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Abstract

Taxol (paclitaxel) is a potent anticancer drug first isolated from the Taxus brevifolia Pacific yew

tree. Currently, cost-efficient production of Taxol and its analogs remains limited. Here, we report

a multivariate-modular approach to metabolic-pathway engineering that succeeded in increasing

titers of taxadiene—the first committed Taxol intermediate—approximately 1 gram per liter

(~15,000-fold) in an engineered Escherichia coli strain. Our approach partitioned the taxadiene

metabolic pathway into two modules: a native upstream methylerythritol-phosphate (MEP)

pathway forming isopentenyl pyrophosphate and a heterologous downstream terpenoid–forming

pathway. Systematic multivariate search identified conditions that optimally balance the two

pathway modules so as to maximize the taxadiene production with minimal accumulation of

indole, which is an inhibitory compound found here. We also engineered the next step in Taxol

biosynthesis, a P450-mediated 5α-oxidation of taxadiene to taxadien-5α-ol. More broadly, the

modular pathway engineering approach helped to unlock the potential of the MEP pathway for the

engineered production of terpenoid natural products.

Taxol (paclitaxel) and its structural analogs are among the most potent and commercially

successful anticancer drugs (1). Taxol was first isolated from the bark of the Pacific yew tree

(2), and early-stage production methods required sacrificing two to four fully grown trees to

secure sufficient dosage for one patient (3). Taxol’s structural complexity limited its

chemical synthesis to elaborate routes that required 35 to 51 steps, with a highest yield of

0.4% (4–6). A semisynthetic route was later devised in which the biosynthetic intermediate

baccatin III, isolated from plant sources, was chemically converted to Taxol (7). Although

this approach and subsequent plant cell culture–based production efforts have decreased the

need for harvesting the yew tree, production still depends on plant-based processes (8), with
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accompanying limitations on productivity and scalability. These methods of production also

constrain the number of Taxol derivatives that can be synthesized in the search for more

efficacious drugs (9,10).

Recent developments in metabolic engineering and synthetic biology offer new possibilities

for the overproduction of complex natural products by optimizing more technically

amenable microbial hosts (11,12). The metabolic pathway for Taxol consists of an upstream

isoprenoid pathway that is native to Escherichia coli and a heterologous downstream

terpenoid pathway (fig. S1). The upstream methylerythritol-phosphate (MEP) or

heterologous mevalonic acid (MVA) pathways can produce the two common building

blocks, isopentenyl pyrophosphate (IPP) and dimethyl-allyl pyrophosphate (DMAPP), from

which Taxol and other isoprenoid compounds are formed (12). Recent studies have

highlighted the engineering of the above upstream pathways to support the biosynthesis of

heterologous isoprenoids such as lycopene (13,14), artemisinic acid (15,16), and abietadiene

(17,18). The downstream taxadiene pathway has been reconstructed in E. coli and

Saccharomyces cerevisiae together with the over-expression of upstream pathway enzymes,

but to date titers have been limited to less than 10 mg/liter (19,20).

The above rational metabolic engineering approaches examined separately either the

upstream or the downstream terpenoid pathway, implicitly assuming that modifications are

additive (a linear behavior) (13,17,21). Although this approach can yield moderate increases

in flux, it generally ignores nonspecific effects, such as toxicity of intermediate metabolites,

adverse cellular effects of the vectors used for expression, and hidden pathways and

metabolites that may compete with the main pathway and inhibit the production of the

desired molecule. Combinatorial approaches can overcome such problems because they

offer the opportunity to broadly sample the parameter space and bypass these complex

nonlinear interactions (21–23). However, combinatorial approaches require high-throughput

screens, which are often not available for many desirable natural products (24).

Considering the lack of a high-throughput screen for taxadiene (or other Taxol pathway

intermediate), we resorted to a focused combinatorial approach, which we term

“multivariate-modular pathway engineering.” In this approach, the overall pathway is

partitioned into smaller modules, and the modules’ expression are varied simultaneously—a

multivariate search. This approach can identify an optimally balanced pathway while

searching a small combinatorial space. Specifically, we partition the taxadiene-forming

pathway into two modules separated at IPP, which is the key intermediate in terpenoid

biosynthesis. The first module comprises an eight-gene, upstream, native (MEP) pathway of

which the expression of only four genes deemed to be rate-limiting was modulated, and the

second module comprises a two-gene, downstream, heterologous pathway to taxadiene (Fig.

1). This modular approach allowed us to efficiently sample the main parameters affecting

pathway flux without the need for a high-throughput screen and to unveil the role of the

metabolite indole as inhibitor of isoprenoid pathway activity. Additionally, the multivariate

search revealed a highly nonlinear taxadiene flux landscape with a global maximum

exhibiting a 15,000-fold increase in taxadiene production over the control, yielding 1.02 ±

0.08 g/liter (SD) taxadiene in fed-batch bioreactor fermentations.

We have further engineered the P450-based oxidation chemistry in Taxol biosynthesis in E.

coli to convert taxadiene to taxadien-5α-ol and provide the basis for the synthesis of

subsequent metabolites in the pathway by means of similar cytochrome P450 (CYP450)

oxidation chemistry. Our engineered strain improved taxadiene-5α-ol production by 2400-

fold over the state of the art with yeast (25). These advances unlock the potential of

microbial processes for the large-scale production of Taxol or its derivatives and thousands

of other valuable terpenoids.
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The multivariate-modular approach in which various promoters and gene copy-numbers are

combined to modulate diverse expression levels of upstream and downstream pathways of

taxadiene synthesis is schematically described in fig. S2. A total of 16 strains were

constructed in order to widen the bottleneck of the MEP pathway as well as optimally

balance it with the downstream taxadiene pathway (26). The dependence of taxadiene

accumulation on the upstream pathway for constant values of the downstream pathway is

shown in Fig. 2A, and the dependence on the downstream pathway for constant upstream

pathway strength is shown in Fig. 2B (table S1, calculation of the upstream and downstream

pathway strength from gene copy number and promoter strength). As the upstream pathway

expression increases in Fig. 2A from very low levels, taxadiene production also rises

initially because of increased supply of precursors to the overall pathway. However, after an

intermediate value further upstream pathway increases cannot be accommodated by the

capacity of the downstream pathway. For constant upstream pathway expression (Fig. 2B), a

maximum in downstream expression was similarly observed owing to the rising edge to

initial limiting of taxadiene production by low expression levels of the downstream pathway.

At high (after peak) levels of downstream pathway expression, we were probably observing

the negative effect on cell physiology of the high copy number.

These results demonstrate that dramatic changes in taxadiene accumulation can be obtained

from changes within a narrow window of expression levels for the upstream and

downstream pathways. For example, a strain containing an additional copy of the upstream

pathway on its chromosome under Trc promoter control (strain 8) (Fig. 2A) produced 2000-

fold more taxadiene than one expressing only the native MEP pathway (strain 1) (Fig. 2A).

Furthermore, changing the order of the genes in the downstream synthetic operon from GT

(GGPS-TS) to TG (TS-GGPS) resulted in a two- to threefold increase (strains 1 to 4 as

compared with strains 5, 8, 11, and 14). Altogether, the engineered strains established that

the MEP pathway flux can be substantial if an appropriate range of expression levels for the

endogenous upstream and synthetic downstream pathway are searched simultaneously.

To provide ample downstream pathway strength while minimizing the plasmid-born

metabolic burden (27), two new sets of four strains each were engineered (strains 17 to 20

and 21 to 24), in which the downstream pathway was placed under the control of a strong

promoter (T7) while keeping a relatively low number of five and 10 plasmid copies,

respectively. The taxadiene maximum was maintained at high downstream strength (strains

21 to 24), whereas a monotonic response was obtained at the low downstream pathway

strength (strains 17 to 20) (Fig. 2C). This observation prompted the construction of two

additional sets of four strains each that maintained the same level of downstream pathway

strength as before but expressed very low levels of the upstream pathway (strains 25 to 28

and 29 to 32) (Fig. 2D). Additionally, the operon of the upstream pathway of the latter strain

set was chromosomally integrated (fig S3). Not only was the taxadiene maximum recovered

in these strains, albeit at very low upstream pathway levels, but a much greater taxadiene

maximum was attained (~300 mg/liter). We believe that this significant increase can be

attributed to a decrease in the cell’s metabolic burden.

We next quantified the mRNA levels of 1-deoxy-D-xylulose-5-phosphate synthase (dxs) and

taxadiene synthase (TS) (representing the upstream and downstream pathways, respectively)

for the high-taxadiene-producing strains (25 to 32 and 17 and 22) that exhibited varying

upstream and downstream pathway strengths (fig. S4, A and B) to verify our predicted

expression strengths were consistent with the actual pathway levels. We found that dxs

expression level correlates well with the upstream pathway strength. Similar correlations

were found for the other genes of the upstream pathway: idi, ispD, and ispF (fig. S4, C and

D). In downstream TS gene expression, an approximately twofold improvement was
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quantified as the downstream pathway strength increased from 31 to 61 arbitrary units (a.u.)

(fig. S4B).

Metabolomic analysis of the previous strains led to the identification of a distinct metabolite

by-product that inversely correlated with taxadiene accumulation (figs. S5 and S6). The

corresponding peak in the gas chromatography–mass spectrometry (GC-MS) chromatogram

was identified as indole through GC-MS, 1H, and 13C nuclear magnetic resonance (NMR)

spectroscopy studies (fig. S7). We found that taxadiene synthesis by strain 26 is severely

inhibited by exogenous indole at indole levels higher than ~100 mg/liter (fig. S5B). Further

increasing the indole concentration also inhibited cell growth, with the level of inhibition

being very strain-dependent (fig. S5C). Although the biochemical mechanism of indole

interaction with the isoprenoid pathway is presently unclear, the results in fig. S5 suggest a

possible synergistic effect between indole and terpenoid compounds of the isoprenoid

pathway in inhibiting cell growth. Without knowing the specific mechanism, it appears that

strain 26 has mitigated the indole’s effect, which we carried forward for further study.

In order to explore the taxadiene-producing potential under controlled conditions for the

engineered strains, fed-batch cultivations of the three highest taxadiene accumulating strains

(~60 mg/ liter from strain 22; ~125 mg/liter from strain 17; and ~300 mg/liter from strain

26) were carried out in 1-liter bioreactors (Fig. 3). The fed-batch cultivation studies were

carried out as liquid-liquid two-phase fermentation using a 20% (v/v) dodecane overlay. The

organic solvent was introduced to prevent air stripping of secreted taxadiene from the

fermentation medium, as indicated by preliminary findings (fig. S8). In defined media with

controlled glycerol feeding, taxadiene productivity increased to 174 ± 5 mg/liter (SD), 210 ±

7 mg/liter (SD), and 1020 ± 80 mg/liter (SD) for strains 22, 17, and 26, respectively (Fig.

3A). Additionally, taxadiene production significantly affected the growth phenotype, acetate

accumulation, and glycerol consumption [Fig. 3, B and D, and supporting online material

(SOM) text]. Clearly, the high productivity and more robust growth of strain 26 allowed

very high taxadiene accumulation. Further improvements should be possible through

optimizing conditions in the bio-reactor, balancing nutrients in the growth medium and

optimizing carbon delivery.

Having succeeded in engineering the biosynthesis of the “cyclase phase” of Taxol for high

taxadiene production, we turned next to engineering the oxidation-chemistry of Taxol

biosynthesis. In this phase, hydroxyl groups are incorporated by oxygenation at seven

positions on the taxane core structure, mediated by CYP450-dependent monooxygenases

(28). The first oxygenation is the hydroxylation of the C5 position, followed by seven

similar reactions en route to Taxol (fig. S1) (29). Thus, a key step toward engineering Taxol-

producing microbes is the development of CYP450-based oxidation chemistry in vivo. The

first oxygenation step is catalyzed by a CYP450, taxadiene 5α-hydroxylase, which is an

unusual monooxygenase that catalyzes the hydroxylation reaction along with double-bond

migration in the diterpene precursor taxadiene (Fig. 1).

In general, functional expression of plant CYP450 in E. coli is challenging (30) because of

the inherent limitations of bacterial platforms, such as the absence of electron transfer

machinery and CYP450-reductases (CPRs) and translational incompatibility of the

membrane signal modules of CYP450 enzymes because of the lack of an endoplasmic

reticulum. Recently, through transmembrane (TM) engineering and the generation of

chimera enzymes of CYP450 and CPR, some plant CYP450s have been expressed in E. coli

for the biosynthesis of functional molecules (15,31). Still, every plant CYP450 has distinct

TM signal sequences and electron transfer characteristics from its reductase counterpart

(32). Our initial studies were focused on optimizing the expression of codon-optimized

synthetic taxadiene 5α-hydroxylase by N-terminal TM engineering and generating chimera
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enzymes through translational fusion with the CPR redox partner from the Taxus species,

Taxus CYP450 reductase (TCPR) (Fig. 4A) (29,31,33). One of the chimera enzymes

generated, At24T5αOH-tTCPR, was highly efficient in carrying out the first oxidation step,

resulting in more than 98% taxadiene conversion to taxadien-5α-ol and the byproduct 5(12)-

Oxa-3(11)-cyclotaxane (OCT) (fig. S9A).

Compared with the other chimeric CYP450s, At24T5αOH-tTCPR yielded twofold higher

(21 mg/liter) production of taxadien-5α-ol (Fig. 4B). Because of the functional plasticity of

taxadiene 5α-hydroxylase with its chimeric CYP450’s enzymes (At8T5αOH-tTCPR,

At24T5αOH-tTCPR, and At42T5αOH-tTCPR), the reaction also yields a complex structural

rearrangement of taxadiene into the cyclic ether OCT (fig. S9) (34). The byproduct

accumulated in approximately equal amounts (~24 mg/liter from At24T5αOH-tTCPR) to the

desired product taxadien-5α-ol.

The productivity of strain 26-At24T5αOH-tTCPR was significantly reduced relative to that

of taxadiene production by the parent strain 26 (~300 mg/liter), with a concomitant increase

in indole accumulation. No taxadiene accumulation was observed. Apparently, the

introduction of an additional medium copy plasmid (10-copy, p10T7) bearing the

At24T5αOH-tTCPR construct disturbed the carefully engineered balance in the upstream

and downstream pathway of strain 26 (fig S10). Small-scale fermentations were carried out

in bioreactors so as to quantify the alcohol production by strain 26-At24T5αOH-tTCPR. The

time course profile of taxadien-5α-ol accumulation (Fig. 4C) indicates alcohol production of

up to 58 ± 3 mg/liter (SD) with an equal amount of the OCT by-product produced. The

observed alcohol production was approximately 2400-fold higher than previous production

in S. cerevisiae (25).

The MEP pathway is energetically balanced and thus overall more efficient in converting

either glucose or glycerol to isoprenoids (fig. S11). Yet, during the past 10 years many

attempts at engineering the MEP pathway in E. coli in order to increase the supply of the

key precursors IPP and DMAPP for carotenoid (21,35), sesquiterpenoid (16), and

diterpenoid (17) overproduction met with limited success. This inefficiency was attributed to

unknown regulatory effects associated specifically with the expression of the MEP pathway

in E. coli (16). Here, we provide evidence that such limitations are correlated with the

accumulation of the metabolite indole, owing to the non-optimal expression of the pathway,

which inhibits the isoprenoid pathway activity. Taxadiene overproduction (under conditions

of indole-formation suppression), establishes the MEP pathway as a very efficient route for

biosynthesis of pharmaceutical and chemical products of the isoprenoid family (fig. S11).

One simply needs to carefully balance the modular pathways, as suggested by our

multivariate-modular pathway–engineering approach.

For successful microbial production of Taxol, demonstration of the chemical decoration of

the taxadiene core by means of CYP450-based oxidation chemistry is essential (28).

Previous efforts to reconstitute partial Taxol pathways in yeast found CYP450 activity

limiting (25), making the At24T5αOH-tTCPR activity levels an important step to

debottleneck the late Taxol pathway. Additionally, the strategies used to create

At24T5αOH-tTCPR are probably applicable for the remaining monooxygenases that will

require expression in E. coli. CYP450 monooxygenases constitute about one half of the 19

distinct enzymatic steps in the Taxol biosynthetic pathway. These genes show unusually

high sequence similarity with each other (>70%) but low similarity (<30%) with other plant

CYP450s (36), implying that these monooxygenases are amenable to similar engineering.

To complete the synthesis of a suitable Taxol precursor, baccatin III, six more hydroxylation

reactions and other steps (including some that have not been identified) need to be
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effectively engineered. Although this is certainly a daunting task, the current study shows

potential by providing the basis for the functional expression of two key steps, cyclization

and oxygenation, in Taxol biosynthesis. Most importantly, by unlocking the potential of the

MEP pathway a new more efficient route to terpenoid biosynthesis is capable of providing

potential commercial production of microbially derived terpenoids for use as chemicals and

fuels from renewable resources.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.

Multivariate-modular approach for isoprenoid pathway optimization. To increase the flux

through the upstream MEP pathway, we targeted reported enzymatic bottlenecks (dxs, idi,

ispD, and ispF) (gray) for over-expression by an operon (dxs-idi-ispDF) (21). To channel the

overflow flux from the universal isoprenoid precursors, IPP and DMAPP, toward Taxol

biosynthesis, we constructed a synthetic operon of downstream genes GGPP synthase (G)

and taxadiene synthase (T) (37). Both pathways were placed under the control of inducible

promoters in order to control their relative gene expression. In the E. coli metabolic network,

the MEP isoprenoid pathway is initiated by the condensation of the precursors

glyceraldehyde-3 phosphate (G3P) and pyruvate (PYR) from glycolysis. The Taxol pathway

bifurcation starts from the universal isoprenoid precursors IPP and DMAPP to form

geranylgeranyl diphosphate, and then the taxadiene. The cyclic olefin taxadiene undergoes

multiple rounds of stereospecific oxidations, acylations, and benzoylation to form the late

intermediate Baccatin III and side chain assembly to, ultimately, form Taxol.
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Fig. 2.

Optimization of taxadiene production through regulating the expression of the upstream and

downstream modular pathways. (A) Response in taxadiene accumulation to changes in

upstream pathway strengths for constant values of the downstream pathway. (B)

Dependence of taxadiene on the downstream pathway for constant levels of upstream

pathway strength. (C) Taxadiene response from strains (17 to 24) engineered with high

upstream pathway overexpressions (6 to 100 a.u.) at two different downstream expressions

(31 a.u. and 61 a.u.). (D) Modulation of a chromosomally integrated upstream pathway by

using increasing promoter strength at two different downstream expressions (31 a.u. and 61

a.u.). (E) Genotypes of the 32 strain constructs whose taxadiene phenotype is shown in Fig.

2, A to D. E, E. coli K12MG1655 ΔrecAΔendA; EDE3, E. coli K12MG1655 ΔrecAΔendA

with DE3 T7 RNA polymerase gene in the chromosome; MEP, dxs-idi-ispDF operon; GT,

GPPS-TS operon; TG, TS-GPPS operon; Ch1, 1 copy in chromosome; Trc, Trc promoter;

T5, T5 promoter; T7, T7 promoter; p5, pSC101 plasmid; p10, p15A plasmid; and p20,

pBR322 plasmid.
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Fig. 3.

Fed-batch cultivation of engineered strains in a 1-liter bioreactor. Time courses of (A)

taxadiene accumulation, (B) cell growth, (C) acetic acid accumulation, and (D) total

substrate (glycerol) addition for strains 22, 17, and 26 during 5 days of fed-batch bioreactor

cultivation in 1-liter bioreactor vessels under controlled pH and oxygen conditions with

minimal media and 0.5% yeast extract. After glycerol depletes to ~0.5 to 1 g/liter in the

fermentor, 3 g/liter of glycerol was introduced into the bioreactor during the fermentation.

Data are mean of two replicate bioreactors.
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Fig. 4.

Engineering Taxol P450 oxidation chemistry in E. coli. (A) TM engineering and

construction of chimera protein from taxadien-5α-ol hydroxylase (T5αOH) and Taxus

cytochrome P450 reductase (TCPR). The labels 1 and 2 represent the full-length proteins of

T5αOH and TCPR identified with 42 and 74 amino acid TM regions, respectively, and 3

represents chimera enzymes generated from three different TM engineered T5αOH

constructs [At8T5αOH, At24T5αOH, and At42T5αOH constructed by fusing an 8-residue

synthetic peptide MALLLAVF (A) to 8, 24, and 42AA truncated T5αOH] through a

translational fusion with 74AA truncated TCPR (tTCPR) by use of linker peptide GSTGS.

(B) Functional activity of At8T5αOH-tTCPR, At24T5αOH-tTCPR, and At42T5αOH-

tTCPR constructs transformed into taxadiene producing strain 26. Data are mean ± SD for

three replicates. (C) Time course profile of taxadien-5α-ol accumulation and growth profile

of the strain 26-At24T5αOH-tTCPR fermented in a 1-liter bioreactor. Data are mean of two

replicate bioreactors.
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