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ISOSINGULAR LOCI
AND THE CARTESIAN PRODUCT STRUCTURE

OF COMPLEX ANALYTIC SINGULARITIES
BY

ROBERT EPHRAIM

Abstract. Let X be a (not necessarily reduced) complex analytic space, and
let F be a germ of an analytic space. The locus of points q in X at which the
germ Xq is complex analytically isomorphic to F is studied. If it is nonempty
it is shown to be a locally closed submanifold of X, and X is locally a
Cartesian product along this submanifold. This is used to define what
amounts to a coarse partial ordering of singularities. This partial ordering is
used to show that there is an essentially unique way to completely decom-
pose an arbitrary reduced singularity as a cartesian product of lower
dimensional singularities. This generalizes a result previously known only
for irreducible singularities.

0. Introduction. Let X be a complex analytic space. For q E X, Xq will
denote the germ of X at q. In this paper I will study the isosingular loci
defined by

Definition 0.1. Forp G X let

lso{X,p) = {qEX\Xq = Xp).
(¡a here and elsewhere will mean complex analytically isomorphic.) It will be
shown that:

Theorem 0.2. For any p E X, lso{X,p) is a {possibly 0-dimensional) com-
plex submanifold of some open subset of X. Moreover, for any q E Iso(A", p)
there is an open neighbornood U of q, and an analytic space Y such that
U at Y X {U n lso{X,p)). (X is the cartesian product in the category of
analytic spaces.)

This result is used to introduce what is, in effect, a partial ordering of
complex analytic singularities in terms of their complexity. This, in turn, is
used to study the ways in which a germ of an analytic space may be written
as the cartesian product of other germs of analytic spaces. Let F be a germ of
an analytic space ( V not the reduced point). By a decomposition of V of length
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358 ROBERT EPHRAIM

k I mean an unordered Ä>tuple {Vx,..., Vk) of germs of analytic spaces, no
V¡ being the reduced point, such that V at Vx X • • • X Vk. (Note that all the
Vj will be reduced and positive dimensional if and only if V is reduced.) V
will be called indecomposable if and only if V has no decomposition of length
2. Finally, V will be called uniquely decomposable if and only if (i) V has a
decomposition {Vx, . . . , Vk) with all Vj indecomposable, and (ii) if
{Vx,..., Vk) and {Wx,..., Wh) are two such decompositions of V, then
k = h, and, after permuting the Wfs, one has Vj = Wj for ally.

It will be shown that:

Theorem 0.3. If V is a positive dimensional germ of a reduced analytic space,
then V is uniquely decomposable.

This generalizes a result from [2]. It would be interesting to know if
nonreduced singularities are uniquely decomposable. In particular, this would
give a structure theorem for complex analytic Artin local rings.

Finally, let me remark that analogues of these definitions and results can
also be formulated for reduced, irreducible germs of real analytic spaces,
although the proofs are different [1]. For the purpose of the real analytic
analogue of Theorem 0.3, a germ of real analytic space is said to be reduced if
the natural map v& -» yQ is injective. {y& here is the real analytic local ring
of V, and VQ is the ring of germs of continuous functions on V.) In
particular, if F is a reduced irreducible germ of a complex space, then V is
uniquely decomposable both complex analytically and real analytically, and
these two decompositions are essentially the same [1]. It is not yet known if
this is true for reducible V.

I wish to thank the referee for many helpful suggestions, especially for the
simple proof he suggested for Lemma 1.5.

1. Preliminaries. Before proceeding with the proof of Theorem 0.2 I collect
some useful preliminaries. The bulk of this section is well known, at least for
reduced spaces.

I begin by giving the natural generalization of Whitney's first tangent cone
[8] to arbitrary germs of analytic spaces. Let F be a germ of analytic space
with local ring   y6. Let   ym denote the maximal ideal of   yQ  and e:
K0 -*C = v& /ym be the natural evaluation map. Recall that one can

define the Zariski tangent space of V, TV = {C-derivations t:  K0 -> C}.
Definition 1.1. CX{V) = [t e TV]there is a C-derivation t: yQ -* y6

satisfying t = e ° r).
Clearly CX{V) is a complex linear subspace TV which is a bianalytic

invariant of V. Let V be embedded as the germ at 0 G C" of the complex
analytic subspace of C defined by the ideal í C „0 („0 is the ring of germs
of holomorphic functions at 0 G C). Then for t E TV we have t G CX{V) if
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and only if there is a germ at 0 G C" of a holomorphic vector field U such
thati/(0) = /andi/3 ci.

Now suppose V and W are two germs of analytic spaces. Then, as is well
known, we have natural inclusions

TV c T{V X W)   and   TW c T{V X W),
such that TV n TW = {0} and T{V X W) = TV ® TW. Moreover, we
have

Lemma 1.2. CX{V X W) = CX{V) @ CX{W).

Proof. The proof is easy and is left to the reader.
CX{V) is interesting because

Lemma 1.3. Let V be the germ at 0 EC of the analytic subspace of C
defined by the ideal 5 C „0. Then there is a germ of a holomorphic vector field
U on C with U{0) =£ 0 and Uí ci // and only if there is a germ of an
analytic space W such that V s W X C0. (C0 denotes the germ of Cat 0 G C.)

Proof. See [3, §2.12].

Corollary 1.4. Let V be the germ at 0 EC of the analytic subspace of C
defined by the ideal S c „0. Then there are k germs of holomorphic vector
fields t/,,. .., Uk which preserve í and such that 17,(0),..., Uk{0) are lin-
early independent if and only if there is a germ of an analytic space W such that
V s W XCq. Also, d = dirtL- CX{V) is the greatest such k.

Proof. The corollary follows from repeated applications of Lemma 1.3, the
repeated applications being justified by Lemma 1.2.   □

I finish the preliminaries with

Lemma 1.5. If V and W are germs of analytic spaces such that KXQs
W X C0, then V s W.

Proof. The proof is based on an elementary remark. Let Z c Cg be any
germ of an analytic space. Then ZxCj cC5+t in a natural way, and
clearly Z s (Z X Cg) n (Cg X {0}). But more is true. If M c Cg+* is any
germ of a complex «-manifold transverse to {0} X Cg, then Z = M n (Z X
Cg). To see this choose coordinates {xx,..., x„) on Cg and coordinates
{y\, • • • ,y¿) on Cq. Then M will be defined by equations y} — fj{xx,..., x„)
= 0, j = 1,..., k. The mapping which sends (jc,, ..., x„, y„ ... ,yk) to
{xx, ...,x„,yx- fx{xx, ...,x„),...,yk- fk{xx,..., x„)) is an isomor-
phism of Cg+* to itself which gives, by restriction, an explicit isomorphism

m n (z x eg) « (Q x {0}) n (z x eg) * z.
Proof of Lemma 1.5. By Lemma 1.2, dim CX{V) = dim CX{W) = k - 1.
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So, by Corollary 1.4, V a V X Cg"1 and W = W X Cg"1 for some V and
W with dim CX{V) = dim CX{W) = 0. To prove V s Wit suffices to show
V a W. By assumption V'XQ%^W'X Cg.

Suppose K' and W are embedded as germs in Cg. Then any isomorphism
ß: V X Cg -> W X Cg extends to an isomorphism ß: C3+*->Cg+*. Let
M c Cg+* be a germ of a complex «-manifold transverse to {0} X Cg. Then
by the above remark,

v s m n (v x cg) = ß(M) n n(K' x cg) = ß(M) n (w x cg),
and it suffices to show that fi(M) is transverse to {0} x Cg.

By construction
C,(F X Cg) = CX{W X Cg) = T({0) X Cg).

The choice of M gives
TM n c, (r' x cg) = TM n r({0} x cg) - {0}.

Thus
ro(Af) n r({0} x cg) = ro(3f) n c, (w x cg)

= ro(Af ) n c, (ß(r x eg)) = {0},
and we are done.   □

2. Proof of Theorem 0.2.1 now turn my attention to Theorem 0.2. Let X be
an analytic space and p E X. Then clearly, for q E Iso{X,p) one has
IsoíA', q) = lso{X,p), so that Theorem 0.2 is purely local and may be restated
as

Theorem 2.1. Let X be an analytic space and let p E X. Then there is an
open neighborhood U ofp and an analytic space Y such that Iso(A", p) n U is a
{possibly 0-dimensional) complex submanifold of U and

[/= Y X {Iso{X,p) n U).
Proof. The proof of this theorem will take the rest of this section. It is

convenient to begin with a definition.
Definition 2.2. For p E X let M{X,p) be the smallest germ at p of an

analytic subspace of X such that Iso(A", p)p c M{X,p). (teo{X,p)p denotes
the germ at/? of Iso(Z,p).)

M{X,p) certainly exists because the local ring xQp of Xp is noetherian.
Moreover, M{X,p) is a reduced germ because of its minimality. Also, if y¡>:
Xp -* Xq is an isomorphism, then i// induces an isomorphism ^: \so{X,p)p -*
Iso^, p)q = Iso(A", q)q, so that \f/ must also induce an isomorphism \p:
M{X,p)^M{X,q).

Lemma 2.3. M{X,p) is a {possibly 0-dimensional) germ of a submanifold of
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Proof. Choose a neighborhood U of p small enough to find an analytic
subspace M of U satisfying Mp = M{X,p). By shrinking U we may assume
that lso{X,p) ni/cM, and also that dim Mq < dim M{X,p) for all q E
M.

By the minimality of M{X,p) we have \s,o{X,p)p £ Sg{M{X,p)) -
{Sg{M))p. Hence there is a q E lso{X,p) n U c M for which Mq is the germ
of a manifold. Since q E lso{X,p) we have Iso(A", q)q = lso{X,p)q c M? so
that M{X, q) c M? and dim MÍA', 9) < dimM?. But 9 G Iso{X,p) also gives
M(A\ 9) s M{X,p) so that dim M{X, q) - dim M{X,p) > dim M?. Thus,
in fact, dim M (A", #) = dim Mq. This, together with M{X, q) c M? and the
fact that Mq is an irreducible germ, gives M{X, q) = Mq, which is a germ of a
manifold. But M{X, p) — M (A", q) and the lemma is proven.   □

Note that dim M{X,p) = 0 if and only if p is an isolated point of
lso{X,p), and in this case Theorem 2.1 is trivial. For the rest of this section I
will assume dim M{X,p) = n > 1.

Remark 2.4. Since Theorem 2.1 is purely local in a neighborhood of p, we
may shrink X by replacing X with a small open neighborhood of p E X. This
allows us to put A" in a convenient form.

In this way we may suppose we have a connected submanifold M C X
such that lso{X,p) c M, and M{X,p) = Mp. Then, for all q E Iso(A",p) we
have Iso(A", q) = lso{X,p) c M, and thus M{X,q)cMq. But for qE
Iso(A\p) we have M (A*, q) « M{X,p) = Mp s M?, and we get M{X, q) =
Mq for all? Glso^,/?).

We may also assume that A" is embedded as an analytic subspace of a
polydisc A, 0 G A c C+m (where {x, y) = {xx,..., x„, v„ ... ,j>m) give the
coordinates on C+m), and that the embedding is such that p = 0 G C+m
and 3/ = A n (C X {0}) = A n {{xx,..., x„, 0,..., 0)}. Finally, we may
also assume that we have holomorphic functions fx.fr on A which
globally generate the coherent ideal sheaf defining A" in A, and whose germs
at 0 G C+m, /10,... ,fro, give a minimal set of generators for the defining
ideal of the germ X0. This setup will be fixed for the rest of this section.   □

Observation 2.5. Theorem 2.1 will follow if it can be shown that
dim C,(A"0) > n = dim M{X, 0).

Proof. It would then follow from Corollary 1.4 that there is an analytic
space Y, a domain D cC {t = dim C,(Ao)), a neighborhood U of 0 in X,
and an isomorphism i£: Y X D -» U. Let (.v0, dj = »/'"'(O) G Y X D. Then
{^0} X -D C Iso(y X D, »//-'(O)) so that .//({ v0} xö)c Iso(A-, 0) n U c
M n U. Since »Ki-Fo} X D) and M n U are submanifolds of t/, and
dim H{yo) X D) = t > n = dim(M n U), it follows that t = n and ^({.Vo}
X Z)) is just the union of components of M n U. Shrinking Y, D, and U we
can achieve ̂ ({^0} X D) = M n U. But then Iso^, 0) n U = M n t/, a
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submanifold of U, and the result follows by using the isomorphism \p:
{y0} X D -* M n U - IsoiA", 0) n U to identify D and Iso(X, 0) n U.   D

I now give a construction of Seidenberg [5], [6] which will be used to show
dim CX{X0) > n. Intuitively, the construction gives, for any natural number k,
an algebraic variety whose points are certain A:-jets of ^-equivalences of A'0,
and a constructible set whose points are certain "£-jets" of germs V A>equiv-
alent to Xn. Recall that the germs V and W are ^-equivalent if K0 /ymk+l
s w®/ wmk+l {ym aiu* wm are tne maximal ideals in yB and ^0).

Let gx{P, x,y),..., gr{P, x,y) be polynomials of degree k in the variables
{x, y) with indeterminant coefficients which I collectively denote by (P) (just
as {x) collectively denotes {xx,..., xn)). Let a¡j{Q, x,y), 1 < i, j < r, be
polynomials of degree k in the {x, y) with indeterminant coefficients which I
collectively denote by {Q). Let (p¡{R, x, y), . . . , (p„{R, x, y),
\px{R, x,y),..., \pm{R, x,y) be polynomials of degree k in {x,y) such that
<p¡{R, 0, 0) = 0, 1 < / < n, and ^{R, x, 0) = 0, 1 < j < m, and having inde-
terminant coefficients which I collectively denote by {R). For convenience I
let Jac((p, \p){0) denote the jacobian of (<p„..., q>„, \px,..., \(/m) with respect
to the {x, y) evaluated at {x, y) = (0, 0). Jac(ç>, i//)(0) is a polynomial in the
{R)'s. Finally let S be an indeterminant.

The (P) give coordinates on some affine space CM(-k\ The (P, Q, R, S) give
coordinates on some affine space CN(k\ Let mP: CJV(t) -> CM(k) be defined by
■nP{P, Q, R, S) = (P).

Let r0/„ ..., T0fr be the Taylor expansions about 0 G C+m of/,,... ,/r
(which are chosen as in Remark 2.4). Consider the conditions:

gi{P, (p{R, x,y), >p{R, x,y)) - 2ty(ß. x,y)T0fj{x,y)
are in the {k + l)st power of the ideal generated by the (2-6)
{xx,..., x„,yx,... ,ym) for 1 < i < r.

These conditions are equivalent to a finite number of polynomial equations in
the (P, Q, R). These equations, together with the polynomial equation

S ■ Jac(tp, tf)(0) • áet\\a¡J{Q, 0, 0)|| = 1, (2.7)
define an analytic subspace of CN(-k\ Let A{k) be the reduction of this
analytic space. Then A {k) is a finite union of affine subvarieties of C^**. Let
B{k) = TTP{A{k)). Then B{k) is a constructible subset of CM(k) [4, p. 97].

Now, in C having coordinates (z) = (z„ ..., zn) define a polydisc A' c C
by A' = {(z) G C\{z, 0) G A c C+m). (Here A is as defined in Remark 2.4.)
For a fixed (z) G A' and for a function A holomorphic on a neighborhood of
(z, 0) in A, A(z + x, y) is a function holomorphic near 0 G C+m. I let Tzh
denote the Taylor expansion in the variables {x, y) centered at {x, y) = (0, 0)
of the function A(z + x,y). I will let Tkh denote the polynomial one gets
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from Tzh by discarding all terms of order greater than k. Note that the
coefficients of Tzh are just the values at (z, 0) of various derivatives of A.
Thus, these coefficients vary holomorphically with (z).

Let/,, ...,/. be as in Remark 2.4. Then the coefficients of Tkfx,..., Tkfr
define a holomorphic map T{k): A -> CM(k).

Remark 2.8. If (z) G T{k)~\B{k)), then Ar(z0) is ¿-equivalent to X0. In
fact, any point of A{k) n tTp^{T{k){z)) gives a germ of an isomorphism
{(p{k), ¡p{k)): Cg+m -> Cg+m (defined by polynomials) and anrXc matrix
11 ûj,-(A:) 11 G Gl(r, n+m0) (defined by polynomials) which satisfy

TÏfM*\ *(*)) -Hau{k)T0fJ E n+mmk+l,       I < i < r.      (2.9)
This is equivalent to

/,(* + <p(k){x,y),4,{k){x,y))-'2ay(k){x,y)fj(x,y)
e n+mmk+l,   1 < / < r. (2.10)

This shows that (z + (p{k), \p{k)): Cg+m -> C£^" defines ¿-equivalence from
A"o to A"(z>0).

Remark 2.11. If z G T{k)~l{B{k)) for all Â:, then X0 at X{zfi). Thus (z, 0)
G Iso(A", 0).

Proof. By Remark 2.8, for each k we have a germ of an isomorphism
{9{k), *(*)): Cg+m -» Cg+m and an H^(*)|| G Gl(r, n+m0) satisfying (2.10).
I apply Wavrik's [7] extension of Artin's theorem on solutions of analytic
equations. By this result, for k sufficiently large we can find a germ of a map
(<p, <W: Cg+m ̂  Cg+m and a0 E n+m6, 1 < ij < r, which satisfy

(a) (p¡ - (p¡{k) E n+mm2,       1 < i < n,

(b) uv - ^j{k) E „+mm2,       Kj<m,

(c) a0 - ay{k) G „+mm2,       1 < i,j < r   and

(d) ¿(z + (p{x,y), ̂ {x,y)) ~'2aiJ{x,y)fJ{x,y) = 0,

1 < i < r. (2.12)
(2.12)(a) and (b) show that (<p, i^): Cg+m -> Cg+m is a germ of an isomorphism
and (2.12)(c) shows that \\ay\\ G Gl(r, n+m0). With these facts in mind,
(2.12)(d) shows that (z + <p, »//): Cg+m -+ C"^0™ induces an isomorphism XQ ->
A^(z.o)-   D

Remark 2.13. If (z, 0) G Iso(A", 0) then z G T{k)~\B{k)) for all A;.
I now finish the proof of Theorem 2.1 with

Proposition 2.15. dim C,(Ao) = dim M{X, 0) = n.

Proof. The argument of Observation 2.5 shows that dim C,(Ar0) < n. The
other inequality must be proven.
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Since B{k) is constructible we can write T{k)~\B{k)) X {0} C M as a
finite union T{k)~\B{k)) X {0} = U {F¡ - G¡) where each F¡ and G¡ are
analytic subsets of M, and G¡ contains no irreducible component of F¡. By
Remark 2.13 we have Iso^, 0) c T{k)~\B{k)) X {0} c U Ft! C M. But
then IsoiA", 0)0 c U FiQ c M0 = M (A", 0). By the minimality of M{X, 0) it
follows that U P/o = M0. But, since M0 is irreducible, there is an /, say / = 1,
so that Fx0 = M0. But then Fx = M, G, is a proper analytic subset of M, and
M - G, c r(*)-'(£(*;)) X {0}.

G,, of course, depends on k. Putting this dependency into the notation,
write G{k) = G,. Let H denote the union of all the G (A:). Then M - H is
dense in M and M - H c T{k)-l{B{k)) X {0} for every A:. Thus, by
Remark 2.11, we have M - H c Iso(A", 0). Thus, Iso(A", 0) is dense in M.

Now for a positive integer k define £(A:) cA'X C*^ by

E{k) - {(z, P, g, tf, 5)|(P, Q, R, S) EA{k) and T{k){z) = P).
£(A:) carries in a natural way the structure of a reduced analytic space, and I
will suppose it is so endowed. Let trx: E{k)-*A' be defined by
irx{z, P, Q, R, S) = (z). E{k) is constructed so that irx{E{k)) =
T{k)-\B{k)). But then M - G{k) c *,(£(*:)) X {0} so that nrx{E{k)) con-
tains a dense open subset of A'. Since E{k) is second countable, it follows
that D{k) = {regular points of E{k) at which rank(7r,|r(;fc)) = n) is a non-
empty open subset of E{k) [9, Chapter 4, Theorem 8D]. trx{D{k)) is an open
(in fact a dense open) subset of A'. Note that for any (h>) G trx{D {k)) we can
find a section of w,|£W on a neighborhood of {w) (by the implicit function
theorem).

Since Iso(A", 0) is dense in M, we can find a {w) E <nx{D {k)) such that
(u>, 0) G Iso(Ar, 0). Choose a section of 7r,|£(¿) over a neighborhod Í/ of {w).
This section gives holomorphic functions on U X C+m, a0{k){z, x,y), 1 < /',
/ < r; (p¡{k){z, x,y), 1 < i < n; and uV{k){z, x,y), 1 < / < m. All these are
polynomials in (x, y) of degree A: with coefficients being holomorphic func-
tions on U. Moreover,

(2.16)(a) det||í7¿/(A:)(z, 0, 0)|| is a nonvanishing holomorphic function on U.
(b) <p,(A0(z, 0, 0) = 0, 1 < i < n; ^{k){z, x, 0) = 0, 1 < / < m. And for

each fixed z E U, {q>{k), ¡b{k)) = (<p,(A:),..., <pn{k), 4>x{k), .., xpm{k)) de-
fines a germ of an isomorphism Cg+OT -> Cg+m.

(c) For each i, 1 < i < r,

f{z + (p{k){z, x,y), Uk)(z, x,y)) -^a¡j{k){z, x,y)fj{x,y)
is in the (A; + l)st power of the ideal generated by the {x, y).

I want to transfer this information from {w) E A' to (0) G A'. This can be
done because {w, 0) G Iso(A", 0). We have \\a¡j\\ E Gl{r, n+m0) and a germ
of an isomorphism (<p, i//): Cg+m -» Q+m such that
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f{w + (p{x,y), 4,(x,y)) =2a0{x,y)fj{x,y),       1< / < r,   (2.17)
and by Remark 2.4 we automatically have \px{x, 0) = • • • = 4>m{x, 0) = 0.

Let \\b¡j\\ E Gl(r, n+m0) be defined by the condition \\b0(<p(x,y), Hx,y))\\
= \\aiJ{x,y)\\-l.Ut

{X, r) = (X„ ..., K, r„ ..., rj: Cg+* -> Cg+* (2.18)
be the inverse of {(p,\p): Cg+m->Cg+m. Since ${x, 0) = 0, it follows that
t{x, 0) = 0 and also that X{(p{x, 0), 0) = {x). For convenience I write p{x) =
<p{x, 0), so that X{p{x), 0) = {x). Equations (2.17) are equivalent to

it (a(x,y), t{x,y)) = 2 by{x,y)fj {w + x,y),       1 < i < r.
Let (i) = (/„..., /„), so that (/, x,y) give coordinates on C2n+m. Then

<p,(A:Xiv + p{t), x,y), 1 < i < n, and i/j-(A:)(w + /*(/), x, y), 1 < / < m, de-
fine germs in 2n+m0, and \\a¡j{k){w + «(/), x,y)\\ E Gl(r, 2„+m0).

Define ||a,-,(A:)(r, x,y)\\ E Gl(r, 2n+mQ) to be the product of the matrices

\\bu(p{t) + q>{k){w + p{t), x,y), i{k){w + p{t), x,y))\\
on the left and \\a,j{k){w + p{t), x,y)\\ on the right. Define

w(A:)(/, x,y) = X(p{t) + q>{k)(w + p{t), x,y), *{k){w + p{t), x,y)) - {t),
and define

y{k){t, x,y) = t(p{() + q>{k){w + p{t), x,y), ${k){w + p{t), x,y)).

Now, using the equations X(0, 0) = r{x, 0) = 0, X{p{x), 0) - {x), (2.16)(b),
and the fact that a composite of isomorphisms is an isomorphism we get

u{k){t, 0, 0) = 0, y{k){t, x, 0) = 0 and, the map
(<o(AO(0,x,y),Y(AO(0,x,y)): Cg+ffl->Cg+m is a germ of an
isomorphism. (2.19)

Now, replacing {x) in (2.18) by p{t) + (p{k){w + p{t), x,y) and {y) by
i|<(A:)(h> + /i(0» x>y), and using (2.16)(c) with (z) replaced by {w + p{t)), we
get

/(/ + o>{k){t, x,y), y{k){t, x, y))-2«¿/(A:)(í, x,y)fj{x,y)
e2»+ml"*+1     for 1 < i < r.       (2.20)

This completes the transfer of the information of (2.16) from {w) E A' to
0G A'.

Now, since we have the (c{k), y{k), and ||a/:/(A:)|| satisfying (2.20) for every
k, we can again apply Wavrik [7]. Then, choosing a sufficiently large k, we
get «y E 2n+me, 1 < /, j < r, u, E 2n+m0, 1 < i < n, and yj E 2n+m0,
J < / < m, such that
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(a) au - ay{k) G 2n+mm2,       1 < i,j < r,

(b) co,. - co, (A:) G 2n+mm2,       1 < i < n,   and

y,. - yj{k) E 2n+mm2,       1 < j < m,

(c) f{t + a{t, x,y), y{t, x,y)) = ^ay{t, x,y)fj{x,y),
1 < i < r.     (2.21)

Using (2.19) and (2.21)(b) we see that the map (co(0, x,y), y(0, x, y)):
Cg+m -» Cg+/" is a germ of an isomorphism. But a trivial calculation shows
that the value of the jacobian of this map at 0 G C+m is the same as the
value of the jacobian of the map {t, w{t, x,y), y{t, x,y)): C2,""1""1 -» C2,n+m at
0 G C2n+m. Denoting this later map by ß, we see that ß = (/, co, y): C20n+m ->
Co"+m is a germ of an isomorphism.

Let Xq c Col+m be the germ of an analytic space defined by the ideal in
2n+m0  generated by the germs at 0 G C2n+m of /,(/ + x,y),...,/.(/ +

x, y). We have Cg X X0 c C20n+m is defined by the ideal in 2„+m0 generated
by the germs at 0 G C2n+m of fx{x,y),... ,fr{x, y). By (2.21)(c) we see that
ß = (r, co, y) induces a map ß: Cg X X0 -» X¿.

Since \\<xy{k)\\ E Gl{r, 2n+m0), (2.21)(a) shows that \\ay\\ E Gl(r, 2n+ffl0).
Using this, and the fact that ß: Cl"+m ->C2,"+m is an isomorphism, (2.21)(c)
actually give ß induces an isomorphism ß: Cg X X0 -> Xq.

Now the holomorphic vector fields 9/3r,,..., 9/3/„ clearly preserve the
ideal generated by fx{x,y),... ,fr{x,y). Since ß: C2,"+m -* Cgn+m is an
isomorphism we can push these vector fields forward to get germs of
holomorphic vector fields ß^S/Sr,),.... ß+(3/3rn). Since ß induces an
isomorphism ß: Cg X X0^>X¿ we see that the ílm{d/dt¡), 1 < i < n, all
preserve the ideal generated by fx{t + x,y),... ,fr{t + x,y). Clearly, the
holomorphic vector fields (3/3/, — 3/3x,), 1 < / < n, also preserve this ideal.
Using (2.21)(b) and (2.19) we easily calculate

E-(i)(0>=i

Since 3/3/,|0,..., 3/3/„|0. (9/3/, - 3/3x,)|0,..., (3/3/„ -3/3xJ|0 are
linearly independent we get dim CX{X¿) > 2«. Since Cg X X0 s X¿, Lemma
1.2 gives dim C,(A"0) > n.   □

The proof of Theorem 2.1 is now complete. Using it we see lso{X,p)p =
M{X,p). Thus, by Proposition 2.15, dim \so{X,p)p = dim C,(Ap). In particu-
lar, we get

Remark 2.22. p is an isolated point of IsoiA",/?) if and only if dim C,(Ap)

1 < i < n.o>
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3. Clustering. Let F be a germ of an analytic space. Recall that by a
representative of V one means a pair {X,p) consisting of an analytic space X,
and a point p E X such that V = Xp.

Definition 3.1. Let V and W be germs of analytic spaces. I will say that W
clusters in V if and only if there is a representative {X,p) for V and a
sequence q¡ EX— {p) such that the q¡ converge top, and every pair (A', q,)
is a representative for W.

Note that if W clusters in V and if {X',p') is any representative of V, then
one can find such a sequence q[ E X' - {//}. Also, clustering is transitive; if
Vx clusters in V2, and V2 clusters in V3 then Vx clusters in V3. Finally, if V
clusters in V then dim CX{V) > 1. This last observation follows from Remark
2.22.

Lemma 3.2. If {Vx, .. ., Vk) is a finite set of germs of analytic spaces with
dim Cx{Vt) — 0, 1 < i < k, then one can find an i E {I, . . ., k) such that V¡
does not cluster in any of the Vj, 1 < j < k.

Proof. If not, we can find a map tp: {1, 2,..., k + 1} -» { K„ ..., Vk)
such that (p{i) clusters in ç>(/ + 1) for 1 < / < k. But <p cannot be injective.
Let / and/, i < j, be such that q>{i) = <p(j). Using the transitivity of clustering
we get (p{i) clusters in itself, so that, by the previous lemma, dim Cx{(p{i)) >
1. This is a contradiction.   □

We shall not need, but it is interesting to note,

Proposition 3.3. If V and W are germs of analytic spaces, and if V clusters
in W and W clusters in V, then V s W and dim CX{V) > 1.

Proof. The proof is left to the reader.

4. Decompositions. Throughout this section, all analytic spaces and all
germs of analytic spaces will be taken to be reduced. I will use V, W, Vx, etc.
to denote reduced germs of analytic spaces. I will use X, Y, Xx, etc. to denote
reduced analytic spaces. Before proving Theorem 0.3, I will collect some
elementary but useful facts.

If V = U V¡ is the decomposition of V into irreducible components and
W = U Wj; is the decomposition of W into irreducible components, then
V x W = U {V¡r X Wj) is the decomposition of V X W into irreducible
components. For a germ V and an integer d we define N{V,d) to be the
number of irreducible components of V of dimension d, and we define a
polynomial P{V, t) = 2N{V, d)td. Then for any d we get N{V X W,d) =
2N{V, i)N{W, d - i) so that P{V XW,t) = P{V, t)P{W, t). It follows
that if Vx X W s V2 X W then P{VX, t) = P{V2, t). Finally we have the
important observation that if V c W and V =£ W then there is a d such that
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N{V,d)<N{W, d). Thus, if V is isomorphic io Wx<zW and P{V, t) =
P( W, t) then IT, = W and K a W.

I now prove

Theorem 0.3. IfVis a positive dimensional germ of a reduced analytic space,
then V is uniquely decomposable.

Proof. The existence of a decomposition of V into indécomposables is
trivial. Any decomposition of maximal length will do. (Note that the length of
any decomposition of V < dim V.) Only the uniqueness must be proven. The
proof will proceed by induction on dim V.

If dim V = \, then V is indecomposable and there is nothing to prove.
Now suppose dim V > 1 and Theorem 0.3 has been proven for all germs

of dimension < dim V. We must prove the uniqueness for V. I begin with
two reductions.

Reduction 1. We may assume V is not indecomposable because if F is
indecomposable there is nothing to prove.   □

Now suppose (K„ ..., Vk) and {Wx,..., W¡) are two decompositions of
V with all V¡ and all Wj indecomposable. By Reduction 1 we may assume
k > 2 and / > 2.

Reduction 2. We may assume dim CX{V) = 0.
Proof of Reduction 2. Suppose dim CX{V) > 0. Then, by Lemma 1.2, we

may reorder the ^'s and the W/s to achieve dim C,(K,) > 0 and dim CX{WX)
> 0. Since VX and Wx are indecomposable we get, by applying Lemma 1.3,
that Vx » Wx es Q. But then, we can use Lemma 1.5 to conclude that
{V2,..., Vk) and {W2,..., W,) give two decompositions into indécompos-
ables of some germ V. Since dim V = dim V — 1 the unique decomposabil-
ity of V follows from the induction hypothesis.   □

Making use of both reductions (and of Lemma 1.2), let {Vu ..., Vk) and
{Wx,..., W¡) be two decompositions with all V¡ and Wj indecomposable.
Then k > 2, I > 2, dim Cx{V¡) = 0, 1 < i < k, and dim Cx{Wj) = 0, 1 < /
< /.

Let n = max{dim Vx,..., dim Vk, dim Wx,..., dim W,) and let A =
{ ̂ |dim V¡ = n) U { W/àim. W, = n). By Lemma 3.2, I can find a V G A
which does not cluster in any element of A. Since V clearly cannot cluster in
any W with dim W < dim V = n, we get, in fact, that V does not cluster in
any V„ 1 < / < k, and V does not cluster in any Wj, 1 < / < /.

We may assume that V is isomorphic to the first r of the V¡s and to the
first s of the W/s, and that no other V¡ or Wj is isomorphic to V.

We may also assume that r > s. Then r > 1. We set y = r if r < k, and
y = A:-lifr = A:. Note that 1 < y < k - 1.

Let (A",,p(l)),..., {Xk,p{k)) be representatives for Vx,...,Vk and let
(y„ #(1)),... ,{Y,, q{l)) be representatives for Wx,..., W¡.
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Shrinking the y/s (by replacing each Yj by a small open neighborhood of
q{j) E YJ) we may assume that for each/, 1 < / < /, we have dim{Yj)q <
dim Wj for every q E Yj. Since V does not cluster in any of the W/s, we may
also assume (by further shrinking the Y/s) that for each/, 1 < / < /, we have
V is not isomorphic to ( Y/)q for any q E Yj - {q{j)}-

Since Vx X • • • X Vk a¿ W, X • • • X W„ we can find (after shrinking
the XJs) an isomorphism \p: Xx X • • • X Xk -» U (an open neighborhood of
(<7(1), . . ., q{l)) in y, x • • • X Y,) such that t^(p(l), . . . ,p{k)) «
{q{l),..., q{l)). This isomorphism will first be used to show y < s.

Choose x{i) E Reg(A,), y + 1 < / < k. Let

*((P(1), • • • >PM> *(? + IX • - •. *(*))) = O'O).*('))•
Then, using (A))^,, s F,, we have

F, X • • • X Vy X (Ay+i);((y+I) X • • • X (A'jt)^)

«(5ií,(i)X--- *U7W (4.1)
Let A = dimiA^+O^+D +!•••+ din^A*),^. For each/, 1 < / < /, let

m(/) = dim Cx{{Yj)yU)). Then we can write {Y/)yU) = WJ X Cg"w where
dim Ci{WJ) = 0. Setting m = 2m(j), (4.1) becomes

Vx X • • ■ XVyXCh0aiW{X--- XW¡XC%. (4.2)

Using Lemma 1.2 we get A = m. Using Lemma 1.5 repeatedly we get
Vx X • . • X Vy at W[ X • • • X W¡. (4.3)

By the construction of the Y/s and our choice of V we get

dim V > dim Wj > dim(( Y} )yU)) > dim WJ,       1 < / < /.    (4.4)
It is worth noting that dim V = dim WJ only ii(Yj)yU) s WJ.

Since Vx at • • - s Fy s K', we get from (4.4),

y (dim F') = 2 dim W/. (4.5)
Let L = {/|1 < / < / and dim 0/ > 0}. From (4.4) and (4.5) we see that

L contains at least y integers.
On the other hand, dim V > dim(F, X • • • X Vy), so by our induction

hypothesis Vx X • • • X Vy is uniquely decomposable. Since each V¡ is inde-
composable, it follows that no decompositions of Vx X • • • X Vy can have
length greater than y. This shows that L contains at most y integers. Thus, L
contains precisely y integers, and the WJ,j E L, give the terms of a decom-
position of Vx X • • • X Vy and all the WJ, j E L, are indecomposable.
Using the fact that Vx X • • • x Vy is uniquely decomposable, and using
V¡ at V for 1 < / < y, we see

V at WJ   for all/ G L. (4.6)
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



370 ROBERT EPHRAIM

Thus dim V = dim WJ for/ G L. But as noted above, this gives {Yf)yU) ss
WJ and thus {YJ)yU) s V' for/ G L. By our construction of the Y/s, we see
that, for/ G L, y(J) G Y, - {q{j)) so thaty{j) = f (/)• Thus for/ G L we
get F' s {YJ)qU) at Wj. This gives s > y = Card(L), and L c {/|1 < j < s).

The proof of the theorem is now reduced to two cases.
Case 1. s = y. In this case L = {/|1 < / < s). Then, what we have just

seen is that for x{i) E RegiA,-), s + 1 < i < k,
t{{p{l),...,p{s),x{s+l),...,x{k)))

= {q{l),...,q{s),y{s+l),...,y{l)).

Since Reg(A"J+1) X • • • X Reg(ArA:) is dense in A*,+I X • • • X Xk, it
follows that iK{(p(l), • • • >/>(■*))} X A"J+1 X • • • X Xk) is contained in
{{q{\),...,q{s)))X YS+XX---XY,.

In other words, we have just established
Fact 4.7. Vs+X X • • • X Vk is isomorphic to some W' c Ws+X X • • ■ X

W,.
Since V,atW,at V for 1 < i < j we get F, X • • • X Vs at Wx

X • ■ • X Ws. We also have

V^{VXX ■■■ X Vs) X (FJ+, X • • • X Vk)

at{Wx\x-- X Ws) X {Ws+X X ■ ■ ■ X W,).
But then, the introductory remarks to this section show that we have estab-
lished

Fact 4.8. P{VS+X x ■ ■ ■ x Vk, t) = P{WS+X X • • • x W„ t).
Again applying those introductory remarks we may conclude Vs+X

X • • • X Vk at Ws+X X • • • X W,. Since dim V > dim(Fä+, X • • ■ X Vk)
we may apply the induction hypothesis to conclude k — s = I — s (so that
A: = /), and (after permuting the Ws+X,..., Wk) we have V¡ = W¡ for
s + 1 < i < k. We already had V¡, = Wi, at V' for 1 < / < s. This completes
the proof of the theorem in Case 1.

Case 2.s>y. In this case r > y. But, by the definition of y we see that this
implies r = k and y = k — 1. But then we also have s = k.

In this case we have V = Vx X • • • X Vs with all V¡ = V. Then dim F =
s(dim V). Since 2dim 14^ = ¿(dim V), and since s of the Wj are isomorphic
to V, we see that there are no W/s except those isomorphic to V. Thus I = s
so that k = I, and for each i, 1 < / < k, V, at W, at V.

This completes the induction step and the proof.   □
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