [18]. Using
these notions, classes of nonhomogeneous strings, membranes, rods
and plates with equimeasurable densities are considered in [3, 4, 5,
10] and the extremum of the principal frequencies are found for
these classes. In particular, the above assertion has been proven
by Beesack and Schwarz [5] and Fink [10] for # = 1. For n = 2,
the proof is given by Banks [3]. Our proof will differ from those
given for the special cases in that we will rely on some of the
results in the theory of positive operators [12, 13, 14, 15, 16, 17]
and certain rearrangement inequalities [18, 19]. All the required
results will be explicitly stated in the sequel; the explanations of
which, however, will be brief.

2. Rearrangement inequalities. Let h be a real function
defined on a subset S of R", we shall denote the level set

{teS:h(t) = ¢}

by L(h, ¢). Two real functions f(¢) and g(¢) defined on [0, 1] are called
similarly ordered if, for each pair of points ¢, ¢, of [0, 1], we have

L) — ftllg@) — 9(t)]1 =0 ;

f and g are called oppositely ordered if f and —g are similarly
ordered. If for each c¢e R, the measure of L(f, ¢) is equal to that

of L(g, ¢), then we say that f and ¢g are equimeasurable. Let f, f
and f be equimeasurable, and in addition let f(t) and (2t — 1)* be
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similarly ordered, and F(¢) and (2t — 1)* be oppositely ordered. The
uniquely defined and continuous funections f(t) and f(¢) are called the
rearrangement of f(¢) in symmetrically increasing, respectively
decreasing order (for detail of these statements and their validity,
see [11, Chapter X]J).

LemMA 1. ([11, Theorem 378 and 18, p. 153]). Suppose f, fi, fo
g, 9. and g, are real continuous functions defined on |0, 1], fi and
g, are similarly ordered, f, and g, are oppositely orcered, f, f. and f,
are equimeasurable, and also g, g, and g, are equimeasurable, then

S:fzgz = S:fg = S:flgl )

Call a real function A defined on a convex subset S of R"
quasiconcave if each of its level sets L(h, ¢) is convex [2, p. 145].
The following is a slightly modified version of a result of Vollman
[19, Theorem 2.1}].

LeMMA 2. Let K(i, s5) be a continuous, nonnegative, quasiconcave
Sunction defined on [0, 1] x [0, 1] which satisfies K(t, s) = K(1 — ¢,
1 —s). Let p, ¢ be nonnegative, continuous functions defined on
[0, 1] with P, § their rearrangements in symmetrically decreasing
order. Then

it i1
L&, 9neaeanasa = [ | k¢, 9p@awawdsd .
We remark that under the same assumptions in Lemma 2, the
original version only asserts that

[ &, opeawisa < [ xe, spepwasat .

0J0 0Jo

We ean, however, first strengthen the conclusion of Lemma 2.4 in
[19] to

[, r@a@awdas|  p@i@anda,

and then prove Lemma 2 in a way similar to the one used in the
proof of the original version. Since the modifications are slight,
the proof is thus omitted.

3. Positive operators. Let B be a real Banach space. A closed
subset K of B is a cone if the following conditions are satisfied:
(i) If xeK and ye K, then z + yc K.
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(ii) If xe K and ¢ = 0, then tx e K.

(iii) If xe K and « = 0, then —x¢ K.
A cone is said to be solid if it contains interior elements. An
operator T defined on B is said to be positive (with respec to K) if
it leaves the cone K invariant and wu.-positive if nonzero u, exists
in K so that for every nonzero u in K, positive numbers s, ¢ and
positive integer » can be found satisfying su, < T?u < tu, where we
write <y if y—xe K and we write z<yif y—xcKand y —x+#0.

LemMMA 3. ([13, 14, 15, 16]). Let T be a linear, u,positive and
completely continuous operator defined on a real Banach space B
with solid cone K. Then T has exactly one (normalized) eigenvector
wm K and the corresponding eigenvalue is simple, positive, and larger
than the absolute value of any other eigenvalue.

Let B’ denote the dual space of continuous linear functionals on
B, and let K’ denote the dual cone of all elements of B’ that are
nonnegative on K, i.e.,

K ={&'eB: {x, x> =20 for all x¢ K},

where {(z, ') denotes the number 2'(z). If T is a linear operator
defined on B, we shall denote its special radius by »(T), i.e.,

7(T) =sup{{N: neo(T)}.
Lemma 4. (17, Lemma 3.3]). Let T be a linear, positive and

completely continuous operator defined on a real Banach space B
with cone K. For x #+ 0, let

(2) S=NeR:\x, &)y < (T, x>, 2’ K'} .

Let
supS if S# @

(3) =17 sl o

Then r (T) < »(T).

The set of 2n-times continuously differentiable real funections
C*[0, 1] equipped with the norm

I 1l = max {sup | fV®)]}
1<5son O0StZ1
is a Banach space. In the sequel, we shall denote the subset

(f €00, 1L: F4(0) = 0 = f¥(1) for k=0,1,---,n — 1,
and (—1Ff ) =0for 0<k=<n—-1land 0<t=<1}
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of C*"[0, 1] by K,. K, is a solid cone of C*“[0, 1] as may be verified
directly.

4. The Green’s functions associated with (1). Let the function
G,(t, s) and its successive iterates be defined as follows

tl—s) if0<t<s
s@—1t) ifs=st=s1,

(4) G.(t, s) = {

(5) G.@, s) = SO Gut, 1)Gos(r, ) (n =2,8, ---) .

If ¢(¢) is any function continuous in the interval [0, 1], then it
is easily verified that the unique solution of the differential system

(=1)r2®(t) = g(t)
x®(0) = 0 = 2R (1), k=01, .- ,n—1

is
2(t) = || G.tt, Dg(ads .

In fact G,(¢, s) is the familiar Green’s function of the system. Con-
sequently, system (1) can be transformed into an integral equation
of the form

(6) A=,
Where T,: C*[0, 1] — C*[0, 1] is defined by

(7) (T.x) = S: G.(t, s)p(s)x(s)ds .

T, is clearly linear, furthermore, since G, (¢, s) and p(s) are continuous,
T, is also compact.

LEMMA 5. For each positive integer m, G,(t, s) is positive in
the interior of {0,1] X [0, 1] and zero on the boundary.

LEMMA 6. G,(t,s5) =G, (5,t) =G,(1—s,1 -8 =G, 1 —1%1~5s),
G.1~—t s =G,1A—s,t) and

SO G.(t, s)ds = t(1 — £)/2 .

LEMMA 7. Let y be a continuous, nonnegative function which
does mot vanish identically in [0, 1], then positive o can be found
such that for tef0, 1]
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(8) at(l —¢) < SO Gy, $)y(s)ds .

Lemma 5 follows directly from the definition of G,(¢, s). Lemma
7 is a result in [14, p. 283]. Lemma 6 is a result of Cheng [6,
Corollary 4.6] which also follows from direct verification. Note that
Lemma 6 implies that G,(t, s) takes on the same value at the corners
of any parallelogram lying in the square [0, 1] x [0, 1] and having
sides parallelled to the diagonals of [0, 1] x [0, 1].

LemmaA 8. G,(t, s) is quasiconcave on [0, 1] x [0, 1].

Proof. We start by defining a sequence of polynomials fi,f;, fs, - - -
by means of the conditions

fi@) = «/2
Ja(@) = foi() n>1
Jona(—=1) =0 n>1

fo®) = for(—2) n=1.

Denote the points (—1, —1), (0,0), (1, —1) and (0, —2) by A, B, C
and D respectively. Let H,(u, v) be the function

(=D fen() — Sea(9)] if (u, v)e 4ABC

H,(u, v) = (=) foultt) — for(—v — 2)] if (u, v) e JADC .

Under the change of variables

t = (u— )2, s=(u-+ v+ 2)/2
w=t+s-—-1, v=8—t—1

it is easily seen that the square with vertices A, B, C and D is
transformed into [0, 1] x [0, 1]. We assert that

Gut,s) =Ht+s—1,s—t—1), (¢ s)el0,1]x][0,1].

Indeed, if we set G,(¢t,s) = H,(t+s—1,s —t — 1), we may verify
directly that G,(¢, s), when regarded as a function of ¢ with s fixed,
satisfies the following conditions:

(1) Together with its first 2n — 2 derivatives, it is continuous
on [0,1]. At the point ¢t = s, the (2n — 1)th derivative has an up-
ward jump (—1)".

(it) Its 2nth derivative is identically zero.

(iii) It satisfies the boundary conditions in (1).

Since the Green’s function is the only function with the above
properties G,(t, s) = G.(Z, ).
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Since for each m =< n, G, s) >0 in the interior of [0, 1] x
[0, 1], it is clear that H,(u, v) >0 for —1=<v <% =0. Hence,
(= D™ fort)— fou(®)>0 for —1<v<u=0, that is, (—1)™f,,, is strictly
inereasing in [—1, 0]. Since fin_o(—1) =0, (=1)"frn = (—1)"fon > 0
and (—=1D)"for_ = (=D sy = (= D=1 for_s < 0 over (—1, 0]. We
therefore conclude that (—1)"f,,_, is positive and concave over (—1, 0].

To show that for every ¢ >0, L(G,,¢) is a convex set, it is
sufficient to show that L(H,, ¢) is bounded on one side of the line
v = —1 by a conecave curve, and on the other side by a convex
curve. But in view of Lemma 6 (and the statements following
Lemma 7), it suffices to show that the part of L(H,, ¢) contained in
the triangle —1 < v < u <0 is bounded by a concave curve. For
this purpose, we implicitly differentiate H,(u, v) = ¢ to obtain [8,
p. 223]

o _

du (=D"fu(v)  foua(0)

and

@0 LAOF(—D fiw) + [ F(— D)
" (—D [T
_ LAl R fi) )
7@ @ [fa®)T
SE 01 S
Fra®) L fona®  Foma)

for ~1<v<u=0. But since (—1)*f;,, is positive ‘and concave
over (—1, 0], thus 1/(—1)"f,,_, is convex over (—1, 0] (see [2, p. 156]),
so that (1/(—1)"f,._.)" is increasing in (—1, 0]. Consequently,

[fzn_lw[ 1 _ 1 ]’so
(D) fora ) L (1 for @) (=D frnu) 4 =

for —1<v<u=0. This shows that dv/du* <0 for -1 <u=0
so that the part of L(H,, ¢) contained in the triangle —1 < v <u =0
is indeed bounded above by a conecave curve. The proof is complete.

5. Existence of eigenvalues. It is known (see for instance [7,
pp. 228-230, and 9, 1]) that the selfadjoint and positive definite
eigenvalue problem (1) has a smallest positive eigenvalue which is
simple and the corresponding eigenfunctions have no zeros in (0, 1).
Here, we shall give an alternate proof which also shows that the
corresponding eigenfunctions belong to K,. For this purpose, we
first show that the operator 7T, defined in the last section is %,
positive with respect to K,.
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Let z be an arbitrary nonzero element of K,. Recall that for
each positive integer m, T,x is the unique solution of

(=1)my*™ = px
yeP(0) =0 =y™1), k=0,1,---,m—1.

In view of this and (7),

(9) (T,x) = —T,_ & if m>1;
furthermore, by Lemma 5, 7,2 € K,, for each m < n. Let
(10 u, = T, u™,

where u*(t) = t(1 — t). Since u* e K; for any j =1, u,€ K,, for any
m =1, and in particular, u,e K,. We assert that positive numbers
a and B can be found such that

(11) au, = Tx < Bu, .

First recall from Lemma 7 that positive number a can be found
such that

an*(t) < (Tx)@), 0<t<1.
Thus
au*(t) < (Tw)t) < pu*), 0=st=1

where 8 = max {p(t)z(t): 0 < ¢ < 1}. Consequently, by (9) and indue-
tion

(D)"Y (T2 — auy)®™ 2(t) = (Thx — au*)t) =0

(—1)(T,& — au)"(t) = (T @ — aTo )& = 0

for 0 =t <£1. In other words, we have shown that T o — au,c K,.
Similarly, we can show that pu, — T,x e K,.

We conclude that 7T, is wu,-positive so that according to Lemma
3, T, has exactly one (normalized) eigenvector in K, and the cor-
responding eigenvalue is simple, positive, and larger than the
absolute value of any other eigenvalue. In view of (6), we have
thus shown the following

THEOREM 1. The e¢igenvalue problem (1) has exactly one
(mormalized) eigenvector in K, and the corresponding eigenvalue 1is
simple, positive, and smaller than the absolute value of any other
eigenvalue.
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In the sequel, we shall denote the smallest eigenvalue of (1) by
Mp).

COROLLARY 1. Let %(t) be an eigenfunction of (1) corresponding
to M), then x(t) = 0 for any te[0, 1].

Proof. Since \(p) is simple, we may assume 2(t) =0 for 0 << 1.
If » =1, then

144

= —-pr=0

on[0,1]. If » > 1, then by Theorem 1, 2" <0 on [0, 1] also. Thus
2 is a nonnegative and concave function. Since x(0) = 0 = x(1), ()
cannot vanish in (0, 1).

COROLLARY 2. If p(t) in symmetric in [0, 1] (i.e., p(t) = p(1 — t)
for tel0, 1)), and if x(t) is an eigenfunction corresponding to Mp),
then x(t) = (1 — t) for te]0, 1].

Proof. We may verify by direct substitution into (1) that
z(1 — t) is also an eigenfunction corresponding to M(»). Consequently,
2(t) = ax(l — t) for some nonzero number a. But since x(1/2) # 0,
thus a = 1 as required.

COROLLARY 3. The spectral radius rv(T,) 1s equal to N'(p).

6. Isoperimetric inequalities. In this section, we shall prove
the following result as asserted in §1.

THEOREM 2. Let p(t) be a positive and continuous function
defined on [0, 1], and let p(t) and D(t) be respectively the rearrange-
ments of p(t) in symmetrically increasing and decreasing order.
Consider the three eigenvalue problems (1) and

u® + A=)p)u =0

12
(12) w(0) = 0 = u®¥(1) k=01, -

1)(2") + (——1)”13(25)1} — O

13
(13) v(0) = 0 = v(1), k=01, ---,m—1.

Denote their least positive eigenvalues by \(p), MD) and MP) respec-

tively. Then

MD) = Mp) = MD) -
We first show that A(p) < MP). We recall that [7, p. 239 and



ISOPERIMETRIC EIGENVALUE PROBLEM 311

1] the least positive eigenvalue of (1) is equal to

ain {101

where the minimum is taken over functions x € C*”[0, 1] that satisfy
the boundary conditions in (1) and for which the denominator is
positive. Furthermore, no funetion other than the corresponding
eigenfunction yields the minimum.

Let u(t) be a nonnegative eigenfunction of (12) corresponding
to MP). Sinece p(t) = p(1 —t) for te[0,1], by Corollaries 1 and 2,
u(t) is symmetric in [0, 1], positive for 0 < ¢ <1 and concave on
{0, 1]. Consequently, u’(f) is together with u(f), symmetrically
decreasing so that p(¢) and «*t) are oppositely ordered. But then
by Lemma 1,

)\‘(IV)) — Sl [u(n)]z/gl buz g Sl [u(n)]z/sl puz
0 0 0 [}
2 min {| [a;“”]z/gl pe} = Mp)
0 0
as required.
Next we show that M(P) < Mp). For this purpose, we need the
following

THEOREM 3. The least positive eigenvalue of (1) satisfies

S:S: G.(t, 8)p(s)u(s)u(t)dsdt

AHp) = max

S: w*(s)ds

where the maximum is taken over nonzero elements in K,. Further-
more, the unique jfunction, except for a constant multiple, which
yields the maximum is the eigenfunction corresponding to \(p).

Proof. According to Lemma 4 and Corollary 3, for any nonzero
2 in C*V[0, 1],

rT,) = r(T) =3 *(p),
so that

sup 7,(T,) = A 7' (p) .

zeK
m:ton

Now for each nonzero u in K,, define the positive linear functional
' e K, by
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{e, w'y = S:x(s)u(s)ds
for all x€ K,. Then for each xz¢ K,, we have that
sup (M e R: nx, w'y < (T, w'd} < r(T,)
and consequently, that
sup {x € B: \u, ') = (Tou, wH} = r(T,) < 27'(p),
and

SO (T, w)(s)u(s)ds

sup
uwe K,

1 < rT,) = A7) -
uz Souz(s)ds
Since we have equality when u is equal to a constant multiple of
the eigenfunction corresponding to \(p), the first part of the theorem
is proven.

To prove the remainder of the theorem, let » ¢ K, be such that
Ay = (T, vy/{v, v>. Then

<Tn,v’ ,U> » -1 — <Tn’U, /U>
<’I), v> —g "v(Tn) é A (p) - <'U, ’U>

shows that »,(T,) = (T, v>/{v, v>. It follows that <(T,v —
r (T, £ = 0 for all 2" ¢ K,,, and consequently, by the Krein-Rutman
theorem [15, Theorem 1.1)], that T,v — r,(T.)ve K,. We assert that
v is an eigenfunction corresponding to A(p). If not, there would
exist a positive number a and a positive integer m such that

T#(Tnv - Tv(Tn)v> = Tn(Tanv) - ’rv(Tn)(T;nv) > QU

where u, is given by (10). Let z = T/v. Since z¢ K,, there exists
a positive number B (as can be seen from (11)) such that z > Bu,.
Hence, for sufficiently small ¢ > 0,

T.z —r(T)z — ez > (¢ — eB)uy,
where (o — ¢gB) > 0. Consequently,

Lo ¥ > g (T,) 2 v (T, + €,

(z, z)
which contradicts the fact that »,(T,) < A (p) = »,(T,). The proof
is complete.
We remark that the proof given above is similar to that of
Theorem 8.1 in [12]. However we feel that there are enough
differences to include it here.
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Now let # be the normalized eigenfunction corresponding to
Mp). Then

SISI G, (t, s)p(s)u(s)u(t)dsdt
ATH(p) = ==t .

S wi(s)ds

Let 7 be the rearrangement of u in symmetrically decreasing order,
then by Lemmas 2 and 8,

I} e, smeueuedsi < (| 6.¢ speamanasi .
Thus

SS G.(t, $)P(s)a(s)a(t)dsdt
A (p) = =20

S a(s)ds

Slsl G.(t, 8)D(s)v(s)v(t)dsdt
= m?.{x 0J0

vko” Sl v (s)ds
=27 (p) -

Consequently, M(P) £ M(p) as required. The proof of Theorem 2 is
complete.

7. Conclusion remarks. We remark that in Theorem 2, \M(p) =
Mp) only if p = p. Indeed, if N(p) = Mp), then by Theorem 3, an
eigenfunction u corresponding to A(p) is also an eigenfunction cor-
responding to A(p). Substitute u into (1) and (12) respectively, we
see that

w + (—1)pu = u® + (—1)"H)u

for 0 < ¢ < 1. Consequently, p(t) = p(t) for 0 <t <1 and by con-
tinuity p(t) = (1) for 0 =< ¢ < 1. Similarly, we can also show that
MD) = Mp) only if p = p.

We have mentioned that Beesack and Schwarz [5] and Banks [3]
proved MP) = Mp) for » = 1 and 2 respectively. However, a close
examination of their proofs reveals the fact that in order to
establish by similar arguments the more general result, we shall
run into the difficulty in constructing from a nonnegative function
u (satisfying the boundary conditions in (1)) two functions % and v,
where 7 is the rearrangement of « in symmetrically decreasing order
and v is symmetric in [0, 1] such that
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1 1
S u(n) — S ,U(n)
0 0

and () < v(t) for 0 £t < 1. This difficulty we have avoided by
employing an extremal characterization (which is essentially a mini-
max principle) of A7'(p) and a rearrangement inequality. In view of
the fact that a large body of minimax principles exists for positive
operators [12, 17], our approach indicates that other isoperimetric
eigenvalue problems (e.g., fixed end-points problems [3]) can similarly
be solved, provided, of course, that Vollman’s inequality can be
applied. Moreover, since the rearrangement inequality of Vollman
clearly depends on the quasiconcavity of the kernel K(¢, s), our ap-
proach also indicates a close connection between the quasiconcavity
of Green’s function and the optimality of eigenvalues depending on
equimeasurable densities.
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