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1 Introduction

Recently, there has been a surge of interest in manifolds with density, partly because of their role in Perel-

man’s proof of the Poincaré Conjecture. We consider the isoperimetric problem when volume and perimeter

are weighted by the density function rp and prove the following theorem:

Theorem 3.3. In R
n with density rp, where n ≥ 3 and p > 0, the unique isoperimetric regions, up to

sets of measure zero, are balls with boundary through the origin.

The density rp is one of the simplest radial density functions, but it has some interesting properties. First,

rp is homogeneous in degree p, which means that given an isoperimetric region of one volume, we can scale

it to get an isoperimetric region of a different volume. Second, rp (or a constant multiple) is the only density

for which spheres through the origin could be isoperimetric (see e.g. Rmk. 4.5). We can view our present

problem as a venture either to prove a partial converse of this statement in the case that p > 0 or to extend

the work of Dahlberg et al., who proved the result inR
2 [2, Thm. 3.16]. Díaz et al. [3, Conj. 7.6] conjectured the

generalization to R
n and reduced the problem to analyzing planar curves. Recently, Chambers [1, Thm. 1.1]

proved that balls centered at the origin are isoperimetric in R
n with any radial log-convex density.

We adapt Chambers’ proof to density rp. Like Chambers, we first consider an isoperimetric region

that is spherically symmetric (see Defn. 2.7), then prove the result in the general case. Given a spherically

symmetric isoperimetric region, we prove that the generating curve for the boundary is a circle through the

origin. The behavior of this curve is determined by a differential equation corresponding to the fact that

isoperimetric hypersurfaces have constant generalized mean curvature [8, Defn. 2.3]. By spherical symmetry

and regularity, the rightmost point of the curve is on the e1-axis, and the tangent vector at this point is

vertical. Our Lemmas 4.6 and 4.8 show that if the osculating circle at the rightmost point of the curve, which

we may assume to be (1, 0), goes through the origin, then the curve is a circle through the origin.

We suppose for contradiction that the initial osculating circle does not pass through the origin, then

take two cases according to whether its center is right or left of (1/2, 0). We call these cases the right case

and the left case, respectively. In the right case, the curve is like that in Chambers’ proof in that the curvature
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Figure 1: Sample curves in the left and right cases

is greater at a point above the e1-axis with tangent vector in the third quadrant than at the point of the same

height with tangent vector in the second quadrant. As a result, the curve has a vertical tangent before it

meets the e1-axis again and then curves in to meet the axis at an angle (Fig. 1, right). In the left case, the

opposite inequality regarding curvatures holds, and, as a result, the curve never returns to vertical before

reaching the axis (Fig. 1, left).

The left case presents the new challenge of showing that there is only one point on the upper half of the

curve where the tangent vector is horizontal (Prop. 7.22). Additionally, although the curve in the right case is

similar to that in Chambers, the proof is different in that we do not have the hypothesis that an isoperimetric

hypersurface is mean convex, which is what Chambers used to prove that curvature was positive on the final

segment of the curve ([1, Prop. 4.1]). We achieve the same result by computations that depend on the fact that

our curve ends right of the e2-axis (Lemma 6.15), which is a property that may not hold for the generating

curve in Chambers.

2 Existence, Regularity, and Symmetry

Definition 2.1. A region E is a measurable subset of Rn. Its weighted volume is the integral of the density

over E. Its boundary is the topological boundary. Its weighted perimeter is the integral of the density over the

boundarywith respect to (n−1)-dimensional Hausdorffmeasure.We say a region is isoperimetric if it minimizes

weighted perimeter for fixed weighted volume.

Theorem 2.2, a result of Morgan and Pratelli, guarantees the existence of isoperimetric regions of all vol-

umes. After defining a regular point (Defn. 2.3), we state a standard result on the regularity of isoperimetric

hypersurfaces.

Theorem 2.2. [8, Thm. 3.3] Assume that f is a (lower-semicontinuous) radial density that diverges to infinity.

Then there exist isoperimetric sets of all volumes.

Definition 2.3. (Regular Point) Let E be an isoperimetric region. We say that a point P ∈ ∂E is regular if there

is an open set U containing P so that ∂E ∩ U is a smooth, embedded (n − 1)-dimensional manifold.

Proposition 2.4. [5, Cor. 3.8] Let S be an n-dimensional isoperimetric hypersurface in a manifold M with

C k−1, α (k ≥ 1, 0 < α < 1) and Lipschitz Riemannian metric. Then except for a set of Hausdorff dimension

at most n − 7, S is locally a C k,α submanifold; real analytic if the metric is real analytic.

By [5, Rmk. 3.10], the conclusion of Proposition 2.4 holds for a Riemannian manifold with density, pro-

vided that the density function is at least as smooth as the metric. In our case, the density rp is smooth on
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R
n − {0}. Thus, if E ⊂ R

n is an isoperimetric region for density rp, then ∂E is regular except on a set of

Hausdorff dimension at most n − 8, after perhaps altering E by a negligible set of measure 0; henceforth we

assume regions open. By the first variation formula, generalized mean curvature is constant on the set of

regular points. The following proposition gives a sufficient condition for ∂E to be regular at a point.

Proposition 2.5. If P ∈ ∂E and E locally lies in a half-space to one side of a hyperplane through P, then ∂E

is regular at P, provided that the density function is positive at P.

Proof. Since E is an isoperimetric minimizer and the oriented tangent cone at P lies in a halfspace, the ori-

ented tangent cone is a hyperplane. The result follows by [5, Prop. 3.5, Rmk. 3.10].

Corollary 2.6. All points in ∂E of maximal distance from the origin are regular.

Definition 2.7. (Spherical Symmetrization) Given a region E ⊂ R
n, let AE(r) denote the area of the intersection

of E with Sr, the sphere of radius r centered at the origin. We define the spherical symmetrization of E to be the

unique set E* such that for all r > 0, AE(r) = AE* (r), and E
* ∩ Sr is a closed spherical cap that passes through

(r, 0, ..., 0) and is rotationally symmetric about the e1-axis.

Remark 2.8. Since the set of singularities on the boundary of an isoperimetric region E ⊂ R
n has dimension at

most (n − 8), it follows that if E is spherically symmetric about the e1-axis, then all points in ∂E that are not on

the e1-axis are regular.

The following theorem demonstrates that for a radial density, spherical symmetrization preserves weighted

volume but does not increase weighted perimeter. Moreover there are certain conditions under which the

perimeter of a region remains the same after symmetrization only if the original region was spherically sym-

metric about some (oriented) line through the origin.

Theorem 2.9. [8, Thm. 6.2] Let f be a radial density on R
n, and let E be a set of finite volume. Then the

spherical symmetrization E* satisfies

|E*| = |E|

and

P(E*) ≤ P(E).

Suppose further that E is an open set of finite perimeter, and let ν(x) denote the normal vector at any x ∈ ∂E.

IfHn−1
(

x ∈ ∂E : ν(x) = ± x
|x|

)

= 0, and the set IE : = {r > 0 : 0 < H
n−1(E ∩ Sr) < H

n−1(Sr)} is an interval,

then P(E*) = P(E) if and only if E = E* up to rotation about the origin.

It is immediate that if E is an isoperimetric region in Euclidean space with a radial density, then E* is also

isoperimetric.

3 Spheres Through The Origin Are Uniquely Minimizing

To prove our main result, Theorem 3.3, we begin by showing that any spherically symmetric isoperimetric re-

gion is a ball whose boundary is a sphere through the origin (Prop. 3.1). The proof of Proposition 3.1 comprises

most of the paper, but we provide a sketch below. We apply this proposition to the symmetrized version of an

arbitrary isoperimetric region to show that, in fact, any isoperimetric region is spherically symmetric about

some oriented line through the origin (Prop. 3.2).

Proposition 3.1. Suppose that E ⊂ R
n is a spherically symmetric isoperimetric region inR

n with density rp.

Then E is a ball whose boundary goes through the origin.
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Proof. Assume without loss of generality that E is spherically symmetric about the positive e1-axis. Then E

can be generated by rotating a planar set A about the e1-axis. Since E is spherically symmetric about the pos-

itive e1-axis, A is also spherically symmetric about the positive e1-axis. By regularity of ∂E (Defn. 2.3), we are

assuming that A is open and that its boundary is a curve (possibly having multiple connected components).

We define γ ⊂ ∂A by beginning at the rightmost point on ∂A and following the curve through this point in

both directions until it intersects the e1-axis again. This definition relies on regularity properties of ∂E; see

the beginning of Section 4 for more details.

We assume that γ = (γ 1, γ 2) : [−β, β] → R
2 is an arclength parameterization so that γ(0) is the rightmost

point on ∂A and γ(±β) is the other intersectionof γwith the e1-axis. Since r
p is homogeneous, all isoperimetric

regions are similar, and we can assume without loss of generality that γ(0) = (1, 0). We will show that γ is

a circle through the origin. Given that γ is a circle through the origin, γ must comprise all of ∂A by spherical

symmetrization. By Lemma 4.6, to prove that γ is a circle through the origin, it suffices to prove that there

exists an s so that the associated canonical circle Cs (see Defn. 4.3) has the same curvature as γ at γ(s) and Cs

goes through the origin. By Lemma 4.8, the canonical circle C0 at the rightmost point has the same curvature

as γ at γ(0). Therefore, it suffices to prove that C0 passes through the origin, which occurs if and only if the

center of C0 is (1/2, 0).

Suppose that the center of C0 is right of (1/2, 0). By Proposition 4.9, γ 1(β) > 0 and lims→β− γ 1
′(s) > 0. As

a result, there exists ε > 0 so that γ · γ ′ > 0 on (β − ε, β), contradicting Lemma 4.2, which is a consequence

of spherical symmetry.

Nowsuppose that the center of C0 is left of (1/2, 0). ByProposition 4.10, γ 1(β) < 0 and lims→β− γ 1
′(s) < 0,

which results in the same contradiction of spherical symmetry.

The only remaining possibility is that γ is a circle through the origin. Thus, γ = ∂A and, when rotated, γ

generates a sphere through the origin.

Given Proposition 3.1, we can prove our claim that any isoperimetric region inRn with density rp is spherically

symmetric.

Proposition 3.2. If E is an isoperimetric region in R
n with density rp, then E = E*, up to a rotation about

the origin.

Proof. By regularity (Defn. 2.3), we are assuming E is open. By Theorem 2.9, it suffices to show that IE is an

interval and that

H
n−1

(

x ∈ ∂E : ν(x) = ±
x

|x|

)

= 0. (3.1)

We call a point x with ν(x) = ± x/|x| tangential. Since symmetrization (Defn. 2.7) preserves weighted volume

without increasing weighted perimeter, E* is also isoperimetric. Applying Proposition 3.1, we conclude that

E* is a ball with boundary through the origin. It follows that IE is an interval. Moreover, there exists no r >

0 such that the spherical cap Sr ∩ E is a full sphere. This will be important in our proof of (3.1). Suppose

for contradiction that there exists a positive area subset of ∂E that is tangential. As in Morgan-Pratelli [8,

Pf. of Cor. 6.4], at any smooth point of density of this tangential subset of ∂E, ∂E has the same generalized

mean curvature as a sphere centered at the origin. It follows by uniqueness of solutions to elliptic partial

differential equations that a component of ∂E is a sphere centered at the origin. E must contain an annular

region centered at the origin with this spherical component as one of its bounding components. Thus, there

exists an interval (r0, r1) such that for any r in (r0, r1), Sr ∩ E is a full sphere, contradicting the fact that the

boundary of E* is a sphere through the origin.

Combining Propositions 3.1 and 3.2 along with Theorem 2.2, we have proved:

Theorem 3.3. In R
n with density rp, where n ≥ 3 and p > 0, the unique isoperimetric regions, up to sets of

measure zero, are balls with boundary through the origin.
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4 Structure of Proof

Sections 5, 6, and 7 are devoted to filling in the details of the proof of Proposition 3.1. Throughout these sec-

tions, we work within the following framework:

Let E be a spherically symmetric isoperimetric region. Then there is a set A ⊂ R
2 such that E is the

rotation of A about the e1-axis. We will analyze a certain curve on the boundary of A. We begin at the point

P on the e1-axis that is the rightmost point on ∂A. By spherical symmetry, P is a point of E farthest from

the origin, so ∂E is regular at P by Corollary 2.6. The tangent space to ∂A at P is spanned by e2. We follow

∂A, which has finite length, in both directions until it intersects the e1-axis at another point. The result is a

Jordan curve γ(s) : [−β, β] → R
2 such that γ(0) = P and γ(±β) is the other intersection of the curve with

the e1-axis (Fig. 2). Since r
p is homogeneous, all isoperimetric regions are similar to each other. Therefore,

we may assume without loss of generality that P = (1, 0). We assume that γ is a counterclockwise arclength

parameterization. Let γ 1 and γ 2 denote the coordinates of γ. Then γ 1(−s) = γ 1(s) and γ 2(−s) = −γ 2(s) for

all s. We let κ(s) denote the curvature of γ at γ(s).

By Corollary 2.6, γ is smooth at 0. By Remark 2.8, γ is smooth at all remaining points in (−β, β). Since γ

is smooth at 0 and 0 is a global maximum point of γ 1, it follows that γ
′(0) = (0, 1) and that κ(0) ≥ 0. In

fact, 0 is a strict maximum point of γ 1. To prove so, note that if there were an s ≠ 0 so that γ 1(s) > γ 1(0),

then it would also be the case that |γ(s)| > |γ(0)|. However, there would be no point on ∂A that was on the

positive e1-axis and was the same distance from the origin as γ(s), contradicting spherical symmetry. Since

0 is a strict maximum point of γ 1, κ(0) > 0. Moreover, since γ is symmetric over the e1-axis, κ
′(0) = 0.

In addition to analyzing the curvature of γ, we will also consider the generalized mean curvature of the

surface generated by ∂A at a point γ(s).

Definition 4.1. As in [8, Defn. 2.3], we define generalizedmean curvature of a hypersurface inRn with density

f (x) = e ψ(x) by

Hf = H0 +
∂ψ

∂ν
, (4.1)

whereH0 is the unaveragedRiemannianmean curvature and ν is the outwardunit normal vector. Ifψ(x) = g(|x|)

for some smooth function g, then

Hf (x) = H0(x) + g
′(|x|)

x

|x|
· ν(x) (4.2)

for any regular point x on the hypersurface with x ≠ 0. In R
n with density rp, g(r) = log (rp). Henceforth, we

will denote
∂ψ

∂ν
(x)

by H1(x). For concision, given a point γ(s), we refer to H1(γ(s)) as H1(s) with analogous notation for the values

of H0 and Hf at γ(s).

The following lemma of Chambers gives a useful result of spherical symmetrization.

Lemma 4.2. (Tangent Restriction) [1, Lemma 2.6] For every s ∈ (0, β), γ(s) · γ ′(s) ≤ 0.
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Figure 2: The generating curve γ and the outward unit normal vector at a point γ(s)

At each point on γ, we define a related circle that we call the canonical circle. We show in Proposition 5.1

that the curvature of the canonical circle accounts for one of two terms in a formula for the mean curvature

of the surface of revolution.

Definition 4.3. [1, Defns. 3.1, 3.2] Given s ∈ (−β, β) with s = ̸ 0, let the canonical circle at s, denoted Cs, be

the unique oriented circle centered on the e1-axis that passes through γ(s) and has unit tangent vector at γ(s)

equal to γ
′(s). If γ ′(s) is a multiple of e2, then Cs is an oriented vertical line. We define C0 to be lims→0 Cs. The

regularity of the surface at γ(0) guarantees the existence of this limit. We let R(s) denote the radius of Cs and let

λ(s) denote its signed curvature. Then λ(s) = 1/R(s) if Cs is counterclockwise oriented, and λ(s) = −1/R(s) if

Cs is clockwise oriented. Finally, we let F(s) denote the abscissa of the center of Cs.

The following lemma shows that spheres through the origin have constant generalized mean curvature.

We apply this result to prove Lemmas 4.6 and 4.8, which imply that γ is a sphere through the origin, given

that the curvature at the rightmost point is the same as the curvature of the circle through that point and the

origin.

Proposition 4.4. In R
n with density rp, hyperspheres through the origin have constant generalized mean

curvature.

Proof. Let S be ahypersphere through the origin, andassumewithout loss of generality that S canbeobtained

by rotating a circle C in the plane about the e1-axis. It suffices to prove that generalizedmean curvature is the

same at all points on C. H0 is constant on C since it is constant on S. It remains to prove that H1 is constant

on C.

Let the center of C be (a, 0) with a > 0. Then the polar coordinates equation for C is r = 2a cos θ. At a

point (r(θ), θ), the outward unit normal vector makes angle 2θ to the positive e1-axis, and the angle between

the position vector and the outward unit normal vector is θ. Supposing that x has polar coordinates (r, θ), we

have

g′(|x|)
x

|x|
· ν(x) =

p

r
cos θ =

p

r

r

2a
=

p

2a
.

Therefore, H1 is constant on C, as required.
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Remark 4.5. These computations show that the only density onR2 − {0} (Rn − {0}) for which circles (spheres)

through the origin are isoperimetric is rp, or a constant multiple thereof. On a circle C through the origin, pa-

rameterized by α, the quantity α(t)/|α(t)| · ν(t) is a constant multiple of the magnitude of the position vector.

Hence, for H1 to be constant it must be the case that g ′(r) is inversely proportional to r. This occurs only if

g(r) = log(rp) + c for some p and some constant c.

Lemma 4.6. (cf. [1, Lemma 3.2]) For any point s ∈ [0, β), if Cs passes through the origin and κ(s) = λ(s),

then γ is a circle through the origin.

Proof. Supposing that Cs is arclength parameterized, to prove that Cs agrees with γ locally, it suffices by

uniqueness theorems concerning solutions of ODEs to prove that both satisfy the differential equation Hf =

c. This is clearly true since the tangent vectors of the two curves agree at γ(s) and the generalized mean

curvature of the surfaces generated by these curves is the same at γ(s). To prove that Hf = c at all points

on Cs, it suffices to show that Hf is constant on Cs. This follows from the computations in Proposition 4.4.

Having proved that γ and Cs coincide locally, we claim that, in fact, γ and Cs must coincide everywhere.

Let S = {t ∈ [−β, β] : γ([s, t)) ⊂ Cs}. Since γ and Cs agree near γ(s), S is nonempty and therefore has a

least upper bound m. Letting α be an arclength parameterization of Cs, it follows by smoothness of α and of

γ that m ∈ S, that Cs is tangent to γ at γ(m), and that κ(m) = λ(s). (To conclude smoothness of γ at m, we

are using our assumption that m < β.) By an identical argument to that in the first paragraph, there exists

an open interval I containingm such that γ(I) ⊂ Cs, contradicting the fact thatm = sup S. We conclude that

m = β. A similar argument shows that γ coincides with Cs on [−β, s].

Remark 4.7. By radial symmetry, spheres centeredat the origin also have constant generalizedmean curvature.

Thus, if Cs is centered at the origin and κ(s) = λ(s), then γ is a circle that is centered at the origin. We use this

result to obtain contradictions in several places.

Lemma 4.8. [1, p. 12] We have that κ(0) = λ(0).

Proof. Showing that κ(0) = λ(0) is equivalent to showing that F(0) = 1 − 1/κ(0). If γ 1
′(s) ≠ 0, then

F(s) =
γ(s) · γ ′(s)

γ 1
′(s)

.

Since κ(0) > 0 and κ is continuous at 0, there is a neighborhood of 0 on which γ 1
′(s) ≠ 0 except when

s = 0. By definition,

F(0) = lim
s→0

F(s) = lim
s→0

γ(s) · γ ′ (s)

γ 1
′(s)

= 1 −
1

κ(0)
.

By Lemmas 4.6 and 4.8, if C0 is a circle through the origin, then γ is a circle through the origin. This means

that if F(0) = 1/2, then γ is a circle through the origin. We argue by contradiction, taking cases according

to whether F(0) > 1/2 or F(0) < 1/2. In each case, we obtain a result that contradicts spherical symmetry.

We state these results as the Right Tangent Lemma and the Left Tangent Lemma, and we devote a section to

proving each.

Proposition 4.9. (Right Tangent Lemma) If F(0) > 1/2, then γ 1(β) > 0, lims→β− γ
′(s) is in the fourth quad-

rant, and lims→β− γ
′(s) ≠ (0, −1).

Proposition 4.10. (Left Tangent Lemma) If F(0) < 1/2, then γ 1(β) < 0, lims→β− γ
′(s) is in the third quadrant,

and lims→β− γ
′(s) ≠ (0, −1).
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5 Preliminary Lemmas

This section contains results relevant to both cases. Proposition 5.1 and Corollary 5.2 give expressions for the

mean curvature and generalized mean curvature at a point on the hypersurface generated by γ in terms of

the curvature of γ, the curvature of the canonical circle, and the normal derivative of the log of the density

at that point. We then discuss computational techniques that we use to determine how these functions (and

others) vary with arclength. Finally, Proposition 5.6 is used in both cases to compare curvatures at pairs of

points on the curve that are at the same height.

Proposition 5.1. [1, Prop. 3.1] Given a point s ∈ [0, β), we have that

H0(s) = κ(s) + (n − 2)λ(s). (5.1)

Proof. We consider the principal curvatures of the surface at a point P = γ(s). We treat the case that

y = γ 2(s) > 0 and that γ ′(s) ≠ (0, ±1). A similar argument shows that (5.1) holds if γ 2(s) < 0 and

γ
′(s) ≠ (0, ±1). We claim that there exists no interval on which γ 2 is identically 0 or γ ′ is vertical; then

it will follow by smoothness of γ that (5.1) holds at the remaining points.

To prove the claim, recall that γ is smooth at 0 and that, as a consequence of spherical symmetry,

κ(0) > 0. Thus, γ 2 cannot be identically 0 on an interval including 0. On the other side of the curve, γ(β) is

defined to be the first point where the curve intersects the axis again, so even if a portion of the curve were a

line segment along the e1-axis, that segment would not be parameterized by the function γ. The curve can-

not have vertical tangent vector on an interval either. If a portion of the curve were a vertical line segment,

then this vertical line segment, when rotated, would generate a portion of a hyperplane, which would have

zero mean curvature. However, H1 (the normal derivative of the log of the density) would vary as one moved

up or down along the line segment, contradicting the fact that the surface has constant generalized mean

curvature.

With this technical point out of the way, we proceed in the case that y = γ 2(s) > 0 and that γ ′(s) ≠

(0, ±1). One of the principal curvatures at P is the the curvature of γ at this point. The cross section of the

surface obtained by fixing the first coordinate is an (n − 2)-dimensional sphere of revolution. The remaining

principal curvatures of the surface are the principal curvatures of the sphere, which are equal. Thus, to com-

pute one of the principal curvatures of the sphere, it is sufficient to compute the second principal curvature

of a 2-dimensional surface in the n = 3 case. This second principal curvature is the normal curvature of a

circle of revolution C.

By assumption that y = γ 2(s) > 0, the curvature of the circle C is 1/y. We let n denote the inward unit

normal vector to the surface and N denote the normal vector to the circle of revolution. Since y > 0, Cs is

counterclockwise oriented if and only if n is downward (i.e. n has a negative e2-component). Thus,

λ(s) =











1

R(s)
, n downward

−1

R(s)
, n upward.

Meanwhile, by Meusnier’s formula, the second principal curvature is given by

κ2 =
1

y
cosϕ,

where ϕ is the angle between n and N. Again, since y > 0,

cosϕ =







y

R(s)
, n downward

−y

R(s)
, n upward.
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N
n

γ(s)

φ

Figure 3: A cross section of the surface in the xy-plane and the inward unit normal vectors to the surface and to a circle of revo-

lution

The first of these cases is depicted in Figure 3. In both cases, the second principal curvature is the

curvature of the canonical circle.

Since one principal curvature of the surface at γ(s) equals κ(s) and all of the others equal λ(s), mean

curvature is given by

H0(s) = κ(s) + (n − 2)λ(s).

Corollary 5.2. Since generalized mean curvature is constant on the set of regular points of ∂E, there is a

constant c so that

c = Hf (s) = κ(s) + (n − 2)λ(s) + H1(s). (5.2)

for all s ∈ (−β, β).

In the left and right cases delineated on p.1, for any s ∈ [0, β)we can analyze how γ and related functions are

instantaneously changing at γ(s) by computing the requisite derivatives on the osculating circle to γ at γ(s).

A justification for this procedure will follow after we introduce some notation.

Definition 5.3. Given s in (−β, β), let As denote the unique oriented circle that is tangent to γ at γ(s) and has

curvature κ(s). Note that if κ(s) = 0, then As is an oriented line with direction vector γ
′(s). For a fixed s, let α
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be an arclength parameterization of As, and let s̃ be the point in the domain of α so that α(s̃) = γ(s). For each

t in the domain of α, let κ̃(t) denote the signed curvature of α at α(t), and let

H̃1(t) =
∂ψ

∂ν
(α(t)) =

p

|α(t)|

α(t)

|α(t)|
· ν(t),

where ν is the outward unit normal vector to α at α(t).

Since As is tangent to γ at γ(s) and has curvature κ(s), we have α′(s̃) = γ
′(s) and α′′(s̃) = γ

′′(s). Both κ̃

and H̃1 are smooth functions on their domains.

We also consider circles tangent to α that are centered on the e1-axis, and we define analogues of the

functions F, R, and λ introduced in Definition 4.3. We use these functions to approximate their counterparts

on γ (cf. Lemma 6.6 and Lemma 7.6).

(F̃(t),0)
As

C̃t

γ

γ(s)

α(t)

α 0(t)

Figure 4: The osculating circle As at a point on γ and the canonical circle C̃t at a point on As

Definition 5.4. Let As and α be as in Definition 5.3. Given t in the domain of α, let C̃t denote the canonical

circle to As at α(t), defined as follows: if α2(t) = ̸ 0, then we define C̃t to be the unique oriented circle that has

its center on the e1-axis and is tangent to As at the point α(t). If α2(t) = 0 and α′(t) = (0, ±1), then we define

C̃t to be As. If α2(t) = 0 and α′(t) ≠ (0, ±1), then C̃t is undefined. For each t so that C̃t is defined, the canonical

circle is defined on a neighborhood of t. We define the functions λ̃, R̃, and F̃ by letting λ̃(t), R̃(t), and F̃(t) be the

signed curvature of C̃t, the radius of C̃t, and the abscissa of the center of C̃t, respectively. Figure 4 shows the

osculating circle As at a point on γ and the canonical circle C̃t at a point on As.

For a given t, the canonical circle C̃t depends only on α(t) and α
′(t). It follows that F̃, R̃, and λ̃ can be

computed in terms of α and α′ and that their derivatives depend on α and its first twoderivatives. In particular,

since α′(s̃) = γ
′(s) and α′′(s̃) = γ

′′(s), we have

F̃′(s̃) = F′(s),

R̃′(s̃) = R′(s),

and

λ̃′(s̃) = λ′(s).
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As well as analyzing these functions, we also consider the angle the tangent vector makes to the horizon-

tal.

Definition 5.5. We define the function θ : S1 → (0, 2π] by letting θ(v) be the angle in the specified interval that

v makes to the positive e1-axis.

The next proposition of Chambers concerns two C2 functions on an interval (a, b). Given h : (a, b) →

R ≥ 0, we let th(x) denote the unit tangent vector

(1, h′(x))

|(1, h′(x))|
,

and we let κh(x) denote the upward curvature of the graph of h at x.

Proposition 5.6. [1, Prop 3.8] Consider two C2 functions f , g : (a, b) → R ≥ 0 with b > a that satisfy the

following:

1. limx→b− tf (x) and limx→b− tg(x) exist,

2. limx→b− f (x) and limx→b− g(x) exist,

3. f ′(x) ≥ 0 and g′(x) ≥ 0 for all x ∈ (a, b),

4. limx→b− f (x) ≤ limx→b− g(x), and limx→b− θ(tf (x)) ≥ limx→b− θ(tg(x)),

5. κf (x) ≤ κg(x) for all x ∈ (a, b).

Then for every x ∈ (a, b), f (x) ≤ g(x), and θ(tf (x)) ≥ θ(tg(x)). Furthermore, if there exists a point x0 ∈ (a, b)

such that κf (x0) < κg(x0), then there is some ϕ > 0 such that ϕ ≤ θ(tf (x)) − θ(tg(x)) for all x ∈ (a, x0).

6 Proof of Right Tangent Lemma

To prove Proposition 4.9, we assume that F(0) > 1/2. Then we consider two subintervals of [0, β) that we

call the upper curve and the lower curve after the objects of the same names in [1] (see Definitions 6.4 and

6.10). We will prove that the lower curve ends in a vertical tangent at a point right of the e2-axis (Lemma

6.15) and that, past this point, curvature is positive and the tangent vector is strictly in the fourth quadrant

(Lemma 6.17). The end behavior of the curve is similar to that of the generating curve in [1] except that our

curve must terminate right of the e2-axis, an additional feature which allows us to achieve a contradiction

to spherical symmetry without an analogue of Chambers’ Second Tangent Lemma [1, Lemma 2.5]. As such,

many intermediate results are also similar to results in [1] and are cross-referenced.

Our analysis requires comparing curvatures at points of the same height on opposite sides of the curve.

Specifically, we show that the curvature at the point on the left is strictly greater than the curvature at the

corresponding point on the right (Prop. 6.14). By Corollary 5.2, it suffices to prove that λ, the canonical circle

curvature, is less at the point on the left and H1, the normal derivative of the log of the density, is strictly less

at the point on the left. For any s ∈ [0, β), γ(s) ≠ (0, 0), so the normal derivative of log(rp) at γ(s) is given by

H1(s) =
p

|γ(s)|

γ(s)

|γ(s)|
· ν(s) = p

γ(s)

|γ(s)|2
· ν(s). (6.1)

More generally, given points (x1, y), (x2, y) ∈ R
2 − {0}, and unit vectors v1 and v2, one can compare the

quantities
(x1, y)

|(x1, y)|2
· v⊥1 and

(x2, y)

|(x2, y)|2
· v⊥2 ,

where v⊥1 and v⊥2 denote clockwise rotations of v1 and v2 by π/2 radians. (In our context, v1 and v2 will be

tangent vectors to the curve at two points, so v⊥1 and v⊥2 will be the outward unit normal vectors.) We have

discovered a set of sufficient conditions for the points (x1, y) and (x2, y) and the vectors v1 and v2 to satisfy
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the inequality
(x1, y)

|(x1, y)|2
· v⊥1 >

(x2, y)

|(x2, y)|2
· v⊥2 . (6.2)

In Definition 6.1, we define two unit vectors v1 and v2 to be admissible with respect to (x1, y) and (x2, y)

if they satisfy these conditions.

(a1,0)

(a2,0)

v0
1

v2

(x0
1
,y)

(x2,y)

(x1,y)

v1

C1

C2

Figure 5: The vectors v1 and v2 are admissible with respect to (x1 , y) and (x2 , y).

Definition 6.1. Consider a pair of points (x1, y) and (x2, y) with y > 0, and a pair of unit vectors, v1 and v2,

which lie strictly in the second and third quadrants, respectively. Let v′1 denote the reflection of v1 over the e1-

axis. Let Ci denote the canonical circle with respect to vi at (xi , y), with center (ai , 0) and radius Ri. As depicted

in Figure 5, v1 and v2 are admissible with respect to (x1, y) and (x2, y) if the following occur:

1. a1 > R1,

2. θ(v2) ≥ θ(v
′
1),

3. x1 − a1 ≥ a1 − x2.

Proposition 6.2. Consider a pair of points (x1, y) and (x2, y) in the upper half plane with x1 ≥ x2. Let v1 and

v2 be two unit vectors, and let v
⊥
1 and v⊥2 denote the clockwise rotations of these respective vectors through

π/2 radians. If v1 and v2 are admissible with respect to (x1, y) and (x2, y), then

(x1, y)

|(x1, y)|2
· v⊥1 >

(x2, y)

|(x2, y)|2
· v⊥2 .

Proof. Let (x′1, y) be the reflection of (x1, y) over the vertical line x = a1. It follows that x
′
1 = a1 − (x1 − a1).

By symmetry, C1 is also the canonical circle with respect to v
′
1 at (x

′
1, y). We will show that

(x1, y)

|(x1, y)|2
· v⊥1 >

(x′1, y)

|(x′1, y)|
2
· v′⊥1 (6.3)

and that

(x′1, y)

|(x′1, y)|
2
· v′⊥1 ≥

(x2, y)

|(x2, y)|2
· v⊥2 (6.4)

To prove (6.3), we parameterize C1 by α(t) = (a1 + R1 cos t, R1 sin t) for t in [0, 2π). Taking t1 ∈ (0, π/2)

so that α(t1) = (x1, y), we have by symmetry that (x′1, y) = α(π − t1). Using this parameterization to simplify
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the quantities in (6.3), we have

(x1, y)

|(x1, y)|2
· v⊥1 =

(a1 + R1 cos t1, R1 sin t1)

|α(t1)|2
· (cos t1, sin t1) =

a1 cos t1 + R1
|α(t1)|2

and
(x′1, y)

|(x′1, y)|
2
· v′⊥1 =

(a1 − R1 cos t1, R1 sin t1)

|α(π − t1)|2
· (− cos t1, sin t1) =

−a1 cos t1 + R1
|α(π − t1)|2

,

whence

(x1, y)

|(x1, y)|2
· v⊥1 −

(x′1, y)

|(x′1, y)|
2
· v′⊥1 =

(a1 cos t1 + R1)|α(π − t1)|
2 − (−a1 cos t1 + R1)|α(t1)|

2

|α(t1)|2|α(π − t1)|2
.

The denominator is positive, so we need only show that the numerator is positive to conclude that (6.3) holds.

A short computation reveals that

(a1 cos t1 + R1)|α(π − t1)|
2
− (−a1 cos t1 + R1)|α(t1)|

2 = 2a1(a
2
1 − R

2
1) cos t1 > 0.

Since v1 and v2 are admissible with respect to (x1, y) and (x2, y), we have that x2 ≥ a1 − (x1 − a1) = x′1.

Moreover, x′1 must be positive, as a1 − (x1 − a1) > a1 − R1 > 0. It follows that

1

|(x′1, y)|
≥

1

|(x2, y)|
.

Therefore, to prove (6.4), it suffices to show that

(x′1, y)

|(x′1, y)|
· v′⊥1 ≥

(x2, y)

|(x2, y)|
· v⊥2 . (6.5)

We note that the left-hand side of (6.5) is cos(θ(v′⊥1 ) − θ((x′1, y))) and the right-hand side is equal to

cos(θ(v⊥2 ) − θ((x2, y))). Since v1 is strictly in the second quadrant, v2 is strictly in the third, and x2 ≥ x′1 > 0,

it follows that 0 < θ(v′⊥1 ) − θ((x′1, y)), θ(v
⊥
2 ) − θ((x2, y)) < π. As cosine is decreasing on (0, π), it suffices to

show that

θ(v⊥2 ) − θ((x2, y)) ≥ θ(v
′⊥
1 ) − θ((x′1, y)). (6.6)

As noted above, x2 ≥ x′1, so θ((x2, y)) ≤ θ((x′1, y)). By the admissibility of v1 and v2, we have that θ(v
⊥
2 ) ≥

θ(v′⊥1 ). Combining these inequalities establishes (6.6), completing our proof of (6.4).

Having proved Proposition 6.2, we define the upper and lower curves and prove various properties that hold

on these intervals. Our definition of the upper curve is motivated by the following observation.

Lemma 6.3. (cf. [1, Lemma 3.5]) Given that F(0) > 1/2, we have κ′′(0) > 0.

Proof. Differentiating (5.2) and substituting 0 into the resulting equation, we have

0 = κ′′(0) + (n − 2)λ′′(0) + H′′
1 (0).

Since κ′(0) = 0, A0 approximates γ up to fourth order at γ(0). Thus, parameterizing A0 by

α(t) =

(

a + r cos

(

t

r

)

, r sin

(

t

r

))

over [−πr, πr), we have that λ′′(0) = λ̃′′(0) and H′′
1 (0) = H̃1

′′
(0). In particular, since λ̃ is constant, we have

that λ′(0) = λ̃′(0) = 0 and λ′′(0) = λ̃′′(0) = 0. (One can deduce that λ̃ is constant as follows: recall that for

each t ∈ [−πr, πr), λ̃(t) denotes the curvature of C̃t, where C̃t is defined to be the unique circle that has its

center on the e1-axis and is tangent to A0 at the point α(t). A0 is a circle whose center is on the e1-axis. Thus,

for each t ∈ [−πr, πr), C̃t = A0.)
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To prove that κ′′(0) > 0, it now suffices to prove that H̃1
′′
(0) < 0. Since a = F(0) and r = R(0), our

assumption that

F(0) >
1

2
=

γ 1(0)

2

is equivalent to the inequality a > r. Thus, computing H̃1
′′
, we have

H̃1
′′
(0) =

p

|α(0)|4
a

r2
(r2 − a2) < 0.

Definition 6.4. (cf. [1, Defn. 3.4]) Let the upper curve K be defined as the set of all s ∈ [0, β) such that for all

t in [0, s] the following properties are satisfied:

1. γ
′(t) lies in the second quadrant,

2. κ(t) ≥ λ(t) > 0.

Lemma 6.5. (cf. [1, Lemma 3.11])We have that K is nonempty and that sup K > 0.

Proof. Since γ ′(0) = (0, 1), κ(0) > 0, and κ is continuous, we can conclude that there exists ρ1 > 0 so that

γ
′(s) lies in the second quadrant for all s ∈ [0, ρ1]. Meanwhile, recall that κ(0) = λ(0) > 0 (Prop. 4.8) and

that κ′(0) = 0 by spherical symmetry. As deduced in the proof of Lemma 6.3, we have that λ′(0) = λ′′(0) = 0.

However, κ′′(0) > 0 . It follows by taking Taylor approximations that there exists ρ2 > 0 so that κ(s) ≥ λ(s) >

0 for all s ∈ [0, ρ2]. Taking ρ = min(ρ1, ρ2), it follows that [0, ρ] ⊂ K. Thus, K is nonempty and sup K > 0.

Having proved that sup K > 0, we let

δ = sup K.

The following lemma extends our assumption that F(0) > R(0) and allows us to check the first condition

of admissibility.

Lemma 6.6. If s ∈ K, then F(s) > R(s).

Proof. By the assumptions defining the right case, F(0) > R(0). We claim that F′ ≥ 0 on K and R′ ≤ 0 on K.

To prove so, we will use a similar argument to that in [1, Lemma 5.3]: for a fixed s ∈ K, let

α(t) =

(

a + r cos

(

t

r

)

, b + r sin

(

t

r

))

(6.7)

be an arclength parameterization of As, and let s̃ be the point in the domain of α so that α(s̃) = γ(s). Since

κ(s) ≥ λ(s), it follows that b ≥ 0. By the discussion following Definition 5.4, F′(s) = F̃′(s̃) and R′(s) = R̃′(s̃).

Thus, we seek formulae for F̃(t) and R̃(t). We will only consider t for which α2(t) > 0.

Fix t with α2(t) > 0. As depicted in Figure 6, the vector from α(t) to the center of C̃t is in the direction

of the inward unit normal vector at α(t). An arclength parameterization of the line containing these points is

given by

β(u) = α(t) + u

[

0 −1

1 0

]

α′(t) =

[

a + r cos
(

t
r

)

− u cos
(

t
r

)

b + r sin
(

t
r

)

− u sin
(

t
r

)

]

.

We let u0 be the value of u so that β2(u0) = 0. Then we have

u0 =
b + r sin

(

t
r

)

sin
(

t
r

) .

Since β is an arclength parameterization, u0 is the distance from α(t) to the center of C̃t, i.e.

R̃(t) = u0 =
b + r sin

(

t
r

)

sin
(

t
r

) . (6.8)
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α
0(t)

α(t)

(a,b)

(F̃(t),0)

C̃t

As

Figure 6: The canonical circle at α(t) and the line parameterized by β

Meanwhile,

F̃(t) = β1(u0) = a − b cot

(

t

r

)

. (6.9)

Differentiating, we obtain

F̃′(t) =
b

r
csc2

(

t

r

)

, (6.10)

and

R̃′(t) = −
b

r
csc2

(

t

r

)

cos

(

t

r

)

. (6.11)

Since b ≥ 0, we have F̃′(s̃) ≥ 0. Meanwhile, since s ∈ K, γ ′(s) is in the second quadrant. Thus, cos(s̃/r) ≥ 0,

from which it follows that R̃′(s̃) ≤ 0.

Since F′ ≥ 0 on K and R′ ≤ 0 on K, we have F(s) ≥ F(0) > R(0) ≥ R(s) for any s ∈ K.

We will soon prove several properties of δ, but first we require one more lemma.

Lemma 6.7. (cf. [1, Lemma 3.4]) Let s ∈ (0, δ). If κ(s) = λ(s) > 0, then λ′(s) = 0, but κ′(s) > 0.

Proof. Differentiating Equation (5.2) gives κ′(s) + (n − 2)λ′(s) + H′
1(s) = 0. By the hypothesis that κ(s) =

λ(s), we have that As = Cs. It follows that the canonical circle to As at each point is As, so λ̃ is constant. In

particular, λ′(s) = λ̃′(s̃) = 0.

Given this result, to prove that κ′(s) > 0, it suffices to prove that H′
1(s) < 0. Parameterizing As as in (6.7),

we compute that

H̃1
′
(t) =

−p
(

a2 + b2 − r2
) (

−b cos
(

t
r

)

+ a sin
(

t
r

))

r|α(t)|4
. (6.12)

Since As = Cs, we have that b = 0, a = F(s), and r = R(s). By Lemma 6.6, a > r > 0. Finally, since

r sin
(

s̃
r

)

= γ 2(s) > 0, we have that sin
(

s̃
r

)

> 0. Thus,

H′
1(s) = H̃1

′
(s̃) =

−p
(

a2 − r2
)

(

a sin
(

s̃
r

))

r|α(s̃)|4
< 0.
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Proposition 6.8. (cf. [1, Prop. 3.12]) The following properties of δ hold:

1. δ < β,

2. δ ∈ K,

3. γ 1(δ) ≥ F(s) for any s ∈ [0, δ],

4. γ 1(δ) > 0,

5. γ
′(δ) = (−1, 0).

Proof. The proofs of (1)-(3) are identical to their counterparts in [1, Prop. 3.12]. Setting s = 0 in the inequality

γ 1(δ) ≥ F(s), we have

γ 1(δ) ≥ F(0) >
γ 1(0)

2
> 0.

To prove that γ ′(δ) = (−1, 0), we argue by contradiction; specifically, we show that if γ ′(δ) ≠ (−1, 0),

then there exists ε > 0 so that [δ, δ + ε) ⊂ K.

Suppose that γ ′(δ) = ̸ (−1, 0). We have by Lemma 4.2 that γ ′(δ) is strictly in the second quadrant. By

continuity of γ ′, there exists ε1 > 0 so that γ
′(s) is in the second quadrant for all s ∈ [δ, δ + ε1). Since δ ∈ K,

λ(δ) > 0. By continuity of λ, λ > 0 on an open interval containing δ. By reducing ε1 if necessary, we can

assume that λ(s) > 0 for all s ∈ [δ, δ + ε1).

From here, it suffices to show that there exists ε2 > 0 so that κ(s) ≥ λ(s) for all s ∈ [δ, δ + ε2). To

demonstrate the existence of such an ε2, we take two cases. Since δ ∈ K, κ(δ) ≥ λ(δ). If κ(δ) > λ(δ), then

the existence of such an ε2 follows by continuity of κ − λ. Meanwhile, if κ(δ) = λ(δ), then we apply Lemma

6.7 to conclude that λ′(δ) = 0, but κ ′(δ) > 0. It follows that there exists ε2 > 0 so that κ(s) ≥ λ(s) for all

s ∈ [δ, δ + ε2). In either case, taking ε = min(ε1, ε2) guarantees that [δ, δ + ε) ⊂ K, contradicting the fact

that δ is an upper bound for K.

Lemma 6.9. We have that κ′(δ) > 0.

Proof. Differentiating the ODE Hf = c, we obtain κ′(δ) + (n − 2)λ′(δ) + H′
1(δ) = 0. Let (a, b) be the center

of Aδ and r be its radius. Since κ(δ) ≥ λ(δ), it follows that b ≥ 0. Parameterizing Aδ as in (6.7), we see that

γ(δ) = α(πr/2). Thus, λ′(δ) = λ̃′(πr/2). By inverting (6.8) and differentiating, we conclude that λ̃′(πr/2) = 0.

Since H′
1(δ) = H̃1

′
(πr/2), it suffices to prove that H̃1

′
(πr/2) < 0.

Looking to (6.12), we claim that a2 + b2 > r2. To prove so, let R = R(δ) be the radius of Cδ. As depicted

in Figure 7, since γ
′(δ) = (−1, 0), we have that R = r + b and a = F(δ). We apply Lemma 6.6 to give

a > R = r + b. Since both sides of the inequality a − b > r are positive, we may square to give (a − b)2 > r2.

Since b ≥ 0, this implies that a2 + b2 > r2. Therefore, we have that

H̃1
′
(πr

2

)

=
−pa(a2 + b2 − r2)

r|α( πr2 )|
4

< 0.

Definition 6.10. (cf. [1, Defn. 3.5]) Let the lower curve L be defined as the set of all s in [δ, β) such that for all

t ∈ [δ, s] the following hold:

1. γ
′(t) is in the third quadrant with γ

′(t) ≠ (−1, 0) if t > δ ,

2. If t is the unique point in K with γ 2(t) = γ 2(t), then κ(t) ≤ κ(t).

Since γ
′(δ) = (−1, 0), κ(δ) > 0, and κ ′(δ) > 0, these conditions hold on an interval [δ, δ + ε). Thus, L is

nonempty and has a supremum, which we denote by η.

By condition (1) in Definition 6.10 , γ ′(s) = ̸ (−1, 0) if s ∈ (δ, η). Similarly, there can be no s0 ∈ (0, δ) with

γ
′(s0) = (−1, 0). (If there were such an s0, then we would have κ(s0) ≥ λ(s0) > 0. Consequently, on an

interval immediately following s0, γ
′ would be strictly in the third quadrant, contradicting the fact that δ is
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γ(δ )

(a,b)

Aδ

Cδ

R

r

Figure 7: The canonical circle Cδ and the osculating circle Aδ

the least upper bound of K.) Since γ 2
′ does not vanish on (0, δ) or on (δ, η), we can apply the Inverse Value

Theorem to define a local inverse of γ 2 over each of these intervals.

Definition 6.11. We define h : (γ 2(η), γ 2(δ)) → (0, δ) by letting h(y) be the unique t ∈ (0, δ) such that

γ 2(t) = y. Similarly, we define k : (γ 2(η), γ 2(δ)) → (δ, η) by letting k(y) be the unique t ∈ (δ, η) such that

γ 2(t) = y.

Using these local inverse functions, we define functions f , g : (γ 2(η), γ 2(δ)) → R as follows.

Definition 6.12. Given y ∈ (γ 2(η), γ 2(δ)), let

f (y) = 2γ 1(δ) − γ 1(h(y)),

and let

g(y) = γ 1(k(y)).

The function g gives the e1-coordinate of a point in γ(L)with a given e2-coordinate. If we begin with the

point in γ(K)with a given e2-coordinate, then f gives the e1-coordinate of the reflection of this point over the

line x = δ. We can use these functions to prove two properties of the lower curve.

Lemma 6.13. (cf. [1, Lemma 3.13]) For each s ∈ [δ, η), let s be the unique point in K so that γ 2(s) = γ 2(s).

Then the following hold:

γ 1(s) − γ 1(δ) ≥ γ 1(δ) − γ 1(s), (6.13)

θ(γ ′(s)) ≥ 2π − θ(γ ′(s)). (6.14)

Proof. Both inequalities are trivially true if s = δ. Now let s ∈ (δ, η) be fixed, and let y = γ 2(s). By the

definition of L (Defn. 6.10), f and g satisfy the hypotheses of Proposition 5.6. From the inequality f ≤ g in

Proposition 5.6, (6.13) above is immediate. To arrive at (6.14), let tf (y) and tg(y) denote the unit tangent vectors

to the graphs of f and g at y. Note that γ( (δ, η) ) is the set {(g(y), y) : y ∈ (γ 2(η), γ 2(δ)}, and the reflection of

γ((0, δ)) over the line x = δ is the set {(f (y), y) : y ∈ (γ 2(η), γ 2(δ)}. Let y = γ 2(s). Thenwe obtain the tangent
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vector tg(y) from γ
′(s) by rotating γ ′(s) clockwise through π radians and reflecting the resulting vector in the

first quadrant over the line y = x. Therefore, we have

θ(tg(y)) =
π

2
−
(

θ(γ ′(s)) − π
)

=
3π

2
− θ(γ ′(s)).

Similarly, we obtain tf (y) from γ
′(s) by reflecting over the line x = δ and reflecting over the line y = x. Thus,

θ(tf (y)) =
π

2
−
(

π − θ(γ ′(s))
)

= θ(γ ′(s)) −
π

2
.

Substituting these results into the second inequality in Proposition 5.6 completes the proof.

Proposition 6.14. Let s ∈ (δ, η), and suppose that γ ′(s) ≠ (0, −1). If s is the unique point in K so that

γ 2(s) = γ 2(s), then κ(s) > κ(s).

Proof. Since Hf is constant,

κ(s) + (n − 2)λ(s) + H1(s) = κ(s) + (n − 2)λ(s) + H1(s).

It can be shown using right triangle trigonometry and (6.14) from Lemma 6.13 that λ(s) ≤ λ(s). Thus, to prove

that κ(s) > κ(s), it suffices to prove that H1(s) < H1(s). We show that γ ′(s) and γ
′(s) are admissible with

respect to γ(s) and γ(s) and then appeal to Proposition 6.2. Since γ ′(s) is not equal to (0, −1), γ ′(s) lies strictly

in the third quadrant. By Lemma 6.6, F(s) > R(s). Thus the first condition in the definition of admissibility is

met.

By Lemma 6.13, θ(γ ′(s)) ≥ 2π − θ(γ ′(s)), satisfying the second condition of admissibility. Furthermore,

by the same lemma, we have γ 1(s)−γ 1(δ) ≥ γ 1(δ)−γ 1(s). By Proposition 6.8, γ 1(δ) ≥ F(s), so γ 1(s)−F(s) ≥

F(s) − γ 1(s), and the final condition for admissibility is satisfied.

Because γ ′(s) and γ
′(s) are admissible with respect to γ(s) and γ(s), we conclude by Proposition 6.2 that

γ(s)

|γ(s)|2
· γ

′(s)⊥ >
γ(s)

|γ(s)|2
· γ

′(s)⊥.

By (6.1), it follows that H1(s) < H1(s), as required.

By a similar argument to that in [1, Lemma 3.14] along with Proposition 6.14, η < β, η ∈ L, and γ
′(η) =

(0, −1). In addition to these properties of η, we can also showusing the curvature comparison that γ 1(η) > 0.

Then proving that γ 1(β) > 0 is a matter of showing that γ 1 is increasing on (η, β). To establish the second

claim of the Right Tangent Lemma, we consider the functions κ and γ
′ on (η, β). Lemma 6.16 gives a compu-

tational result regarding κ, whereas Lemma 6.17 extends this result as well as showing that γ ′ is strictly in

the fourth quadrant on (η, β).

Lemma 6.15. We have that γ 1(η) > 0.

Proof. By Lemma 6.13, γ 1(η) − γ 1(δ) ≥ γ 1(δ) − γ 1(η). Furthermore, γ 1(δ) = F(δ) ≥ F(η). Therefore, γ 1(η) −

F(η) ≥ γ 1(η) − γ 1(δ) ≥ γ 1(δ) − γ 1(η) ≥ F(η) − γ 1(η).

Finally, γ 1(η) − F(η) < R(η), because R(η) is the distance from (F(η), 0) to γ(η). It follows that γ 1(η) ≥

F(η) − (γ 1(η) − F(η)) > F(η) − R(η). By Lemma 6.6, this final expression is positive.

Lemma 6.16. Let s ∈ (0, β). If γ 1(s) ≥ 0 and γ
′(s) is in the fourth quadrant, then κ(s) > 0.

Proof. Since γ
′(s) is in the fourth quadrant and γ 2(s) > 0, λ(s) ≤ 0. Since γ(s) is in the first quadrant and

ν(s) is in the third, γ(s) · ν(s) ≤ 0, which implies that H1(s) ≤ 0. Meanwhile, we have that Hf (s) = Hf (0) > 0,

because H1(0) > 0, κ(0) > 0 by spherical symmetry, and κ(0) = λ(0) (Proposition 4.8). Hence, it must be the

case that κ(s) > 0.
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Lemma 6.17. ( cf. [1, Prop. 4.1]) For s ∈ (η, β), γ ′(s) lies strictly in the fourth quadrant, and κ(s) > 0.

Proof. Define A ⊂ (η, β) so that s ∈ A if and only if for all t ∈ (η, s), γ ′(t) lies strictly in the fourth quadrant

and κ(t) > 0. Note that A is nonempty because κ(η) > 0, γ ′(η) = (0, −1), and κ is continuous at η. Thus, A

has a supremum ω. To prove the lemma we show that ω = β.

Suppose for contradiction that ω < β. Then γ is smooth at ω; in particular, γ ′(ω) and κ(ω) are defined.

Since γ
′(t) lies in the fourth quadrant for all t ∈ (η, ω), γ ′(ω) is in the fourth quadrant. Since κ > 0 on

(η, ω), γ ′(ω) is not equal to (0, −1). Furthermore, γ 1(ω) > 0, as γ 1(η) > 0 (Lemma 6.15) and γ
′ lies in the

fourth quadrant on (η, ω). If γ ′(ω) were equal to (1, 0), then we would have γ
′(ω) · γ(ω) = γ 1(ω) > 0,

contradicting the Tangent Restriction Lemma (Lemma 4.2). Thus γ ′(ω) lies strictly in the fourth quadrant. By

Lemma 6.16, κ(ω) > 0. Thus, by continuity of γ ′ and κ on [0, β), A could be extended past ω, contradicting

the definition of ω.

Proof of the Right Tangent Lemma (Lemma 4.9). It follows from Lemma 6.17 that γ 1(β) > 0, as γ
′(s) lies

strictly in the fourth quadrant for all s ∈ (η, β), and γ 1(η) > 0. As κ > 0 and γ
′ is in the fourth quad-

rant on (η, β), the angle θ(s) that γ ′(s)makes with the e1-axis, measured counterclockwise in radians, must

be a strictly increasing function on (η, β) that is bounded above by 2π. Therefore, lims→β− θ(s) exists and is

in (θ(η), 2π]. It follows that lims→β− γ
′(s) exists, lies in the fourth quadrant, and is not (0, −1).

7 Proof of Left Tangent Lemma

In the previous section, the key to proving the Right Tangent Lemma was to show that the curvature was

greater at a point on the lower curve thanat its correspondingpoint on theupper curve, allowingus to find η <

β where γ ′(η) = (0, −1). Now, in the left case (Prop. 4.10), we will prove the opposite inequality concerning

curvatures at corresponding points, with the aim of showing that lims→β− γ
′(s) is in the third quadrant and

not equal to (0, −1). This case, however, presents new obstacles. One difficulty we eliminate is the possibility

that there aremultiple points on the portion of γ parameterized by [0, β)where the tangent vector is (−1, 0). In

the right case, the lower curve naturally terminated at a point where the tangent vector was (0, −1). However,

the goal in the left casewill be to show that the lower curve does not terminate before β (Lemma 7.17), allowing

us to apply the curvature comparison all the way up to β. We begin with a new definition of admissibility for

the left case and an analogue of Proposition 6.2.

Definition 7.1. Consider two points (x1, y) and (x2, y) and two unit vectors v1 and v2, strictly in the second and

third quadrants, respectively. Let Ci, ai, Ri, x
′
1, and v

′
1 be as in Definition 6.1. Finally, let (x

*, 0) be the unique

point on the e1-axis so that v2 is tangent at (x
*, y) to the circle centered at the origin that passes through (x*, y).

We say that v1 and v2 are admissible with respect to (x1, y) and (x2, y) if the following hold:

1. 0 < a1 < R1,

2. θ(v2) ≤ θ(v
′
1),

3. R2 ≤ R1,

4. x2 ∈ [x*, x′1].

Figures 8 and 9depict vectors v1 and v2 that are admissiblewith respect to (x1, y) and (x2, y)when x2 ≥ 0

and when x2 < 0.

Proposition 7.2. If v1 and v2 are admissible with respect to (x1, y) and (x2, y), then H1 is larger at (x2, y)

with respect to v2 than at (x1, y) with respect to v1, i.e.

(x2, y)

|(x2, y)|2
· v⊥2 >

(x1, y)

|(x1, y)|2
· v⊥1 .
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C1C2

(a2,0)

(a1,0)

v1

v
0

1

v2

Figure 8: The vectors v1 and v2 are admissible with respect to (x1 , y) and (x2 , y) with x2 ≥ 0.

(x∗,y)

v2

(x2,y)

(x1,y)

v0
1

v1

(x0
1
,y)

C1C2

(a1,0)(a2,0)(0,0)

Figure 9: The vectors v1 and v2 are admissible with respect to (x1 , y) and (x2 , y) with x2 < 0.

Proof. We take cases according to whether x2 ≥ 0 or x2 < 0. In the case that x2 ≥ 0, |(x2, y)| ≤ |(x′1, y)|, and

the result follows by a similar argument to that in Proposition 6.2. In the case case that x2 < 0, we will prove

two inequalities:

(x1, y)

|(x1, y)|2
· v⊥1 <

(x*, y)

|(x*, y)|2
· v⊥2 , (7.1)

(x*, y)

|(x*, y)|2
· v⊥2 ≤

(x2, y)

|(x2, y)|2
· v⊥2 . (7.2)

Beginningwith (7.1), note that since a1 > 0, wemust have that |(x1, y)| > R1. Additionally, |(x
*, y)| = R2.

Combining these observationswith the inequality R1 ≥ R2, we have |(x1, y)| > R1 ≥ R2 = |(x*, y)|. It follows

that
1

|(x1, y)|
<

1

|(x*, y)|
,

so proving (7.1) has been reduced to showing that



256 | Wyatt Boyer et al.

(x1, y)

|(x1, y)|
· v⊥1 ≤

(x*, y)

|(x*, y)|
· v⊥2 = ̸ 0.

This inequality is immediate when we recognize that

(x*, y)

|(x*, y)|
· v⊥2 = cos(θ(v⊥2 ) − θ((x

*, y))) = cos(0) = 1.

To prove (7.2), we will rewrite the right side of the inequality using the subtraction identity for cosine. As

noted above, θ(v⊥2 ) = θ((x*, y)), so

cos(θ(v⊥2 )) =
x*

|(x*, y)|
and sin(θ(v⊥2 )) =

y

|(x*, y)|
.

Hence, we have

(x2, y)

|(x2, y)|2
· v⊥2 =

1

|(x2, y)|
cos(θ(v⊥2 )) − θ((x2, y)))

=
1

|(x2, y)|

(

cos(θ(v⊥2 )) cos(θ((x2, y))) + sin(v⊥2 ) sin(θ((x2, y)))
)

=
1

|(x2, y)|

(

x*

|(x*, y)|

x2
|(x2, y)|

+
y

|(x*, y)|

y

|(x2, y)|

)

=
1

|(x*, y)|

(

x*x2
|(x2, y)|2

+
y2

|(x2, y)|2

)

.

By (4) in Definition 7.1 and the assumption that x2 < 0, we have x* ≤ x2 < 0. We multiply through by x2 to

obtain x*x2 ≥ x22 > 0. Substituting this into the above equation, we have

(x2, y)

|(x2, y)|2
· v⊥2 ≥

1

|(x*, y)|

(

x22 + y2

|(x2, y)|2

)

=
1

|(x*, y)|
=

(x*, y)

|(x*, y)|2
· v⊥2 ,

completing the second case.

Before we define the upper and lower curves, we require several lemmas. Propositions 7.9 and 7.10, which

concern points where the unit tangent vector is in the second quadrant, are later used to check the conditions

for admissibility. Meanwhile, we determine some properties that hold at points on the curvewith positive first

coordinates.

Lemma 7.3. Suppose that s ∈ (0, β) and that γ 1(s) ≥ 0. Then γ 1
′(s) < 0.

Proof. Suppose for contradiction that γ 1
′(s) ≥ 0. If γ ′(s) were in the first quadrant and not equal to (1, 0),

this would violate the Tangent Restriction Lemma (Lemma 4.2). If γ ′(s) = (1, 0), then, by Lemma 6.17, κ(s) >

0, which implies by continuity of γ ′ that there exists t > s so that γ 1(t) > 0, γ 2(t) > 0, and γ
′(t) is strictly in

the first quadrant, producing the same contradiction to the Tangent Restriction Lemma. Thus, if γ 1
′(s) ≥ 0,

then γ
′(s)must be in the fourth quadrant and not equal to (1, 0). However, this also yields a contradiction,

because, replacing η with s, we could then apply Lemmas 6.17 and 6.16 to achieve the same contradiction as

in the right case. These lemmas would apply because γ 1(s) ≥ 0.

Lemma 7.4. Suppose that s ∈ (0, β) and that γ 1(s) ≥ 0. Then γ 1(t) > 0 for all t ∈ [0, s).

Proof. It is clear that γ 1(0) > 0. To prove the result on (0, s), consider the set C = {t ∈ [0, s) : γ 1(u) > 0 for

all u ∈ [t, s)}. By Lemma 7.3, γ 1
′(s) < 0, so there exists ε > 0 such that (s − ε, s) ⊂ C. Since C is nonempty

and bounded below, it has a greatest lower bound. Let c = inf C. It suffices to prove that c = 0. Suppose for

contradiction that c > 0. By continuity of γ 1, γ 1(c) = 0; if γ 1(c)were positive, thenwe could extend C farther

back, whereas if it were negative, then c would not be the greatest lower bound. By Lemma 7.3, γ 1
′(c) < 0.

It follows that there exists ε′ > 0 such that γ 1 < 0 on (c, c + ε′), contradicting the fact that c is the greatest

lower bound of C.
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Nowwe consider the initial canonical circle C0. By spherical symmetry, F(0) ≥ 0. It must actually be the case

that F(0) > 0; otherwise, by Remark 4.7, γ would be a circle centered at the origin, contradicting the fact

that balls centered at the origin are not stable ([9, Thm. 3.10]). Given this strict inequality, it follows by the

computations in the proof of Lemma 6.3 that κ′′(0) < 0.

A natural next step would be to extend the inequality F(0) < R(0). We will eventually prove that F(s) <

R(s) for all s with γ 1(s) ≥ 0 (Proposition 7.10). Since R′ may alternate signs, this is slightly more complicated

than merely reversing the inequalities in the proof of Lemma 6.6. To show that the sign of R′ does not matter,

we define an auxiliary function that keeps track of the discrepancy between F and R.

Definition 7.5. Define G : (−β, β) → R by letting G(s) be the e1-coordinate of the leftmost point on Cs; i.e.

G(s) = F(s) − R(s). Likewise, for a fixed s, if α, F̃, and R̃ are as in Definition 5.4, then we let G̃ = F̃ − R̃.

For a given s, we can compute the derivatives of F̃ and G̃ on the approximating circle As to prove the

following lemma.

Lemma 7.6. (cf. [1, Lemma 5.3]) Let s ∈ [0, β). If γ 1(s) ≥ 0 and κ(s) ≤ λ(s), then F′(s) ≤ 0 and G′(s) ≤ 0.

Proof. We take three cases according to whether κ(s) > 0, κ(s) = 0, or κ(s) < 0. If κ(s) = 0, then As is the

oriented line through γ(s) that has direction vector γ ′(s). By Lemma 7.3, γ 1
′(s) < 0. We parameterize As by

α(t) = γ(s) + tγ ′(s). Let F̃(t) denote the e1-coordinate of the center of the canonical circle to As at α(t), and

let R̃(t) denote its radius. Then we can compute that

F̃′(t) =
1

γ 1
′(s)

< 0 and G̃′(t) =
1 + γ 2

′(s)

γ 1
′(s)

.

Since γ is an arclength parameterization, the numerator of G̃′ is necessarily nonnegative. Thus, G̃′ ≤ 0.

If κ(s) = ̸ 0, let (a, b) be the center of As, and let r be the radius. If κ(s) > 0, then b ≤ 0, and we

parameterize As as in (6.7). By (6.10) and (6.11), we have

F̃′(t) =
b

r
csc2

(

t

r

)

and

G̃′(t) =
b

r
csc2

(

t

r

)(

1 + cos

(

t

r

))

for all t with α2(t) > 0. Since b ≤ 0, F̃′(s̃) ≤ 0 and G̃′(s̃) ≤ 0.

Finally, if κ(s) < 0, then b > 0. We now parameterize As by

α(t) =

(

a + r cos

(

t

r

)

, b − r sin

(

t

r

))

.

For a given twith α2(t) > 0, the line segment from α(t) to the center of C̃t is in the direction of the outward unit

normal vector to As at α(t), as shown in Figure 10. By similar computations to those in the proof of Lemma

6.6, we have that

F̃′(t) = −
b

r
csc2

(

t

r

)

,

and

G̃′(t) = −
b

r
csc2

(

t

r

)(

1 − cos

(

t

r

))

.

Since b > 0, we conclude that F̃′(s̃) ≤ 0 and G̃′(s̃) ≤ 0.

Although we used both hypotheses of Lemma 7.6 in the proof, it is actually the case that the first hypothesis

implies the second, as we prove below.

Lemma 7.7. Let s ∈ [0, β). If γ 1(s) ≥ 0, then κ(s) ≤ λ(s).
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α
0(t)

α(t)

(a,b)

(F̃(t),0)

C̃t

Figure 10: The canonical circle at α(t) in the case that As is oriented clockwise

Proof. Due to Lemma 4.8 and the fact that κ′(0) = 0, λ and κ are equal up to order two at 0. However,

λ′′(0) = 0, whereas κ′′(0) < 0. Hence, there exists t > 0 so that κ ≤ λ on [0, t]. Let S = {t ∈ [0, β) : κ ≤ λ

and γ 1 ≥ 0 on [0, t]}, and let u = sup S. Since the inequalities that define S are not strict, it follows by

smoothness of γ that u ∈ S. If γ 1(u) = 0, then, by Lemma 7.4, γ 1(s) ≥ 0 only if s ∈ [0, u]. Thus, to prove that

κ(s) ≤ λ(s) for all s with γ 1(s) ≥ 0, it suffices to prove that γ 1(u) = 0.

Suppose for contradiction that γ 1(u) > 0. We will show that u is not an upper bound for S, but, instead,

that there exists ε > 0 so that [u, u + ε) ⊂ S. We can obviously find ε1 > 0 so that γ 1 ≥ 0 on [u, u + ε1).

It remains to show that there exists ε2 > 0 so that κ ≤ λ on [u, u + ε2). The proof will be similar to that of

Lemma 3.4 in [C].

First, we can prove by contradiction that κ(u) = λ(u). Given this equation, we have that Cu = Au, so

λ′(u) = λ̃′(ũ) = 0. Thus, to guarantee the existence of a ε2 > 0 so that κ ≤ λ on [u, u + ε2), it suffices to

show that κ′(u) < 0. Since κ ≤ λ and γ 1 ≥ 0 on [0, u], it follows from Proposition 7.6 that G′ ≤ 0 on [0, u].

Therefore, G(u) ≤ G(0) < 0 by assumption that F(0) < R(0), and it follows by a similar argument to that in

the proof of Lemma 6.7 that κ′(u) < 0. While the inequality a > 0was immediate in the case that a > r, here

it is more subtle. The fact that a ≥ 0 follows from a similar argument to that in [1, Lemma 3.3]. To prove strict

inequality, note that if a = 0, then γ is a circle centered at the origin, which contradicts the fact that balls

centered at the origin are not stable ([9, Thm. 3.10]).

We use Lemmas 7.6 and 7.7 to prove two propositions used in checking the conditions for admissibility (Props.

7.9 and 7.10), but first we require one additional lemma.

Lemma 7.8. Suppose that s ∈ (0, β) and that γ ′(s) is in the second quadrant. Then γ 1(s) > 0.

Proof. By Lemma 4.2, γ ′(s) ≠ (0, 1). Thus, γ 2
′(s) ≥ 0 and γ 1

′(s) < 0. If γ 1(s) < 0 or s satisfies both

γ 1(s) = 0 and γ 2
′(s) > 0, then we can obtain a contradiction to Lemma 4.2. It remains to cover the case

in which γ 1(s) = 0 and γ
′(s) = (−1, 0). By Proposition 7.7, κ(s) ≤ λ(s). If κ(s) = λ(s), then γ is a circle

centered at the origin, contradicting the fact that centered balls are not stable ([9, Thm. 3.10]). Now, suppose

that κ(s) < λ(s). Since |γ(t)| is a non-increasing function of t and Cs is centered at the origin, γ(t) must be

contained in Cs for t ≥ s. However, since κ(s) < λ(s), the curve locally leaves the disk bounded by Cs.



Isoperimetric Regions in R
n with Density rp | 259

Proposition 7.9. Let s ∈ [0, β). If γ ′(s) is in the second quadrant, then F(s) > 0.

Proof. We know that γ must eventually curve down and arrive at the e1-axis. Thus, there are points where

γ
′ is in the third or fourth quadrant, and, by the Intermediate Value Theorem, combined with the fact that

γ
′ = ̸ (0, 1) on (0, β) (Lemma 4.2), there is a point t ≥ s such that γ ′(t) = (−1, 0). By Lemma 7.8, γ 1(t) > 0;

moreover, by Lemma 7.4, γ 1 > 0 on the interval [s, t]. Therefore, F′ ≤ 0 on [s, t], from which it follows that

F(s) ≥ F(t) = γ 1(t) > 0.

Proposition 7.10. If γ ′(s) is in the second quadrant, then F(s) < R(s).

Proof. Since γ ′(s) is in the second quadrant, γ 1(s) > 0. In fact, for all t ∈ [0, s], γ 1(t) > 0, so κ ≤ λ on [0, s].

Consequently, by Lemma 7.6, G′ ≤ 0 on [0, s]. By hypothesis that F(0) < γ 1(0)/2, we have that G(0) < 0.

Therefore, G(s) ≤ G(0) < 0.

Having proved the propositions necessary for checking the conditions of admissibility, we define the upper

and lower curves and prove that the curvature at a point on the lower curve is less than the curvature at its

counterpart on the upper curve (Prop. 7.16).

Definition 7.11. A point s is in the upper curve K ⊂ (0, β) if and only if for all t ∈ (0, s), γ ′(t) is strictly in the

second quadrant.

Note that K is nonempty because γ ′(0) = (0, 1) and κ(0) > 0 (both consequences of spherical symmetry)

andbecause κ is continuous at0. Thus, K has a least upper bound δ. Since γ ′ is strictly in the secondquadrant

on (0, δ), γ 2(δ) > 0, so δ < β, from which it follows that γ is smooth at δ. In particular, γ ′ is continuous at

δ. We apply the Intermediate Value Theorem, along with Lemma 7.3, to conclude that γ ′(δ) = (−1, 0).

Definition 7.12. We define the lower curve L ⊂ [δ, β) as follows: s ∈ L if and only if for all t ∈ [δ, s], the

following hold:

1. γ
′(t) is in the third quadrant, with γ

′(t) ≠ (−1, 0) if t > δ,

2. If t is the unique point in K so that γ 2(t) = γ 2(t), then κ(t) ≤ κ(t).

Since δ ∈ L, L is nonempty and therefore has a supremum, which we denote by η.

By Proposition 7.22, δ is the only point in [0, β) at which the tangent vector is (−1, 0). We can use this fact

to prove that η > δ. In addition to Proposition 7.22, our proof that η > δ utilizes the following lemma, which

shows that at any point on γ where the tangent vector is (−1, 0) and the curvature is 0, the curvature has a

negative derivative.

Proposition 7.13. Let s ∈ (0, β), and suppose that γ ′(s) = (−1, 0). If κ(s) ≥ 0, then κ′(s) < 0.

Proof. In the case that κ(s) > 0, the result follows by a similar argument to the proof of Lemma 6.9. Now,

suppose that κ(s) = 0. The osculating circle to γ at γ(s) is an oriented horizontal line which we parameterize

by α(t) = γ(s) + t(−1, 0). For each t, R̃(t) = γ 2(s), so λ̃(t) is constant; in particular, λ′(s) = λ̃′(0) = 0.

Meanwhile, for all t,

H̃1(t) =
p

|α(t)|2
γ 2(s) (7.3)

By Lemma 7.8, γ 1(s) > 0. Differentiating (7.3), we have

H′
1(s) = H̃1

′
(0) = −2

p γ 2(s)

|α(0)|4
(−γ 1(s)) > 0.

Thus, κ′(s) < 0.

Lemma 7.14. Given that γ([0, β)) has tangent vector (−1, 0) only at δ, we have η > δ.
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Proof. It suffices to prove that there exist ε1, ε2 > 0 so that for all s ∈ (δ, δ + ε1), γ
′(s) is in the third quadrant

with γ
′(s) ≠ (−1, 0), and for all s ∈ [δ, δ + ε2), κ(s) ≤ κ(s). For the existence of such an ε2, we observe that

since γ ′(s) is in the second quadrant for all s ∈ [0, δ], κ(δ) ≥ 0. Therefore, by Proposition 7.13, κ′(δ) < 0. To

prove that there is an ε 1 > 0 as described, it suffices to prove the strict inequality κ(δ) > 0. By Proposition

7.13, if κ(δ) = 0, then κ′(δ) < 0. Hence, there exists q ∈ (δ, β)with γ 2(q)st>γ 2(δ). By the Intermediate Value

Theorem, applied to γ 2 on [0, β], there is a later point at the same height as γ(δ). Since γ ′ = ̸ (0, 1) on (0, β)

this implies the existence of q ′ ≥ q with γ
′(q ′) = (−1, 0), a contradiction.

Proposition 7.15. Given that γ([0, β)) has tangent vector (−1, 0) only at δ, let s ∈ L with s > δ, and let s be

the unique point in K so that γ 2(s) = γ 2(s). Then the following two inequalities hold:

γ 1(s) − γ 1(δ) ≤ γ 1(δ) − γ 1(s), (7.4)

θ(γ ′(s)) ≤ 2π − θ(γ ′(s)). (7.5)

Proof. By Definitions 7.11 and 7.12, γ 2
′ does not vanish on (0, δ) or on (δ, η). Thus, we define k, h as in the

proof of Lemma 6.13. However, to apply Proposition 5.6, we must define f and g in a different way than we

defined them in Definition 6.12: now we define f , g : (γ 2(η), γ 2(δ)) → R by f (y) = γ 1(k(y)) and g(y) =

2γ 1(δ) − γ 1(h(y)).

Proposition 7.16. Given that γ([0, β)) has tangent vector (−1, 0) only at δ, let s ∈ L with s > δ and γ
′(s) ≠

(0, −1). Letting s be the unique point in K so that γ 2(s) = γ 2(s), we have κ(s) < κ(s).

Proof. Since generalized mean curvature is constant on γ, we have κ(s) + (n − 2)λ(s) + H1(s) = κ(s) + (n −

2)λ(s) + H1(s). By (7.5) and right triangle trigonometry, λ(s) ≥ λ(s). Therefore, it suffices by Proposition 7.2 to

prove that γ ′(s) and γ
′(s) are admissible with respect to γ(s) and γ(s). Letting

(x1, y) = γ(s), (x2, y) = γ(s), v1 = γ
′(s), and v2 = γ

′(s), we proceed to check each condition in the

definition of admissibility.

Condition (1) follows from Proposition 7.9 and from Proposition 7.10. Recognizing that

θ(v′1) = 2π − θ(v1), we can derive condition (2) from the second inequality in Proposition 7.15. Condition (3)

follows by inverting the inequality λ(s) ≥ λ(s).

To verify that condition (4) holds, we must show that that x2 ≤ x′1 and that x2 ≥ x*. The first inequality

can be proved using the inequality γ 1(s) − γ 1(δ) ≤ γ 1(δ) − γ 1(s) along with the fact that F′ ≤ 0 on (0, δ)

(which is a consequence of Lemmas 7.6 and 7.7). To prove that x2 ≥ x*, note that since γ ′(s) is tangent to the

circle centered at the origin that passes through (x*, y), we have 0 = (x*, y) · γ ′(s) = x*γ 1
′(s) + y γ 2

′(s).

Meanwhile, by Lemma 4.2, 0 ≥ γ(s) · γ ′(s) = γ 1(s)γ 1
′(s) + γ 2(s)γ 2

′(s). Since y = γ 2(s), it follows that

x*γ 1
′(s) ≥ γ 1(s)γ 1

′(s). Dividing through by γ 1
′(s) gives x* ≤ γ 1(s).

Proposition 7.17. If there exists no s ≠ δ so that γ ′(s) = (−1, 0), then η = β.

Proof. Suppose for contradiction that η < β. We will show that η is not an upper bound for L, but instead,

that L can be extended. Recall that by defining a local inverse function h : (γ 2(η), γ 2(δ)) → (0, δ) as on p. 13,

we can explicitly write s = h(γ 2(s)). By continuity of γ
′, of κ, and of κ ◦ h ◦ γ 2, γ

′(η) is in the third quadrant,

and κ(η) ≤ κ(η). To show that η ∈ L, we need only show that γ ′(η) ≠ (−1, 0). If γ ′(η) = (−1, 0), this

would contradict the fact that γ does not have multiple horizontal tangents. Meanwhile, if γ ′(η) = (0, −1),

this would contradict (7.5), which holds at η by continuity of γ on (0, β) and by our assumption that η < β.

Thus, γ ′(η) is strictly in the third quadrant. Finally, by an identical argument to that in Proposition 7.16,

κ(η) < κ(η).

Having shown that η = β, we are near to proving Lemma 4.10 with the assumption that δ is the only point at

which γ
′ equals (−1, 0). First, we show that γ 1(β) < 0. In order to discuss lims→β− γ

′(s), we must first show
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that the limit exists. For this, we prove in Proposition 7.20 that κ is eventually negative. The proof requires

Proposition 7.18 as well as a lemma giving a bound on γ 1
′ (Lemma 7.19).

Proposition 7.18. Given that F(0) < 1/2 and that γ([0, β)) has tangent vector (−1, 0) only at δ, we have that

γ 1(β) < 0.

Proof. To prove that γ 1(β) < 0, we begin with Proposition 7.15, which states that if s ∈ L, and s is the cor-

responding point in K such that γ 2(s) = γ 2(s), then γ 1(s) − γ 1(δ) ≤ γ 1(δ) − γ 1(s). Since β = sup L and

γ is continuous at β, this inequality also holds for s = β. Noting that β = 0, we have γ 1(0) − γ 1(δ) ≤

γ 1(δ) − γ 1(β). Since γ
′(δ) = (−1, 0), γ 1(δ) = F(δ). In turn, since F is non-increasing on the upper curve,

F(δ) ≤ F(0). Consequently, γ 1(0) − F(0) ≤ γ 1(0) − γ 1(δ) ≤ γ 1(δ) − γ 1(β) ≤ F(0) − γ 1(β). Rearranging gives

γ 1(β) ≤ 2F(0) − γ 1(0) < 0.

Lemma 7.19. Given that γ([0, β)) has tangent vector (−1, 0) only at δ, there exists ξ > 0 so that γ 1
′(s) ≤ −ξ

for all s ∈ L.

Proof. It suffices to prove that there exists τ > 0 such that θ(γ ′(s)) < 3π/2 − τ for all s in L. Since γ
′(δ) =

(−1, 0) and γ
′ is continuous on [0, β), there exists s0 > δ such that θ ◦ γ ′ < 5π/4 on [δ, s0]. By Proposition

7.16, κ(s0) < κ(s0). Letting y0 = γ 2(s0), we have that the upward curvatures of the graphs of the functions

f and g defined in Proposition 7.15 satisfy κf (y0) < κg(y0). Therefore, by Proposition 5.6, there exists ϕ > 0

such that

θ(tf (y)) ≥ θ(tg(y)) + ϕ (7.6)

for all y ∈ (0, y0). Take τ = min{ϕ, π/4}. If s ∈ [δ, s0], then θ(γ
′(s)) < 5π/4 = 3π/2 − π/4 ≤ 3π/2 − τ. If

s ∈ (s0, β), let y = γ 2(s). Then θ(tf (y)) = 3π/2 − θ(γ ′(s)), and θ(tg(y)) = θ(γ ′(s)) − π/2. Substituting into

(7.6), we obtain θ(γ ′(s)) ≤ 2π− θ(γ ′(s))−ϕ. Finally, since y > 0, it follows by Lemma 7.3 that θ(γ ′(s)) > π/2.

Therefore, θ(γ ′(s)) < 3π/2 − ϕ ≤ 3π/2 − τ.

Proposition 7.20. Given that γ([0, β)) has tangent vector (−1, 0) only at δ, there exists ε > 0 such that κ < 0

on (β − ε, β).

Proof. We show that for s close to β, we can make (n − 2)λ(s) + H1(s) larger than c, the constant of the

differential equation Hf = c. First, we show that by taking s sufficiently close to β, we can make λ(s) large.

The radius of the canonical circle at γ(s) satisfies

R(s)2 = (γ 1(s) − F(s))
2 + γ 2(s)

2 =

(

γ 1(s) −
γ(s) · γ ′(s)

γ 1
′(s)

)2

+ γ 2(s)
2 =

γ 2(s)
2

γ 1
′(s)2

.

Since γ 1
′(s) < 0, we have R(s) =

γ 2(s)

−γ 1
′(s)

and λ(s) =
−γ 1

′(s)

γ 2(s)
.

By Lemma 7.19, λ(s) ≥ ξ /γ 2(s). Since γ 2(β) = 0 and γ is continuous, there exists ε1 > 0 so that if s ∈

(β − ε1, β), then γ 2(s) < ξ /c. Consequently, for all s ∈ (β − ε1, β), λ(s) > c.

Now we will show that for s sufficiently large, H1(s) is positive. By Proposition 7.18 and continuity of γ,

there exists ε2 > 0 such that γ 1 < 0 on (β − ε2, β). For any s in this interval, γ(s) and ν(s) are both strictly in

the second quadrant, so H1(s) > 0.

Set ε = min{ε1, ε2}, and suppose that s ∈ (β − ε, β). By our observations above and our assumption

that n ≥ 3, we have (n − 2)λ(s) + H1(s) > (n − 2)λ(s) ≥ λ(s) > c. Therefore, κ(s) must be less than 0 to

compensate.

Proof of the Left Tangent Lemma (Lemma 4.10). By Proposition 7.18, γ 1(β) < 0. By Proposition 7.20, there ex-

ists ε > 0 such that κ < 0 on (β − ε, β). On this interval, θ ◦ γ
′ is a decreasing function of s. Since θ ◦ γ

′

is decreasing and bounded below by π, lims→β− γ
′(s) exists. Moreover, since γ ′ is strictly in the third quad-

rant on (δ, η) and θ ◦ γ
′ is decreasing on (β − ε, β), lims→β− γ

′(s) is in the third quadrant but not equal to

(0, −1).
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7.1 Proof That There is Only One Horizontal Tangent

Finally, we supply a proof of the result used from Proposition 7.14 onward that δ is the only point in [0, β)with

tangent vector (−1, 0). It is expedient to consider the sets T = {s ∈ [0, β) : γ ′(s) = (−1, 0) and κ(s) ≥ 0} and

U = {s ∈ [0, β) : γ ′(s) = (−1, 0)}. Consider the supremum δ of the upper curve K (Defn. 7.11). In the proof

of Lemma 7.14, by assuming that δ was the only point in [0, β) where the tangent vector was (−1, 0) (the fact

that we are about to prove), we could show that κ(δ) > 0. However, even without this assumption, it must be

the case that κ(δ) ≥ 0, because γ ′ is strictly in the second quadrant on (0, δ) (cf. proof of Lemma 7.14). Thus,

δ ∈ T. Since T is nonempty, it has a least upper bound v.

Lemma 7.21. The supremum of T satisfies the following:

1. v < β,

2. v is the maximum element of U,

3. κ(v) > 0.

Proof. To prove that v < β, it suffices to show that there there exists ε0 > 0 so that if s ∈ (β − ε0, β) and

γ
′(s) = (−1, 0), then κ(s) < 0. To achieve this result, we consider the ODE Hf = c. We know that the

constant c is positive, because H1(0) = p, κ(0) > 0, and λ(0) = κ(0) by Proposition 4.8.

Since γ 2(β) = 0 and the curve is continuous at β, there exists ε0 > 0 so that for any s in (β − ε0, β), we

have γ 2(s) < 1/c. Let s ∈ (β− ε0, β) and suppose that γ
′(s) = (−1, 0). Then λ(s) = 1/γ 2(s) > c.Meanwhile,

the outward unit normal at s is ν(s) = (0, 1), so

H1(s) =
p

|γ(s)|2
(γ 1(s), γ 2(s)) · (0, 1) =

p

|γ(s)|2
γ 2(s) > 0.

Given that n ≥ 3, we have that (n − 2)λ(s) + H1(s) ≥ λ(s) + H1(s) > c, which means that κ(s) must be

negative to compensate.

Given that v < β, it can be shown by continuity of γ ′ and κ on (0, β) that γ ′(v) = (−1, 0) and that

κ(v) ≥ 0. Since γ ′(v) = (−1, 0), v ∈ U = {s ∈ [0, β) : γ ′(s) = (−1, 0)}. We claim that v is the largest point in

U. By definition of T, there exists no s > v so that γ ′(s) = (−1, 0) and κ(s) ≥ 0. Meanwhile, if there were an

s > v so that γ ′(s) = (−1, 0) and κ(s) < 0, then s would be a local minimum point of γ 2. Since γ 2(β) = 0,

there would exist t > s so that t was a local maximum point of γ 2. Since γ
′ = ̸ (0, 1) on (0, β) (Lemma 4.2),

γ
′(t) ≠ (1, 0). Thus, it must be the case that γ ′(t) = (−1, 0), contradicting the fact that v = sup T. We

conclude that v is the maximum element of U. Again, since γ ′ ≠ (0, 1) on (0, β), this means that γ 2
′ < 0 on

(v, β).

Finally, to prove that κ(v) > 0, suppose for contradiction that κ(v) = 0. By Lemma 7.13, there exists ε > 0

so that κ < 0 on (v, v + ε). Since γ
′(v) = (−1, 0), this would imply the existence of an interval following v

on which the tangent vector was strictly in the second quadrant, contradicting the fact that γ 2
′ < 0 on (v, β)

(cf. proof of Lemma 7.14). Thus, κ(v) > 0.

Proposition 7.22. There is only one point δ ∈ [0, β) so that γ ′(δ) = (−1, 0).

Proof. Suppose for contradiction that U − {v} is nonempty. Since γ
′(v) = (−1, 0) and κ(v) > 0, there exists

ε > 0 so that γ ′ is strictly in the second quadrant on (v − ε, v) and γ
′ is strictly in the third quadrant on

(v, v + ε). Since γ ′ is strictly in the second quadrant on (v − ε, v), U − {v} = {s ∈ [0, v − ε] : γ ′(s) = (−1, 0)};

that is, U − {v} is a level set of the restriction of γ ′ to [0, v − ε]. As such, U − {v} is closed in [0, v − ε], which

means that U − {v} is a compact subset of R and has a maximum element u.

We claim that γ ′(s) is strictly in the second quadrant for all s ∈ (u, v). To prove so, suppose for contradic-

tion that there exists s ∈ (u, v) so that γ ′(s) is not strictly in the second quadrant. By Lemma 7.4, γ 1(s) > 0.

Hence, we apply Lemma 7.3 to conclude that γ ′(s) is in the third quadrant. Since γ 1
′ < 0 on (0, δ] (Lemma

7.3) and γ
′ is strictly in the second quadrant on (v − ε, v), there exists t ∈ [s, v) so that γ ′(t) = (−1, 0),

contradicting maximality of u in U − {v}.

We define w to be the unique point in (v, β) so that γ 2(w) = γ 2(u). We will ultimately achieve a con-
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tradiction by showing that γ ′(w) = (−1, 0). In turn, we will accomplish this by curvature comparison. Let

s ∈ (v, w), and let s be the unique point in (u, v) so that γ 2(s) = γ 2(s). We claim that κ(s) ≤ κ(s). Since

κ′(v) < 0 (Lemma 7.13), we already know that this inequality holds for all s sufficiently close to v. Addition-

ally, recall that there exists ε > 0 so that γ ′(s) is strictly in the third quadrant for all s in (v, v + ε). We will

prove that γ ′(s) is strictly in the third quadrant for all s ∈ (v, w).

Let W = {s ∈ (v, w) : γ ′(t) is strictly in the third quadrant and κ(t) ≤ κ(t) for all t in (v, s]}. Since W is

nonempty and bounded above, W has a supremum, which we shall denote by z. As in Proposition 7.15, the

following inequalities hold for all s in (v, z):

γ 1(s) − γ 1(v) ≤ γ 1(v) − γ 1(s), (7.7)

θ(γ ′(s)) ≤ 2π − θ(γ ′(s)). (7.8)

It can also be proved that λ(s) ≥ λ(s) for all s in (v, z). By continuity of all relevant quantities on (0, β), it

follows that these inequalities hold at z as well.

Finally, since γ ′ is strictly in the second quadrant on (u, v) and strictly in the third quadrant onW, it can

be proved by a similar argument to that in Proposition 7.16 that w = z. It follows that the inequalities (7.7) and

(7.8) hold for all s in (v, w]. By (7.8), θ(γ ′(w)) ≤ 2π − θ(γ ′(w)) = 2π − θ(γ ′(u)) = π. Since θ ◦ γ ′ ∈ (π, 3π/2)

on (v, w), it must be the case that θ(γ ′(w)) = π. That is, γ ′(w) = (−1, 0), contradicting the fact that there

exists no s > v with γ
′(s) = (−1, 0).

8 Glossary of Notation

Throughout this section,we assume, as at the beginning of Section 3, that E is a spherically symmetric isoperi-

metric region, and that A ⊂ R
2 is a spherically symmetric set that generates Ewhen rotated about the e1-axis.

We first summarize the meanings that we have assigned to characters of the Latin alphabet, then proceed

through the characters of the Greek alphabet that are used in the article. Characters used only in Section 7.1

are excluded.
As Given an s ∈ (−β, β), As denotes the osculating circle to γ at γ(s) (see Defn. 5.3).

Cs Given an s ∈ (−β, β), Cs denotes the canonical circle to γ at γ(s), i.e. the uniqueoriented

circle that is tangent to γ at γ(s) and has its center on the e1-axis (see Defn. 4.3).

C̃t For a fixed s, let α be an arclength parameterization of As. Given t in the domain of α

such that α2(t) ≠ 0 or α′(t) = (0, ±1), C̃t denotes the canonical circle to α at α(t), i.e.

the unique oriented circle that is tangent to α at α(t) and has its center on the e1-axis

(see Defn. 5.4).

F Given s ∈ (−β, β), F(s) denotes the abscissa of the center of Cs (see Defn. 4.3).

F̃ For a fixed s, let α be an arclength parameterization of As. For any t such that C̃t exists,

F̃(t) denotes the abscissa of the center of C̃t (see Defn. 5.4).

G We define the function G on (−β, β) by G(s) = F(s) − R(s) (see Defn. 7.5).

G̃ For a fixed s, let α be an arclength parameterization of As. For any t such that C̃t exists,

let G̃(t) = F̃(t) − R̃(t) (see Defn. 7.5).
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H0 Given a regular point x ∈ ∂E, H0(x) denotes the unaveraged mean curvature of ∂E at x

(i.e. the sum of the principal curvatures of ∂E at x). After parameterizing (the rightmost

component of) ∂A, we also consider H0 as a function of arclength: given s ∈ (−β, β),

we let H0(s) denote the unaveraged mean curvature of ∂E at γ(s) (see Defn. 4.1).

H1 Given a regular point x ∈ ∂E, H1(x) denotes the directional derivative of the log of the

density function in the direction of the outward unit normal vector to ∂E at x. Mean-

while, given s ∈ (−β, β), we let H1(s) denote the directional derivative of the log of the

density function in the direction of the outward unit normal vector to ∂E at γ(s) (see

Defn. 4.1).

H̃1 For a fixed s, let α be an arclength parameterization of As. For each t in the domain of

α, let

H̃1(t) =
p

|α(t)|

α(t)

|α(t)|
· ν(t),

where ν(t) is the outward unit normal vector to α at α(t) (see Defn. 5.3).

Hf Given a regular point x ∈ ∂E, Hf denotes the generalized mean curvature of ∂E at x.

Given s ∈ (−β, β), we letHf (s) denote the generalizedmean curvature of ∂E at γ(s) (see

Defn. 4.1).

h In both cases, h denotes a local inverse function for γ 2 with codomain (0, δ): if y ∈

(γ 2(η), γ 2(δ)), then h(y) is the unique t ∈ (0, δ) so that γ 2(t) = y (see Defn. 6.11).

K In both cases, K denotes the subset of [0, β) that we call the upper curve. In the right

case, the upper curve is defined as the set of s ∈ [0, β) so that γ ′(t) lies in the second

quadrant and κ(t) ≥ λ(t) > 0 for all t ∈ [0, s] (see Defn. 6.4). In the left case, the upper

curve is defined as the set of s ∈ [0, β) so that γ ′(t) is strictly in the second quadrant

for all t ∈ (0, s) (see Defn. 7.11).

k In both cases, k denotes a local inverse function for γ 2 with codomain (δ, η): if y ∈

(γ 2(η), γ 2(δ)), then k(y) is the unique t ∈ (δ, η) so that γ 2(t) = y (see Defn. 6.11).

L In both cases, L denotes the subinterval of [0, β) that we call the lower curve. In each

case, the definition of L is rather technical, so we refer the reader to Definition 6.10 in

the right case (Section 6) and to Definition 7.12 in the left case (Section 7).

R Given s ∈ (−β, β), we let R(s) denote the radius of Cs (see Defn. 4.3).

R̃ For a fixed s, let α be an arclength parameterization of As. For any t such that C̃t exists,

we let R̃(t) denote the radius of C̃t (see Defn. 5.4).

s In each case, if s ∈ L, we let s denote the unique point in K so that γ 2(s) = γ 2(s) (see

Prop. 6.13, Prop. 7.16).

s̃ For a fixed s, let α be an arclength parameterization of As. We let s̃ denote the point in

the domain of α such that α(s̃) = γ(s) (see Defn. 5.3).
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α For a fixed s, we let α denote an arclength parameterization of As (see Defn. 5.3).

±β Endpoints of the domain of γ

γ Denotes an arclength parameterization of a component of ∂A (which, in fact, turns out

to be the only component of ∂A; see the beginning of Section 3).

δ In each case, δ denotes the supremumof the upper curve. (In the right case (Section 6),

see Defn. 6.4 and following. In the left case (Section 7), see Defn. 7.11 and following.)

η In each case, η denotes the supremum of the lower curve. (In the right case (Section

6), see Defn. 6.10. In the left case (Section 7), see Defn. 7.12.)

θ We define θ : S1 → (0, 2π] by letting θ(v) be the angle in the specified interval that v

makes with the positive e1-axis (see Defn. 5.5).

κ Given s ∈ (−β, β), κ(s) denotes the signed curvature of γ at γ(s).

κ̃ For a fixed s, let α be an arclength parameterization of As. For any t in the domain of α,

we let κ̃(t) denote the signed curvature of As at α(t) (see Defn. 5.3).

λ Given s ∈ (−β, β), λ(s) denotes the signed curvature of Cs (see Defn. 4.3).

λ̃ For a fixed s, let α be an arclength parameterization of As. For any t such that C̃t exists,

λ̃(t) denotes the signed curvature of C̃t (see Defn. 5.4).
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