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Abstract: Flavonoids are a subclass of polyphenols which are attractive, due to possessing various

physiological activities, including a radioprotective effect. Tumor suppressor p53 is a primary

regulator in the radiation response and is involved in the pathogenesis of radiation injuries. In

this study, we revealed that isorhamnetin inhibited radiation cell death, and investigated its action

mechanism focusing on DNA damage response. Although isorhamnetin moderated p53 activity, it

promoted phosphorylation of ataxia telangiectasia mutated (ATM) and enhanced 53BP1 recruitment

in irradiated cells. The radioprotective effect of isorhamnetin was not observed in the presence of ATM

inhibitor, indicating that its protective effect was dependent on ATM. Furthermore, isorhamnetin-

treated mice survived gastrointestinal death caused by a lethal dose of abdominal irradiation. These

findings suggested that isorhamnetin enhances the ATM-dependent DNA repair process, which is

presumably associated with the suppressive effect against GI syndrome.

Keywords: isorhamnetin; radiation hematopoietic syndrome; radiation gastrointestinal syndrome;

DNA damage response; p53; p53 target genes; 53BP1; ATM; pS1981-ATM; γH2AX

1. Introduction

Preventing hematopoietic (HP) and gastrointestinal (GI) syndromes after high-dose
radiation exposure is important for reducing mortality. In particular, radiation GI syn-
drome is incurable because effective therapy for the syndrome has not established yet.
Development of effective radioprotector or radiomitigator is an essential provision for
nuclear terrorism, radiation disaster, and planned exposure such as radiotherapy.

Tumor suppressor p53 is a primary regulator in radiation response and is well known
as a transcription factor which is closely associated with apoptosis [1], cell cycle control [2],
and DNA damage response [3]. Several studies demonstrated that p53 functions in a
different way between tissues [4–6]. p53 causes apoptosis in irradiated hematopoietic
lineages that leads to HP syndrome, and some p53 inhibitors have been shown to rescue
mice from HP syndrome caused by total-body irradiation (TBI) [7–9]. On the other hand,
p53 acts as a radioresistant factor against radiation GI injury [4,5]. We focused on the
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different roles in the tissues and identified some p53-regulating compounds [9–11]. Among
them, 5-chloro-8-quinolinol (5CHQ) rescues mice from abdominal irradiation-induced
GI syndrome through the radioprotective modulation of p53 transactivation [11]. p53
regulation is considered as one of the beneficial counter strategies against radiation toxicity.

Flavonoids are a subclass of polyphenols and is attractive due to possessing various
physiological activities, such as tumor suppressing [12] and antioxidative [13] effects. In
terms of the radioprotective effect, some flavonoids have been shown to suppress radiation
HP and GI toxicity. Apigenin, a rich element found in dark-green vegetables, has been
shown to suppress TBI-induced HP [14] and GI toxicities in mice [15]. Another report
demonstrated that alcohol-extracted flavonoid inhibits hemocyte reduction after TBI [16].
However, there was no report on the p53-dependent radioprotective effect of flavonoids.

In this study, we performed a screening of flavonoids, in order to specify novel
radioprotective ones, and selected isorhamnetin as a candidate. Isorhamnetin moderately
inhibited p53 activity, but promoted ATM activation and the recruitment of DNA repair
factor in irradiated cells. Moreover, it effectively suppressed GI death after a lethal dose of
abdominal irradiation.

2. Materials and Methods

2.1. Cell Culture and Treatment

The human T-cell leukemia MOLT-4 cell line bearing wild-type p53 [17,18] was established
and gifted from Dr. Jun Minowada (Roswell Park Memorial Institute, Buffalo, NY, USA), and
their derivative transformed cell lines (KD-1 (p53-knockdown by p53-targeting shRNA), Nega
(negative control of the shRNA), and KD-1/R-p53-1 (p53-revertant of KD-1)) were established
as described in our previous reports [19,20]. They were cultured in RPMI 1640 medium (Wako,
Osaka, Japan). The human hepatoblastoma cell line Hep G2 cells [21] purchased from ATCC
(HB-8065) were cultured in DMEM/F12 medium (Wako). The media were supplemented
with 10% fetal bovine serum (FBS) (Gibco, CA, USA) and antibiotics (Nacalai Tesque, Kyoto,
Japan) including 100 U/mL penicillin and 0.1 mg/mL streptomycin. They were maintained
at 37 ◦C in a humidified atmosphere with 5% CO2 and irradiated using an X-ray generator
(MBR-1520R-3, Hitachi, Tokyo, Japan) under a tube voltage of 150 kV, a tube current of 20 mA,
and a dose rate of approximately 1.6 Gy/min. Dosimetry was carried out with a 0.3 cc N31003
ionization chamber (PTW Freiburg, Freiburg, Germany).

2.2. Cell Survival Assays

Radioprotective flavonoids were screened by WST-8 assay using MOLT-4 cells. The
cells were treated with 18 kinds of flavonoids, kindly gifted by Prof. Yoshichika Kawai
(Graduate School of Biomedical Sciences, Tokushima University), or vehicle (dimethyl
sulfoxide: DMSO, Wako) an hour before irradiation. After twenty-four hours of 10 Gy
irradiation, cell viabilities were evaluated by using a Cell Counting Kit-8 (DOJINDO,
Kumamoto, Japan), and isorhamnetin was selected as a candidate of radioprotective
flavonoid. Absorbance was measured at 450 nm using a spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA).

Dye exclusion test was performed for further assessment of the anti-cell death activity
of isorhamnetin. MOLT-4 cells and their transfectants were treated with isorhamnetin or
DMSO, incubated for an hour, and irradiated with 10 Gy irradiation. Living and dead cells
were counted differently by staining with erythrosine B (Tokyo kasei, Tokyo, Japan), and
cell viabilities were evaluated at 24 h after the irradiation.

2.3. Apoptosis Assay

Antiapoptotic effect of isorhamnetin was investigated by Annexin V-FITC staining.
MOLT-4 cells and their transfectants were treated with 20 µM isorhamnetin or DMSO an
hour before irradiation. After twenty hours of 10 Gy irradiation, the percentages of cells in
apoptosis were examined by a flow cytometer (FACS Calibur, Becton Dickinson, NJ, USA)
using an MEBCYTO Apoptosis kit (MBL, Tokyo, Japan)



Genes 2021, 12, 1514 3 of 11

2.4. Colony Formation Assay

MOLT-4 cells were treated with isorhamnetin or DMSO with or without 20 µM
KU55933 (Synkinase, Shanghai, China), a specific inhibitor of ATM kinase, an hour before
irradiation. After twenty-four hours of 2 Gy irradiation, cells were diluted and plated in
4 mL of 0.16% soft agar medium at a density of 150–6000 cells/25 cm2 dish, followed by
incubation for 3 weeks. Surviving fraction was calculated by counting spheroids consisting
of more than 50 cells.

2.5. Immunoblotting

MOLT-4 cells were treated with 40 µM isorhamnetin or DMSO with or without 20
µM KU55933 an hour before irradiation. After 0.5, 3, and 6 h of 10 Gy irradiation, cells were
collected and prepared as samples. Protein concentrations of the samples were adjusted equally
using a BCA Protein Assay Reagent (Thermo Fisher Scientific). SDS-PAGE was conducted
using 5–20% gradient pre-cast gels (ATTO, Tokyo, Japan). Western blotting was performed
using the following antibodies: H2AX (D17A3, Cell Signaling Technology, Danfoss, MA, USA),
γH2AX (JBW301, Millipore, MA, USA), ATM (NB100-104, Novus Biologicals, Littleton, CO,
USA), pS1981-ATM (pATM) (D6H9, Cell Signaling Technology), p53 (clone DO-1, sc-126 HRP,
Santa Cruz Biotechnology, Dallas, CA, USA), pS15-p53 (9284, Cell Signaling Technology),
p21 (clone EA10, Calbiochem, Kenilworth, CA, USA), PUMA (sc19187, Calbiochem), β-actin
(AC-15, Sigma, St. Louis, MO, USA). β-actin was used as an internal control.

2.6. Immunofluorescence

Hep G2 cells were treated with 40 µM isorhamnetin or DMSO with or without 20 µM
KU55933. They were fixed with 4% paraformaldehyde/phosphate-buffered saline (PBS) for
30 min at 0.5 and 4 h after 2 Gy irradiation for γH2AX and 53BP1 focus assays, respectively.
The cells were permeabilized with 0.2% Triton X-100 (Wako)/PBS and blocked with 1%
bovine serum albumin (Calbiochem)/PBS. Then, cells were incubated with primary anti-
bodies overnight at 4 ◦C, incubated with Alexa 546-labeled goat anti-mouse IgG antibody
(Life Technologies, Carlsbad, CA, USA) for 1 h at room temperature, and mounted with
VECTASHIELD mounting medium with DAPI (Vector Laboratories, Burlingame, CA, USA).
JBW301 (Millipore) and clone BP13 (Millipore) were used as primary antibodies for γH2AX
and 53BP1, respectively. γH2AX and 53BP1 foci were observed by the BZ-9000 fluorescence
microscopy (Keyence, Osaka, Japan), and the number of foci showing brightness value
of 38 or more was automatically counted using a BZ analyzer software (Keyence, Osaka,
Japan). The foci number per nucleus was quantified from 50 nuclei.

2.7. Mice

Specific pathogen-free female ICR mice (7 weeks of age) were obtained (SLC, Shizuoka,
Japan), and were housed under a controlled temperature (22 ◦C) and a preset light-dark
cycle. Standard MF diet and normal drinking water were provided ad libitum during all
experimental periods. Ethics approval for the experimental design was obtained from the
animal experimental committee of Tokushima University

2.8. Mouse Toxicity Test

After 7 days of acclimatization, mice were given a single intraperitoneal injection of
isorhamnetin (7.5, 15, and 30 mg/kg body weight) or vehicle (10% DMSO in olive oil),
and changes in body weight were recorded every 7 days. Mice were sacrificed 61 days
after the injection, and blood was collected from the heart. The amount of red blood cells
(RBC), hemoglobin (Hgb), white blood cells (WBC), and platelets (PLT) were measured
using an automated impedance-based hematology analyzer (Microcemi LC-662, Horiba,
Kyoto, Japan).
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2.9. Induction of Acute Radiation Syndromes

After 7 days of acclimatization, mice were given a single intraperitoneal injection
of 30 mg/kg isorhamnetin or vehicle (10% DMSO in olive oil) 30 min before irradiation.
TBI and subtotal body irradiation (SBI) were then performed to induce acute HP and GI
syndromes, respectively, using the X-ray generator (MBR-1520R-3, Hitachi) under a tube
voltage of 150 kV, a tube current of 20 mA, and a dose rate of approximately 1.0 Gy/min.
Dosimetry was carried out with a 0.3 cc N31003 ionization chamber (PTW Freiburg).
The SBI treatment was conducted in a manner that permits bone marrow death to be
avoided because bone marrow injury is considered as a contributing factor to GI death [22].
Briefly, the frontal side of the body, including head, chest, and front legs, were shielded
with lead layers with a thicknesses of 3 cm, and X-irradiation was then performed in a
dorsal-to-ventral direction.

2.10. Statistical Analyses

Data are presented as the mean ± standard deviation. Statistical differences between
groups were examined using chi-square test for mouse survival data. Student’s t-test was
used for data of immunoblotting, apoptosis assay, and dye exclusion test using derivative
transformed cell lines of MOLT-4 cells. Mann–Whitney U test was used for γH2AX and
53BP1 foci data. Dunnett’s test was used for data of colony formation assay, WST-8 assay,
dye exclusion test without using transfectants of MOLT-4 cells, and hematology. p < 0.05
was considered significant.

3. Results

3.1. Isorhamnetin Inhibits Radiation Cell Death

Candidates for high radioprotective flavonoid were screened by WST-8 assays in a
blind manner (Supplementary Figure S1). Among 18 kinds of flavonoids, isorhamnetin was
found as a radioprotective and low cytotoxic one. Isorhamnetin showed a dose-dependent
radioprotective effect in the range of 20–160 µM, while unirradiated MOLT-4 cells showed
more than 100% viability with isorhamnetin treatment above 10 µM. This may be attributed
to the self-absorption of the 450 nm wavelength by isorhamnetin. The dye exclusion test and
the colony formation assay also revealed a significant and dose-dependent radioprotective
effect of isorhamnetin in the range of 20–160 µM and 10–40 µM, respectively (Figure 1b,c).

In the WST-8 assay, apigenin also exhibited significant radioprotective activity in
the range from 12.5 to 40 µM, and its anti-cell death effect was comparable to that of
isorhamnetin (Supplementary Figure S1). However, its cytotoxicity was more potent
compared with that of isorhamnetin. Apigenin has already been shown to protect mice
from TBI-induced HP and GI toxicities [14,15], and the present study demonstrated that
it had no efficacy against GI death caused by SBI (Supplementary Figure S2). Therefore,
isorhamnetin was selected as a novel radioprotective flavonoid and was proceeded with
detailed investigations.

For further assessment of the radioprotective effect, γH2AX foci in irradiated cells
treated with or without isorhamnetin were investigated (Figure 1c). There were no sig-
nificant differences in the number of γH2AX foci between isorhamnetin-treated cells and
DMSO-treated cells at 30 min after 2 Gy irradiation, indicating that initial radiation DNA
damage was at a similar level between them. These findings also suggested that isorham-
netin had no radical scavenging activity.

3.2. Isorhamnetin Inhibits Radiation Cell Death Independent of p53-Mediated Apoptosis

Antiapoptotic effect of isorhamnetin was examined by Annexin V-FITC staining. As
shown in Figure 2a, isorhamnetin did not suppress radiation-induced apoptosis in MOLT-4
cells and their transfectants. However, significant reductions in cell death were observed in
MOLT-4 cells and their transfectants except KD-1/R-p53-1 in the dye exclusion test (Figure 2b).
These findings indicated that isorhamnetin enhanced cell viability after irradiation independent
of p53 status and p53-mediated apoptosis.
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Figure 1. Isorhamnetin inhibits radiation-induced cell death. (a) WST-8 assay of MOLT-4 cell viability 24 h after 10 Gy

irradiation (n = 3). (b) Dye exclusion test of MOLT-4 cells 24 h after 10 Gy irradiation (n = 3). (c) Colony forming activity of

MOLT-4 cells treated with 2 Gy irradiation (n = 5). (d) γH2AX foci in Hep G2 cells 30 min after 2 Gy irradiation. The foci

and DNA were stained with γH2AX-specific antibody and DAPI, respectively. The number of γH2AX foci per nucleus was

quantified (n = 50). Magnification, 40×. Data represent the mean ± standard deviation (a–c). Asterisk indicates a significant

difference (** p < 0.01) between groups. DMSO dimethyl sulfoxide, Iso isorhamnetin, IR irradiated, UnIR unirradiated.

 

μ

γ

γ

Figure 2. Isorhamnetin inhibits radiation cell death independent of p53 status and apoptosis. Cells were treated with 20 µM

isorhamnetin. (a) Apoptosis assay by Annexin V-FITC staining 20 h after 10 Gy irradiation (n = 3). (b) Dye exclusion test

24 h after 10 Gy irradiation (n = 3). Asterisks indicate a significant difference (* p < 0.05 and ** p < 0.01) between groups.

DMSO dimethyl sulfoxide, Iso isorhamnetin, IR irradiated.
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3.3. Isorhamnetin Protects Mice from SBI-Induced GI Death

The acceptable dose of isorhamnetin to mice was investigated preliminarily. Although
RBC and Hgb levels in mice treated with 7.5 mg/kg and 30 mg/kg isorhamnetin were
significantly higher than those in mice treated with DMSO on day 61 after the treatment,
these differences were exceedingly small (Figure 3a). Moreover, there were no abnormalities
in weight gain at each dose tested (Figure 3b). Based on these findings, the dose to mice
was thought to be allowed at least 30 mg/kg or less.

 

Figure 3. Isorhamnetin rescues mice from gastrointestinal death after SBI, but not from bone marrow death after TBI.

(a) Hematological assay 61 days after single-dose of isorhamnetin (n = 4 in each group). (b) Body weight changes after the

isorhamnetin treatment (n = 4 in each group). (c) 30-day survival tests after 8 Gy TBI and 24 Gy SBI (n = 10 in each group).

Data represent the mean ± standard deviation. Asterisks indicate a significant difference (* p < 0.05 and ** p < 0.01) between

groups. DMSO dimethyl sulfoxide, Iso isorhamnetin, RBC red blood cells, Hgb hemoglobin, WBC white blood cells, PLT

platelets, TBI total body irradiation, SBI subtotal body irradiation.

The radioprotective effect of isorhamnetin was investigated in mouse models of acute
radiation syndromes. Radiation HP and GI syndromes were induced by 10 Gy TBI and 24 Gy
SBI, respectively. Isorhamnetin significantly improved survival rate of mice after the SBI
treatment but failed to rescue mice after the TBI treatment (Figure 3c). These results suggested
that isorhamnetin enhanced radioresistance of the intestinal tissue but not the myeloid tissue.
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3.4. Isorhamnetin Promotes Phosphorylation of ATM after Irradiation

Expression of radiation-induced DNA damage response-related proteins in MOLT-4
cells were investigated by Western blot analyses (Figure 4a). p53 and its target genes (p21,
PUMA) were strongly induced by 10 Gy irradiation, and isorhamnetin slightly enhanced
p53 stability at 6 h after irradiation. However, at 3 and 6 h after irradiation, isorhamnetin
decreased phosphorylated p53 (pS15-p53), p21, and PUMA expressions in irradiated cells
by nearly half.

 

β
γ

γ

Figure 4. Isorhamnetin enhances ATM phosphorylation in irradiated MOLT-4 cells. (a) DNA damage response-related

gene products were detected by Western blotting 0.5, 3, and 6 h after 10 Gy irradiation, and signal intensity of each band

was analyzed by densitometry. The original value of each signal intensity ratio was determined using the signal intensity

obtained from cells 0.5 h after 10 Gy irradiation (1.5 h after DMSO treatment) as a control (lane 7). The band intensity ratio of

each sample was then normalized by the band intensity ratio of β-actin as an internal control. (b) Relative expression level of

γH2AX (n = 3). Data represent the mean ± standard deviation. DMSO dimethyl sulfoxide, Iso isorhamnetin, IR irradiated.

Although isorhamnetin did not affect the amount of initial radiation DNA damage
(Figure 1d), we observed an increased expression of γH2AX in isorhamnetin-treated cells
compared with vehicle-treated cells at 0.5, 3, and 6 h after the irradiation. The increasing
tendency in the γH2AX expression was obtained in three independent experiments, but
statistical significance was not detectable (Figure 4b). Furthermore, ATM phosphoryla-
tion (pS1981-ATM) was strongly induced in isorhamnetin-treated cells at 0.5 h after the
irradiation. These findings suggested that isorhamnetin enhanced ATM-mediated DNA
damage response.

3.5. Isorhamnetin Promotes 53BP1 Recruitment through the Enhancement of
ATM Phosphorylation

The findings shown in Figure 4 lead to the hypothesis that ATM is associated with the
radioprotective effect of isorhamnetin. We next investigated whether the radioprotective
effect of isorhamnetin depends on ATM using the ATM inhibitor KU55933. As shown in
Figure 5a, KU55933 inhibited pS1981-ATM and γH2AX expression in isorhamnetin-treated
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MOLT-4 cells. Moreover, in contrast to the finding from Figure 1c, isorhamnetin could not
elevate colony surviving fraction following 2 Gy irradiation in the presence of KU55933
(Figure 5b). These findings indicated that ATM has a crucial role in the radioprotective
effect of isorhamnetin.

β

Figure 5. Isorhamnetin exhibits radioprotective effect through the ATM-dependent promotion of 53BP1 recruitment.

(a) Isorhamnetin could not promote ATM and H2AX phosphorylation in irradiated MOLT-4 cells at the presence of ATM

inhibitor (KU55933). Data were obtained 0.5 h after 10 Gy irradiation. The original value of each signal intensity ratio was

determined using the signal intensity obtained from cells 0.5 h after 10 Gy irradiation (1.5 h after DMSO treatment) as a

control (lane 1). The band intensity ratio of each sample was then normalized by the band intensity ratio of β-actin as an

internal control. (b) Isorhamnetin could not enhance colony forming activity in the presence of the ATM inhibitor (n = 5).

(c) 53BP1 foci in Hep G2 cells 4 h after 2 Gy irradiation. The foci and DNA were stained with 53BP1-specific antibody

and DAPI, respectively. The number of 53BP1 foci per nucleus was quantified (n = 50). Magnification, 40×. An asterisk

indicates a significant difference (* p < 0.05) between groups. DMSO dimethyl sulfoxide, Iso isorhamnetin, IR irradiated,

UnIR unirradiated.
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To examine the influence of isorhamnetin on the radiation DNA damage repair path-
way, we investigated 53BP1 foci formation in irradiated Hep G2 cells. The findings from
Figure 1 demonstrated that isorhamnetin had no effect on inhibiting initial radiation DNA
damage. However, compared with vehicle-treated cells, isorhamnetin-treated cells showed
a significant increase in the number of 53BP1 foci at 4 h after 2 Gy irradiation, and the
increase was not observed in the presence of KU55933 (Figure 5c). These findings suggested
that isorhamnetin promotes radiation DNA damage repair through the enhancement of
ATM-dependent 53BP1 recruitment.

4. Discussion

The findings reported herein show that isorhamnetin has an ATM-dependent radio-
protective effect through the promotion of 53BP1 recruitment. Isorhamnetin was found
as a radioprotective flavonoid that effectively suppressed radiation GI death. It inhibited
radiation cell death independent of p53 status without radical scavenging and antiapoptotic
activities. Its protective effect may be attributed to the enhancement of an ATM-dependent
DNA damage repair pathway.

We found that isorhamnetin has a radioprotective activity with low cytotoxicity. While
isorhamnetin showed no antiapoptotic effect, it inhibited radiation cell death independent
of p53 status. The anti-cell death effect is likely attributed to the inhibition of non-apoptotic
cell death, and use of isorhamnetin may not be beneficial for suppressing radiation injury
mainly caused by apoptosis. The finding from 30-day survival tests that isorhamnetin had
no efficacy in reducing TBI lethality supports this conclusion. It has been well documented
that p53-dependent apoptosis of bone marrow cells contributes to the pathogenesis of
radiation HP syndrome [5,23], and that the syndrome can be effectively suppressed by
p53 inhibition [6–10]. Considering the fact that isorhamnetin did not strongly inhibit p53
activity and has no antiapoptotic effect, its ineffectiveness against bone marrow death may
be somewhat reasonable.

In contrast to the ineffectiveness against TBI lethality, isorhamnetin successfully im-
proved survival rate in mice after a lethal dose of SBI. Modulating the p53–p21 pathway
is one of the key strategies for suppressing the GI syndrome. Compared with p53 wild-
type mice, super-p53 mice with two more copies of Trp53 [24] are less sensitive to the GI
injury [5], and p21 knockout mice are more sensitive to the injury [4,5]. The enhancement
of p21 induction promotes cell cycle arrest, which may provide adequate time to repair ra-
diation DNA damage [25]. We previously reported 5-chloro-8-quinolinol as a modulator of
p53 transactivation that effectively inhibits the GI syndrome through the induction of p21.
Others demonstrated similar results by using RG7112, a chemical compound that activates
p53–p21 pathway through the inhibition of p53–Mdm2 interaction [26]. Considering the
fact that isorhamnetin moderately inhibited p53–p21 pathway in irradiated MOLT-4 cells,
it would exert the suppressive effect against GI death independent of p53.

Isorhamnetin showed slightly and markedly enhanced H2AX and ATM phosphoryla-
tion, respectively, in irradiated MOLT-4 cells, and an ATM-dependent radioprotective effect
with increasing 53BP1 recruitment in Hep G2 cells, which may be associated with the sup-
pressive effect of isorhamnetin against radiation GI death. 53BP1 is a principle component
of DNA damage repair process and known to regulate the balance between homologous
recombination and non-homologous end joining [27,28]. Activated ATM phosphorylates
H2AX at Se139, which allows the recruitment of 53BP1 to the site of DNA double-strand
breaks [29]. 53BP1-dificient mice have been shown to exhibit hypersensitivity to TBI of
7–8 Gy and succumb to GI and HP failures [30,31]. Furthermore, 53BP1 is important for
maintaining euploidy and prevention of genome instability in the intestinal enterocytes of
mice exposed to radiation [32]. Isorhamnetin may contribute to maintaining GI integrity
by the upregulation of DNA damage repair through 53BP1, while the role of 53BP1 in the
development of radiation GI syndrome is not well known. Detailed studies are further
required to clarify the action mechanism of isorhamnetin.
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In this study, isorhamnetin was found to have an ATM-dependent radioprotective ben-
efit against radiation GI syndrome. Our data suggested that ATM-dependent reconvocation
of 53BP1 is responsible for the mechanism of action of isorhamnetin. Its use may be useful
for reducing GI toxicity in local exposure situations, such as lower abdominal radiotherapy.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10

.3390/genes12101514/s1, Figure S1: Screening of radioprotective flavonoids by WST-8 assay using

MOLT-4 cells, Figure S2: Apigenin gave a higher survival rate to 24 Gy-SBI mice than the vehicle, but

this difference did not reach statistical significance (p = 0.06).
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