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Abstract

We give a characterization for isoperimetric invariants, including the Cheeger constant and
the isoperimetric number of a graph. This leads to an isoperimetric inequality for the cartesian
products of graphs.

1 Introduction

For a graph G and a subset S of vertex set V (G) of G, the edge-boundary ∂S of S consists of all

edges with exactly one endpoint in S:

∂S = {{u, v} ∈ E(G) : u ∈ S and v 6∈ S}

Let S̄ denote the complement of S, i.e., S̄ = V − S. Clearly, ∂S = ∂S̄ = E(S, S̄) where E(A,B)

denotes the set of edges with one endpoint in A and one endpoint in B.

There are two types of isoperimetric invariants which are often mentioned in the literature:

(1) The Cheeger constant of G is defined (see [5, 6]) to be

h(G) = inf
S

|E(S, S̄)|
min(vol S, vol S̄)

. (1)

where the volume of S, denoted by vol S, is the sum of all degrees dx for x ∈ S.

(2) The isoperimetric number of G is defined (see [11]) to be

i(G) = inf
S

|E(S, S̄)|
min(| S |, | S̄ |) . (2)
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For a weighted graphG with vertex-weight w(v), for v ∈ V (G) and edge-weight w(u, v) = w(v, u),

we can define the isoperimetric invariant h(G,w):

h(G,w) = inf
S

∑
{u,v}∈E(S,S̄)

w(u, v)

min(
∑
u∈S

w(u),
∑
v∈S̄

w(v))
. (3)

We say the weight function w is consistent if∑
u

w(u, v) = w(v)

For example, the Cheeger constant is obtained by using the weight function w0(u, v) = 1 for any

edge {u, v} and w0(v) = dv for any vertex v. Clearly, w0 is consistent. On the other hand, the

isoperimetric number is just i(G) = h(G,w1) where the weight function w1 satisfies w1(u, v) = 1

for any edge {u, v} and w1(v) = 1 for any vertex v. Of course, w1 is not consistent. We note that

graphs with consistent weight functions correspond in a natural way to random walks and reversible

Markov chains. Namely, for a graph with a consistent weight function w, we can define the random

walk with transition probability of moving from a vertex u to each of its neighbors v to be

P (u, v) =
w(u, v)
w(u)

(4)

For further discussions, the reader is referred to [1, 6].

First, we will establish the following characterizations for h(G,w).

Theorem 1 For a graph G with weight function w, the isoperimetric invariant h(G,w) of a graph

G satisfies

h(G,w) = inf
f 6=0

sup
c∈R

∑
x∼y |f(x)− f(y)|w(x, y)∑

x∈V |f(x)− c|w(x)
(5)

where f ranges over all f : V → R which are not identically zero.

As an immediate consequence of Theorem 1, we have the following characterization for the Cheeger

constant and the isoperimetric number.

h(G) = inf
f 6=0

sup
c∈R

∑
x∼y |f(x) − f(y)|∑
x∈V |f(x) − c|dx

(6)
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where f ranges over all f : V → R which are not identically zero. The isoperimetric number i(G) of

a graph G satisfies

i(G) = inf
f 6=0

sup
c∈R

∑
x∼y |f(x)− f(y)|∑
x∈V |f(x)− c|

(7)

where f ranges over all f : V → R which are not identically zero.

For two graphs G and H, the cartesian product GH has vertex set V (G) × V (H) with (u, v)

adjacent to (u′, v′) if and only if u = u′ and v is adjacent to v′ in H, or v = v′ and u is adjacent

to u′ in G. There are many research papers examining the isoperimetric number for various graphs.

For example, Wang and Wang [12] and Bollobas and Leader [3, 4] studied the isoperimetric number

for grids (which are cartesian products of paths) and torus (which are cartesian products of cycles).

In particular, there is a large literature examining the isoperimetric problems for n-cube which is

just the n-fold cartesian product of a single edge (see Harper [7], Lindsey [10], Bernstein [2] and

Hart [8]). Also, Mohar [11] considered the special case of the cartesian product of a graph and a

complete graph. In this paper, we consider cartesian products of general graphs. We will establish

the relationship between the isoperimetric invariants of graphs and their cartesian products. The

proof is by using a variation of the above characterization in Theorem 1.

Theorem 2 The isoperimetric number of the cartesian product of G1, G2, . . . , Gk satisfies

min(i(G1), i(G2), · · · , i(Gk)) ≥ i(G1G2 · · ·Gk)

≥ 1
2

min(i(G1), i(G2), · · · , i(Gk))

We remark that a Markov chains analog of Theorem 2 was proved in [9] with a somewhat complicated

proof and a weaker constant (2/9 instead of 1/2).

We will consider a cartesian product of weighted graphs with consistent weight functions. For

two weighted graphs G and G′, with weight functions w,w′, respectively, the weighted cartesian

product G ⊗G′ has vertex set V (G) × V (G′) with weight function w ⊗ w′ defined as follows: For

an edge {u, v} in E(G), we define w ⊗ w′((u, v′), (v, v′)) = w(u, v)w′(v′) and for an edge {u′, v′}

in E(G′), we define w ⊗ w′((u, u′), (u, v′)) = w(u)w′(u′, v′). We require w ⊗ w′ to be consistent.

Clearly, for a vertex x = (u, v) in G⊗G′, the weight of x in G⊗G′ is exactly 2w(u)w′(v).

In general, for graphs Gi with consistent weight functions wi, i = 1, · · · , k, the weighted cartesian

product G1⊗· · ·⊗Gk has vertex set V (G)⊗· · ·⊗V (Gk) with a consistent weight function w1⊗· · ·⊗wk
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defined as follows: For an edge {u, v} in E(Gi), the edges joining (v1, · · · , vi−1, u, vi+1, · · · , vk) and

(v1, · · · , vi−1, v, vi+1, · · · , vk) has weight w1(v1) · · ·wi−1(vi−1)wi(u, v)wi+1(vi+1), · · · , wk(vk).

For a graph G, the natural consistent weight function associated with G is with edge weight 1

and vertex weight dx for any vertex x. (Here, we consider a graph as a weighted graph with the

natural consistent weight function.)

Theorem 3 The Cheeger constant of a weighted cartesian product of G1, G2, . . . , Gk satisfies

min
j

(h(Gj)) ≥ h(G1 ⊗G2 ⊗ · · · ⊗Gk)

≥ 1
2k

min
j

(h(Gj))

We remark that the weighted cartesian product of graphs corresponds to the cartesian product of

random walks on graphs. Suppose G1, · · · , Gk are weighted graphs with the vertex set V (Gi). Each

Gi associates with a random walk with transition probability Pi as defined as in 4. The cartesian

product of the random walks can be defined as follows: At the vertex (v1, · · · , vk), first choose

a random “direction” i, between 1 and k, each with probability 1/k. Then move to the vertex

(v1, · · · , vi−1, ui, vi+1, · · · , vk) according to Pi. In other words,

P ((v1, · · · , vi−1, vi, vi+1, · · · , uk), (v1, · · · , vi−1, ui, vi+1, · · · , vk)) =
1
k
P (vi, ui)

2 A characterization of the isoperimetric invariant

In this section, we will give the proof of Theorem 1 for a graph G with a weight function w by

showing:

h(G,w) = inf
f 6=0

sup
c∈R

∑
x∼y |f(x)− f(y)|w(x, y)∑

x∈V |f(x)− c|w(x)

Proof of Theorem 1: We choose c such that∑
x:f(x)<c

w(x) ≤
∑

x:f(x)≥c
w(x)

and ∑
x:f(x)≤c

w(x) ≤
∑

x:f(x)>c

w(x)
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Let g = f − c. We consider

g̃(σ) =
∑

g(x)≤σ<g(y)

w(x, y)

Then we have∑
x∼y
|f(x) − f(y)|w(x, y) =

∫ ∞
−∞

g̃(σ)dσ

=
∫ 0

−∞
dσ

g̃(σ)∑
g(x)<σ

w(x)

∑
g(x)<σ

w(x)

+
∫ ∞

0

dσ
g̃(σ)∑

g(x)>σ

w(x)

∑
g(x)>σ

w(x)

≥ h(G,w)

∫ 0

−∞
dσ

∑
g(x)<σ

w(x) +
∫ ∞

0

dσ
∑

g(x)>σ

w(x)


= h(G,w)

∑
x∈V
|f(x) − c|w(x)

In the opposite direction, suppose X is a subset of V satisfying

h(G,w) =

∑
{x,y}∈E(X,X̄)

w(x, y)

∑
x∈X

w(x)

We consider the following characteristic function χ of X:

χ(x) =
{

1 if x ∈ X
−1 otherwise

Then we have, for any C,

sup
C

∑
x ∼ y|χ(x)− χ(y)|w(x, y)∑
x∈V
|χ(x)−C|w(x)

= sup
C

∑
{x,y}∈E(X,X̄)

2w(x, y)

(1− C)
∑
x∈X

w(x) + (1 +C)
∑
x∈X̄

w(x)

The supremum is achieved when C = −1, and we have

sup
C

∑
x ∼ y|χ(x)− χ(y)|w(x, y)∑
x∈V
|χ(x)−C|w(x)

= h(G,w)
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Therefore, we have

h(G,w) ≥ inf
f 6=0

sup
c∈R

∑
x∼y |f(x) − f(y)|w(x, y)∑

x∈V |f(x) − c|w(x)

and Theorem 1 is proved.

To derive the isoperimetric relationship between graphs and their cartesian products, we need

the following variation of Theorem 1:

Corollary 1 For a graph G, we have

h(G,w) ≥ inf
f

∑
x∼y |f(x) − f(y)|w(x, y)∑

x∈V |f(x)|w(x)
≥ 1

2
h(G,w)

where f : V (G)→ R satisfies ∑
x∈V

f(x)w(x) = 0. (8)

Proof: ¿From Theorem 1, we already have

h(G,w) ≥ inf
f

∑
x∼y |f(x) − f(y)|w(x, y)∑

x∈V |f(x)|w(x)

for f satisfies (8). It remains to prove the second part of the inequality. Suppose we define c as in

the proof of Theorem 1. If c ≤ 0, then we have∑
x

|f(x)− c|w(x) ≥
∑

x:f(x)≥0

|f(x) − c|w(x)

≥
∑

x:f(x)≥0

|f(x)|w(x)

≥ 1
2

∑
x

|f(x)|w(x) by (7).

Similarly, if c ≥ 0, then we have∑
x

|f(x)− c|w(x) ≥
∑

x:f(x)≤0

|f(x) − c|w(x)

≥
∑

x:f(x)≤0

|f(x)|w(x)

≥ 1
2

∑
x

|f(x)|w(x) by (7).

Therefore we have

inf
f

∑
x∼y |f(x)− f(y)|w(x, y)∑

x∈V |f(x)|w(x)
≥ 1

2
h(G,w)

This completes the proof of the corollary.
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3 An isoperimetric inequality for Cartesian products

We first derive Theorem 2 concerning the isoperimetric number of the cartesian product of graphs

Gj, j = 1, . . . , k. (This is the case with the weight function w(v) = 1 for each vertex v.)

min(i(G1), i(G2), · · · , i(Gk)) ≥ i(G1G2 · · ·Gk)

≥ 1
2

min(i(G1), i(G2), · · · , i(Gk))

Proof of Theorem 2: Without loss of generality, we assume that

i(G1) ≤ i(Gj), for j = 1, . . . , k.

It is easy to see that

i(G1G2 · · ·Gk) ≤ i(G1)

since we can choose a function h : V (G)× V (H)→ R by setting

h(v1, . . . , vk) = f(v1)

where f : V (G)→ R is a function achieving i(G1) in (7).

To prove

i(G1G2 · · ·Gk) ≥
1
2

min(i(G1), i(G2), · · · , i(Gk))

we consider a function g : V (G1)× · · · × V (Gk)→ R which achives the value i(G1G2 · · ·Gk) in (7).

For vertices v1 ∈ V (G1), . . . , vk ∈ V (Gk), we consider functions ḡj for j = 1, . . . , k.

ḡj(v1, · · · , vk) =

∑
u1,··· ,uj g(u1, · · · , uj, vj+1, · · · , vk)

|V (G1)| · · · |V (Gj)|

Note that

ḡj(v1, · · · , vk) =
1

|V (Gj)|
∑
uj

ḡj−1(v1, · · · , vj−1, uj, vj+1, · · · , vk) (9)

In particular, ḡk is a constant function, namely, the average of all values of g. We have

i(G1G2 · · ·Gk) ≥ I1 + · · ·+ Ik∑
v1,··· ,vk

|g(v1, · · · , vk)− ḡk|
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where

I1 =
∑

v2,··· ,vk

∑
v1∼v′1

|g(v1, v2, · · · , vk)− g(v′1, v2, · · · , vk)|

and

Ij =
∑

v1,··· ,vj−1,vj+1,··· ,vk

∑
vj∼v′j

|g(v1, · · · , vj−1, vj, vj+1, · · · , vk)

−g(v1, · · · , vj−1, v
′
j, vj+1, · · · , vk)|

Using Corollary 1, we have

I1 ≥ 1
2

∑
v2,··· ,vk

i(G1)
∑
v1

|g(v1, v2, · · · , vk) − ḡ1(v1, v2, · · · , vk)|

By using the definition of ḡj−1 and the triangle inequality, we have, for j ≥ 2,

Ij ≥ |V (G1)| · · · |V (Gj−1)|
∑

vj+1,··· ,vk

∑
vj∼v′j

|ḡj−1(v1, · · · , vj−1, vj, vj+1, · · · , vk)

−ḡj−1(v1, · · · , vj−1, v
′
j, vj+1, · · · , vk)|

Now, applying the second part of the inequality in Corollary 1 for each copy of Gj, and using (8),

we get

Ij ≥ 1
2
i(Gj)|V (G1)| · · · |V (Gj−1)|

∑
vj+1,··· ,vk

∑
vj

|ḡj−1(v1, · · · , vk)− ḡj(v1, · · · , vk)|

=
1
2
i(Gj)

∑
v1,··· ,vk

|ḡj−1(v1, · · · , vk) − ḡj(v1, · · · , vk)|

where we used the fact that ḡj−1 and ḡj do not depend on the particular choice of the first j − 1

variables.

We also note that∑
v1,···vk

|g(v1, · · · , vk)− gk| ≤
∑

v1,···vk
|g(v1, · · · , vk)− g1(v1, · · · , vk)|+ · · ·

+|gk−1(v1, · · · , vk) − gk|

So, by comparing term by term, Theorem 2 is proved.
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Sketch of Theorem 3:

The analogus version for weighted cartesian product can be proved in essentially the same way

(with the extra complexity of notation). Here, we will describe part of the proof which illustrates

the qualitative difference from the proof of Theorem 2 and omit the rest of the proof of Theorem 3.

Without loss of generality, we assume h(G1) = h(Gj) for all j. Then it follows from the proof

above that

Ij =
∑

v1,... ,vj−1,vj+1,... ,vk

∑
vj∼v′j

|g(v1, . . . , vj−1, vj, vj+1, . . . , vk)

−g(v1, . . . , vj−1, v
′
j, vj+1, . . . , vk)| dv1 · · ·dvi−1w(vj , v′j)dvj+1 . . . dvk

Therefore, we have

h(G1 ⊗ · · · ⊗Gk) ≥ I1 + I2 + · · ·+ Ik∑
v1,··· ,vk

|g(v1, · · · , vk)− ḡk| d(v1,... ,vk)

≥

1
2
h(G1)

k∑
j=1

∑
v1,··· ,vk

|ḡj−1(v1, · · · , vk)− ḡj(v1, · · · , vk)| dv1 . . . dvj∑
v1,··· ,vk

|g(v1, · · · , vk)− ḡk| d(v1,... ,vk)

where ḡ0 = g, and d(v1,... ,vk) represents the degree of the vertex (v1, . . . , vk) in the product graph.

Thus

h(G1 ⊗ · · · ⊗Gk) ≥ 1
2
h(G1)

k∑
j=1

∑
v1,··· ,vk

|ḡj−1(v1, · · · , vk) − ḡj(v1, · · · , vk)| dv1 . . . dvk∑
v1,··· ,vk

|g(v1, · · · , vk)− ḡk| dv1 . . . dvk

≥ 1
2k
h(G1),

by, again, the triangle inequality.
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