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Abstract. We analyse isospectral sets of potentials associated to a given 'generalized
periodic' boundary condition (° 4) in SL(2, R) for the Sturm-Liouville equation on
the unit interval. This is done by first studying the larger manifold M of all pairs
of boundary conditions and potentials with a given spectrum and characterizing
the critical points of the map from M to the trace a + d. Isospectral sets appear as
slices of M whose geometry is determined by the critical point structure of the trace
function. This paper completes the classification of isospectral sets for all real
self-adjoint boundary conditions.

0. Introduction

We consider the differential operators

L(q)y = -y"+q(x)y, xe[0,l],

for q real-valued and square-integrable, i.e. qeL^O, 1], with real self-adjoint
boundary conditions. Considering boundary data (y(0), y'(0), y(l), y'(l)) as vectors
in R4, the set of real self-adjoint boundary conditions can be identified with the set
of Lagrangian planes in R4, i.e. the set of two-dimensional subspaces on which the
bilinear form (v, w) = vtw2 — v2wx — v3w4+ v4w3 vanishes. The real self-adjoint boun-
dary conditions split naturally into the 'separated' boundary conditions, i.e. those
of the form

y(Q) cos a+y'(0) sin a =0, y(\) cos /3 + / ( l ) sin 0 =0,

where (a, /3) e [0, ir)x[0, v), and the 'generalized periodic' boundary conditions,
i.e. those of the form

(a b\(y(l)\ Jy(0)\

\c d)\y'{\)) Xy'iSi))'

where det("!j) = l. The separated boundary conditions include the Dirichlet
(a = /3 = 0) and Neumann (a = /3 = IT/2) boundary conditions, and the generalized
periodic boundary conditions include the periodic ( (w) = /) and anti-periodic
((" d) = - / ) boundary conditions.

t With an appendix by Johan Tysk, Department of Mathematics, University of California, Los Angeles,
CA 90024, USA.
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302 J. Ralston and E. Trubowitz

Our objective here is an inverse spectral theory for L. Given a spectrum, i.e. the

eigenvalues of L with their multiplicities for given boundary conditions, we would

like as complete as possible a description of the set of q e LR[0, 1] for which L with

the given boundary conditions has the given spectrum. This paper is intended as

the last in a series that began with the study of the periodic boundary condition in

[5]. The case of the Dirichlet boundary condition was discussed in some detail in

[6]. The remaining separated cases were studied in [1], [3] and [4]. Finally Johan

Tysk considered the generalized periodic case with b = 0. Since his work has not

appeared elsewhere, though it was completed before this paper was begun, we have

included it here as Appendix A.

The case of b ¥= 0 in the generalized periodic boundary condition is the subject

of this paper. In the following sense this is the most general case. There is a natural

sequence of degenerations of these boundary conditions. One can send bjO, then

a -» 1 and finally c -* 0, thus moving from the boundary conditions here down to the

periodic case. In the other direction one can reach the separated conditions

-doy(0) + y'(0) = 0, aoy(l) + y'(l) = 0 (0.1)

by letting bf oo in the generalized periodic conditions

aob

,dob-b~x dndob)\y'(l)) \ / ( 0 ) / '

and then send ao-> oo and finally do^>oo, thus moving from the boundary conditions

here to the Dirichlet case. Each of the steps described above produces significant

changes in the asymptotic behaviour of the eigenvalues as they tend to oo and/or

in the structure of the isospectral sets. At one extreme the Dirichlet isospectral sets

with the topology induced from L|[0,1] are homeomorphic to /2(Z), while at the

other extreme the periodic isospectral sets are compact tori, generically of infinite

dimension. In this paper we will begin to see how the isospectral sets for generalized

periodic boundary conditions 'interpolate' between these extremes.

As in the study of the separated boundary conditions (0.1) in [4], we have found

it easier to begin by considering the set of potentials and boundary conditions which

give a fixed spectrum. Identifying boundary conditions with matrices

B

we let M be the set of

(a b\

\c dV

(q, B) 6 L2
R[0,1] x (SL(2, R)\{fe = 0})

such that L(q) with boundary condition B has the spectrum of L(q0) with boundary

condition Bo. For all choices of (q0, Bo) in LR[0, 1] x (SL(2, R)\{b = 0}) the structure

of M is essentially the same. On M one has a countable family of periodic commuting

flows which fix the entry d in B, and d takes all real values on M. Using the flows,

one can map M into an infinite product of circles, and this map is injective on each

level set M n{d = 8}, 8 s R. However, M n{d = 8} is only a subset of the infinite

product of circles. The full description of M n {d = 8} is given in § 3, but one can
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picture it simply as follows: if we let &„ e [-«, n) parametrize the nth circle, then
the image of M n {d = 8} is

{{e1,02,...):I(on-e(8))2<cc},

where the constant 6(8) goes from oo to — oo as 8 goes from oo to — oo. Note that
one cannot change d on M without changing an infinite number of the 0n as well.

Once we have the explicit description of M n {d = d0} outlined in the preceding
paragraph, it remains to fix the remaining entries in B and study M n{B= Bo}.
This brings us back to the problem of isospectral sets of q for fixed boundary
conditions. Fortunately, b is constant on M, and hence, since det B = 1,

Mn{B = B0} = Mn{a = a0,d = d0},

so that we only need to study the level sets of the entry a as a function on M n {d = 8}.

To get information on the topology of these level sets, we need to study the critical
points of a on M n{d = 8}. At this point a fortunate accident occurs. It happens
that p is a critical point for a as a function on M n {d = 8} if and only if p is a
critical point for a + d asa function on M. Moreover, p is critical for a + d on M
if and only if it is fixed by the involution

la b\Jd b\
\c d) \c a)

This involution leaves M invariant and is the extension of the involution for the
boundary conditions (0.1),

q(x)-*q{\-x), ao->do, do-*ao,

which was important in [4]. To each fixed point p on M for this involution we
assign an index I, a finite subset of the non-negative integers. The cardinality of I
is the Morse index of p as a critical point of a on M n {d = d(p)}. The main result
of § 4 is that for each finite subset I there is a unique fixed point pi on M of
index I.

When I is the empty set 0 , a + d has a strict global maximum on M at p0, so
that M n{B = B(p0)} is a singleton. When ao+ d0 is not a critical value of a + d on
M, it turns out that the topology of M n {B = Bo} is determined by ao+do alone. If
ao+do is not a critical value, then all the homotopy groups of M n{B = Bo} are
isomorphic to those of a rather explicit subset of M whose topology only depends
on {/: ao+ do< a(p,) + d(p,)}; cf. theorem 6.4. The main point at which our analysis
is incomplete is that we have not shown that the only accumulation point for critical
values of a + d on M is —oo. If that were established, then, as ao+d0 went from
o(P0) + d(p0) to -oo, one would see the progression in discrete steps of the
homotopy of M n {B = Bo} from triviality to the full homotopy of M.

As in the case of periodic boundary conditions, Floquet theory plays a fundamental
role in the spectral theory here. In this paragraph we will outline the Floquet theory
for generalized periodic boundary conditions (with b # 0). In doing this we will
also fix some notation. We let yt{x, A, q), i = 1, 2, be the solutions of

-y"+qy = Xy
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for A e C such that the matrix

satisfies F(0, A, q) = I. Letting B denote the boundary condition matrix (" %) as
before, we define the 'discriminant'

and check that A is an eigenvalue for the boundary condition B if and only if
A(A) = 2. Moreover, A(A) is an entire function of A of order \ (cf. theorem 1.1),
and for the boundary condition given by B with b ̂  0 one can recover b and hence
the top-order asymptotic of A(A) as A -»oo from the spectrum (cf. theorems 1.1 and
1.4). Hence by Hadamard's theorem, given the spectrum of one of the problems
considered here—without specifying which one—A(A) is determined. In particular
the roots of A(A) = -2 , i.e. the spectrum with B replaced by -B, are determined.
For this reason one can without loss of generality assume that both spectra are
given and restrict oneself to the case b > 0, as we will from here on. As in the
periodic case, A(A) -» oo on the real axis as A -* —oo (assuming b > 0), and, as A -* oo,
A(A) has an infinite sequence of non-degenerate minima less than or equal to -2
followed by non-degenerate maxima greater than or equal to 2 and no other real
critical values (cf. Appendix B). Hence the roots of A(A) = 2 and A(A) = -2 listed
by multiplicity interlace in pairs once one is above Ao, the first root of A(A) = 2; i.e.

AO<A,<A2<A3< A4<- • •,

where A(A4fc_,) = A(A4I[) = 2 and A(A4fc+1) = A(A4Jk+2) = -2 . We will often refer to the
sequence {Ak}"=0 as the 'generalized periodic spectrum', even though strictly speak-
ing it is the union of two spectra. These spectra are listed by multiplicity as
eigenvalues, since A2k = ^2*:-i if and only if A2(t is an eigenvalue of multiplicity two
(cf. Appendix B).

The spectrum of —y"+qy with the boundary conditions y(0) = 0 and ay(\) +

by'(l) = 0 is given by the roots of [ay2 + by'2](l,A) = 0. Since this boundary value
problem is self-adjoint, all these roots are real, and they are also simple (cf. (1.2)).
Hence we list them as a strictly increasing sequence {fij}f+i. We call {/Xj}fL\ the
generalized Dirchlet spectrum, since it reduces to the Dirichlet spectrum when b = 0.
The generalized periodic and generalized Dirichlet spectra are related by the identity
(cf. lemma 4.2(iv))

[y2
2 + bA(\)y2+b2](l,\) = [(ay2+by'2)(dy2+byl)](l,\)-

Since >>2(1, A) is real for A real, this implies that the /*,- lie in the 'gaps', i.e. in the
set where |A(A)|>2. In the case of periodic boundary conditions there is exactly
one Dirichlet eigenvalue in each gap above Ao. Since A(A, q, B) and the /ij, being
simple roots, depend continuously on B, it follows that for b ̂  0 there is exactly
one generalized Dirichlet eigenvalue in each gap above Ao, i.e. \2j-\ — n-j^Aij for

The plan of this long paper is fairly straightforward. In § 1 we determine the
asymptotic behaviour of the sequences {Afc} and {fik} as k-*oo and show that the
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generalized Dirichlet spectra together with b, d and the 'norming constants'
Kk = yi(l, Mfc. <i) f ° r m a n analytic coordinate system on

Z£[0,l]x(SL(2,R)\{* = 0}).

The point here is not only that these data determine (q, B) uniquely, but also that,
with the proper Hilbert manifold structure on the space S of sequences

(b, d, IU,1,K1,I*2,K2,...),

the Jacobian of the coordinate mapping is boundedly invertible so that the inverse
mapping is also analytic. This section is closely related to the early chapters of [6].

In § 2 we present flows generated by analytic vector fields Vk on LR[0, 1 ] X
(SL(2, R)\{b = 0}) which preserve M and move (fik,Kk) around the (topological)
circle K\ + bA(fik)Kk + b2 = 0 while fixing b, d and (/*,-, K,),yV k. As in [4] and [6],
these flows can be explicitly integrated to give formulae for q and B on the orbits.
The formula for q does not play a role in the sections that follow, but we use the
formula for B frequently.

In § 3 we identify M with an explicit analytic submanifold N of 5 by using the
flows of § 2 to show that the range of the coordinate functions is dense in N, from
which it follows that the range is equal to N since M is closed and the inverse
coordinate map is analytic. M thus inherits the analytic structure of N.

After some preliminary lemmas, § 4 is devoted to the proof of the existence of a
unique critical point of a + d on M with index I. For the proof of uniqueness we
use the explicit integration of the flows and the involution. The flows, however, do
not seem to be useful in proving the existence of critical points. For our proof of
existence we use another fortunate accident: for k sufficiently large the minimum of

\k + q(x)\2dx

on a properly chosen subset of M is assumed at pt. For example,

f»
min \k + q(x)\ dx

is assumed at p0 for k sufficiently large.
In § 5 we show that the range of B on M is

(0.2)

and prove generalizations of this which will be used in § 6. Formula (0.2) shows
that d takes all real values on M, which had not been proven earlier in the paper.

In the final section, § 6, we collect all the information which we have obtained
on the isospectral sets M n{B = Bo}. We show that they are always connected, are
non-compact when they are not singletons, and are analytic submanifolds of LR[0, 1]
unless they contain fixed points of the involution. We conclude with the result on
the homotopy groups of Mn{B = Bo} described earlier.

For the boundary conditions considered by Tysk in Appendix A there is a full
set of isospectral flows fixing the boundary conditions, so that the description of
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the isospectral sets for fixed boundary conditions become analogous to the descrip-

tion of M n {d = 8}. This makes some of the analysis nearly identical to §§ 1, 2 and

3 and we have not presented it in detail.

Finally we should point that we have not solved the problem considered in [2],

[3] and [6] of determining what sequences {\k} arise. It would be interesting to

learn if anything like the result of [2] for the periodic spectrum is valid here.

1. A coordinate system

This section is devoted to the construction of a global real analytic coordinate system

on L R [ 0 , 1 ] X ( S L ( 2 , R) \{b = 0}). We will also determine the asymptotic behaviour

of the generalized periodic eigenvalues. The development follows chapters 2 and 3

of Poschel and Trubowitz [6] closely, and we state two basic theorems from [6]

here for future reference.

T H E O R E M 1.1 (theorem 1.3 of [6]). On [0, l ] x C x Lc[0,1]

(i) b , ( x , A, <?)-cos A 1 / 2 x | < - ^ - e x p (|Im A1/2 | 1/2

y2(x,\, q)=
sinA1/2x

(ii)

(in)

(iy) bi(x, A, q)-cos A1/2x|< 1/2 exp (|Im A1/2|x+||g||x1/2).
|A I

By the Riesz representation theorem the Frechet derivative dqF(v) of a function

on L2 can be written dqF(v) = Jo (dF/dq(t))v(t) dt. The following theorem gives the

'gradient' dF/dq(t) for the y.

THEOREM 1.2 (theorem 1.6 of [6]). For j = 1,2

dq(t)

where XE(I) is the characteristic function of E. These gradients are continuous in

(x,\,q). In addition

. f dy. , , By', f
2 = - —-f— dt and —L = - I

Jo dq(t) d\ Jo

dy'

d\ JodqU) dX Jodq(t)

We refer the reader to [6] for proofs of theorems 1.1 and 1.2. Theorem 1.2 is an

easy computation. Theorem 1.1 is also quite standard in various forms. We need

the particular form given here to control yt and y2 for complex A and for q in

bounded sets of L2.

We begin by studying the generalized Dirichlet spectrum.
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THEOREM 1.3. The generalized Dirichlet eigenvalues fin(q, a, b), n = 1, 2 , . . . , are real
analytic functions on LR[0, 1] X (R2\0). When b^O they satisfy the asymptotic estimate

qdx + rn,
JoJo

/2(where {rn}e /2(Z). For convenience here and elsewhere we will denote this by

Vn{q,a,b) = {n-\)2Tr2 + 2a/b+\ qdx+l\n). (1.1)
Jo

Remark. When a ¥• 0 and 5 = 0, the set of /xn becomes the Dirichlet spectrum and

qdx + l\n).\
Jo

Thus the asymptotics change drastically when b = 0. However, (1.1) does hold
uniformly in the sense that ||{rn}||2 is uniformly bounded on sets where \\q\\2 and

are bounded.

Proof. This is precisely the analogue of parts of theorems 2.3 and 2.4 of [6]. We
will only sketch the proof, indicating the modifications needed in the arguments of
chapter 2 of [6].

Multiplying the identity

by y2 and integrating from 0 to 1 in x, one has

f
Jo

Evaluating at n = fin gives

r 2
I yi\

x
> i

Jo

(1.2)

Thus, since ady2/d/j,(l, iu.n, q) + bdy'2/diJ.(l, nn, q) * 0, the analyticity of nn(q, a, b)
follows from the implicit function theorem applied to the equation ay2(\, fin,q) +
by'2(l,fin,q) = O.

The estimates of theorem 1.1 show that for A e C

i '/2

Thus, as in lemma 2.2 of [6], Rouche's theorem can be used to show that, for
N>N(\a\/\b\,\\q\\), ay2(l,\,q) + by'2(l,\,q) has exactly N roots in ReA<N2ir2

and exactly one root in |Al/2 — (JV — |)TT| < IT/2. This gives

(1.3)
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To improve (1.3) to (1.1), one can use the identity

/*«-(«-5)V= \l-jun(tq,ta,b)dt (1.4)
Jo "<

together with

M ) (1.5)

and

da b\\y2(-,^)\\2'

This gives Iin = {n-\)2TT2+O{\) and ( /O1 / 2= (n-\)ir+ 0(1/n), so that

cos 2(fin)
1/2x = cos (2w - 1)TTX+ O(l/n).

Using this improvement when one again substitutes (1.5) into (1.4), one derives (1.1).

•
The same methods will be used to find the asymptotics of the generalized periodic

spectrum.

THEOREM 1.4. The generalized periodic eigenvalues \n(q, B) satisfy the asymptotic

estimates when b^O:

A2n(fl, B) = n 7T +—(a + d —2)+ I qdx + l \n),
b Jo

(1.6)

\
Jo

Hence b and 2(a + d) + b\lqdx are spectral invariants.

Proof. The eigenvalues \n(q, B) are the roots of A2(A, q, B)-4 = 0. Using

and the estimates of theorem 1.1, we have for |A| > 1

|A2(A)-4-fc2Asin2A1/2 |<C(||g||,B)|Ar /V | ImA ' /21. (1.7)

Thus, using Rouche's theorem on the boundary of

{|Re z\ < (n +\)2ir2} n {|Im z\ s K),

one sees that, for n>N(\\q\\, \\B\\, l/|fc|), A2(A)-4 has exactly 2/1+2 roots in the

half-plane Re A <(n+i)2ir2. On the other hand, Rouche's theorem applied on the

contour |A1/2 - mr\ = TT/4 shows A2(A) - 4 has exactly two roots in the region |A1/2 -

«ir| < TT/4. These conclusions do not require det B = 1 and hold uniformly on sets

of (q, B) where ||?||, ||£|| and \/\b\ are bounded. In the case that det B* 1 all the

roots of A2(A) - 4 = 0 need not be real, but again, since A2(A) - 4 is always real-valued

for A real, (1.7) implies that, for n> N(\\q\\, l/\b\, \\B\\), A2(A)-4 always has at

least two real roots in the open interval (iT2(n-\)2, ir2{n + \)2). Hence, combining

this with the argument from Rouche's theorem, we conclude that, for n s
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'I, ||S||), A2(A)-4 has exactly two roots in |A 1 / 2 -HTT |< TT/4 and they

are real, and exactly 2n + 2 roots in the half-plane Re{\}<(n+i)2ir2.

Combining theorems 1.1 and 1.2, one computes for real A

dA(A) bcosA1/2

On 2.

where again this holds uniformly on sets where \q\, l/ |b| and ||B|| are bounded.

Thus for n>N(\\q\\, l/\b\, \\B\\) the two roots of A2(A)-4 in | A 1 / 2 - « T T | < TT/4 are

smooth functions of (q, B) by the implicit function theorem, and we label them

\2n(q,B)<X2n+l(q,B).

Now we are in a position to finish the proof of theorem 1.4 in the same way

as theorem 1.3. Since we require only b^O, we have for k-2n, 2« + l,

\k(q, B)-\°k=\ — kk(tq, ta, b, tc, td) dt. (1.9)

The A° are the roots of

ft2A2sin2A1/2 =

and hence

Again combining theorems 1.1 and 1.2, one computes for real A

l / 2 l + cos2A1/2x I/2sin2A1/2

Hence, using (1.8), implicit differentiation and \(\k)
1/2-mr\< TT/4, one computes

for k = 2n, 2n + \

\n/ dc \nj dd b \n;

uniformly for nzN(\\q\\, l/\b\, \\B\\). Using (1.10) in (1.9), one sees

\k = n27T2+O(l)

and hence (Ak)l/2 = rnr+O(l/n). Thus (1.10) shows

d\k 1 cos 2irnx

•«©•dq(x) 2 2

Substituting this together with the rest of (1.10) into (1.9) gives (1.6). •

We now give the analogue for the generalized Dirichlet spectrum of the well

known result (theorem 3.5 in [6]) that the spectrum plus the 'norming constants'

determine the potential. In the generalized Dirichlet case these data determine the

ratio a/b as well, but the method of proof is the same.
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THEOREM 1.5. Iffin(q, a, b) = t*.n(q, a, £) = jtn, n > 1, andy2{\, /*„, q) = y2(\, fin, q) =

^2(1, /*«)> « ^ 1 , then q = q and a/b = a/b.

Proof. Following the method of theorems 3.3 and 3.5 in [6], we introduce z(x, A, q, c),

the solution of

-z"+qz = Xz

satisfying z(l , A, q, c) = —1, z'(l, A, q, c) = c. Then for n > 1

y2(x, / in , q) = -y2(l, ftn)z(x, /xn, q, a/b),

y2(x, nn, q) = -y2(i, Hn)z(x, M«, q, a/b).

Consider the function
x> A» q> a/b)-z{x, A, q, a/b))

Note that the numerator is entire and the denominator is entire with simple zeros

at the fin (see theorem 1.3) and no other zeros. Thus /(A) is meromorphic with

simple poles at A = fin, n > 1, with residues

R" = <* /, vi yA\+Zf<,. ui i ( z ( x ' "*- * a/b) ~z(x' *"> *
a(dy2/dfi)(l, fin, q) + b(dy'2/dfi)(l, /j,nq)

Since (1.2) implies

R" =
 t

nn,q)dx

we see /?„ > 0.
The estimates of theorem 1.1 show that

Here we used

z(x, A, q, c) = -y,(l - x , q*) + cy2(l -x , g*),

where qr*(x) = ^ ( l - x ) , in estimating z(x,q,a/b)-z(x,q,d/b). Thus, taking
rn = {n-\)2TT2, we see limn_oo MaxiA|=rjA/(A)| = 0. Thus Rn =0 for all n , / i s entire,
and we see /(A) = 0 for x e [0,1]. In particular

yi(x, M, , q) = y2(x, /*, ,q),

so that a.e. in [0,1]

0 = (q(x) - q(x))y2(x, /A, , q).

Since y2 has only a finite number of zeros, we conclude

q = q.

Hence ji q dx = Ji ^ dx and (1.1) implies a/b = d/b. •

If (q, B) is an element of L2[0,1] x (SL(2, R)\{b = 0}), theorem 1.5 implies (q, B)
is uniquely determined by

{f*n(q, a, b)}™=u {y2(l, fin(q, a, b), q)}^=u b and d.
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As earlier, we use the notation B = (" 5)- Thus these data could be used as coordinates
on L2[0, l]x(SL(2, R)\{fc = 0}). However, to construct analytic coordinates from
them, we will need several preliminary results. We begin with the analogue of
theorem 1.3 for the norming constants.

THEOREM 1.6. The norming constants y2{\, nn(q, a, b), q),n = \,2,..., are analytic

functions on L
2
[0,1] x (R

2
\0) . When b^O they satisfy the asymptotic estimate

y2{\, fin(q, a, b), q)=
{
~

l
\ + —2 ?{n). (1.11)
(n — 2)IT n

Proof. Since y2(l, A, q) is analytic in (A, q) and fin{q, a, b) is analytic by theorem
1.3, the analyticity is immediate.

For the asymptotics we use the analogue of (1.4):

l,fin(q, a,b,), q) — j—= — (j2(l, fj.n{tq, ta, b), tq)) dt.
{n-2)iT Jo dt

Using theorems 1.1 and 1.2, we have

_',„',q =yi(x, A)(y2(l, A)y,(x, A)- j , ( l , X)y2(x, A))

^ + C O S A ^ 2 X Z 1 ) + O ( A _ 3 / 2 ) J ( U 2 )

1 *» dx.
dy Jo dq(x)

Combining (1.12) with the estimates on fin, and dnn/dq{x) and d^n/da from theorem
1.3 and its proof, gives (1.11). •

Theorems 1.3 and 1.6 show that the mapping

^ (b, d, fit(q, a, B), y2{\, fit(q, a, b), q), n2(q, a, b), y2(\, ^2{q, a, b), q),...)

takes LR(0, 1) x SL(2, R)\{b = 0} into S, the space of real sequences

S = {b, d,fj.u Kufl2, K2,. . .),

where

and

To make S into a (trivial) real analytic manifold modelled on l\, we introduce the
global coordinates on S, assigning

s = {b, d, r, / I , , K , , / I 2 , K 2 , . . . ) (113)
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to 5, where

Mn=Mn(«-5)27T2-r

and

(n-2)ir/

We claim that $ is a real analytic mapping of L|[0,1] x (SL(2, R)\{b = 0}) into

S. For this we need to show that given (q0, Bo) e Li[0,1] x (SL(2, R)\{fe = 0}), the

functions fin(q, a, b) and y2{l, l*-n{q, a, b), q) are analytic on a (complex) neighbour-

hood U of (q0, Bo) in L2[0,1] x M22, independent of n, and that <!>( U) is a bounded

set in I2 (see theorem A.3 of [6]). The proofs of these facts follow the proofs of the

corresponding results for the Dirichlet spectrum in theorems 3.1 and 3.6 in [6] so

closely that we will omit them here.

As we observed earlier, theorem 1.5 implies that O is globally one-to-one. The

final step in showing that <J> is a global coordinate function is showing its derivative

$ ' is boundedly invertible at all points of LR[0, 1] x (SL(2, R)\{b = 0}).

THEOREM 1.7. In terms of the coordinates on S, ®'(q, B) is the linear mapping

(q, B)-» (*, d, 2^-^j + j qdx, <jL\{q, a, b), (q, B)>, <KJ(* a, b), (q, B)>,...) ,

where qeL2[0,1], B = (°*) with c = (dd + da)/b + b(l-ad)/b2, i.e. B is in the

tangent space to SL(2, R) at B. The pairings (fl'n(q, a, b), (q, B)) and (i<'n(q, a, b),

(q, B)) are given by

'^q, a, b), (q, B)) =-2^-^j -^ qdx

and

,Mn) yA^yii^qdx-y^X,^) yl(fin)qdx
Jo Jo

(I .AOJ yi(^n)y2(^n)dx-y1(h^)\ yl(nn)dx

ll'n(q, a, b), (q, B)> + 2 ^ - ^ + J ' qdx].

The mapping <I>' is boundedly invertible.

Proof. The formulae for (/!'„, (q, B)> and (i<'n, (q, B)> are computed using (1.5) and

(1.12).
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Once again using the asymptotics for the nn in n, and y^ and y2 in A, one has

*>„ = II^OOIU^GO -1 = -cos (2n -

gn = (l/b)(\\y2(»nm
2
y

2
2(l, Mll) - 2 ) =

zn = 2TT
2
n

2
(y2(l, iin)yi(nn)y2(fin)

= sin(2n-l)irx + O(l/n) ( U 4 )

2 2n2 / f1 \
K = — ( I (j2(i, nn)yi(nn)y2(t*n)-yi(i, nn)yl{nn)) dxj

Hence

<D'(q,B)[4B] = fc

+ (o,O,y+J qdx,\ Wtqdx-dgiA z^qdx + dh^.. \

where ft€l2, i = 1, 2, and

/ , = ( l , 0 , . . . ) , / 2 = (0 ,1 ,0 , . . . ) .

Thus to show that <£'(<?, B) is boundedly invertible, it will suffice to show that

ip:(q,d)^l~+\ qdx,\ w^qdx + dgx,\ ztqdx + d / i , , . . . j

is boundedly invertible. Moreover, (1.14) implies

°°> I (!|{wn,gn}-{-cos(2n-l)7r,0}||2+||{zn,/ ln}-{sin(2n-l)7r,0}||2),
n = 1

where for {w, g} e L2[0,1] x C

Hence, applying theorem D.3 of [6] to the complete orthonormal sequence {0,1},

{21/2 cos (2« - 1)TTX, 0}, {21/2 sin {In -\)irx, 0}, n = 1 , . . . , in L2[0,1] x C, we see that

to show i/f is boundedly invertible it will suffice to show that {{1,2/fe}, {wn,gn},

{zn, g»}, Un, K}, n = 1, 2, . . .} is linearly independent in the sense that no element

is in the closed Hnear span of the others.

The key to establishing linear independence is the following observation which

we will use again in § 2. If we let w+ and w_ denote two solutions of -u"+ qu = AM

with A = n, and z+ and z_ denote a second pair with A = v, /A •£ v, then, letting
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[f,g]=fg'-gf,

2 P w w ( z z )'dx = (w w z z ) \ l + [ \ w w ( z z ) ' - ( w w Yz z ) d x
Jo

 W+W~ Z+Z~ X W+ +Z~ ° Jo
 Z+Z

~

= (w+w_z+z_)|o+ (w+z+[w_, z_]+w_z_[w+,z+])dx
Jo

= (w+tv_z+z_)|0 + ([w+,z+][n'_,z_])'dx
M ~ v Jo

= (w+w_z+z_)|o + —^[w+ ,z+][>_,z-] |o. (1.15)

Using (1.15) with w+w- = yl((j.n) and z+z_ = y2(/im), we have

f1 * 2
0= wn(V2(AO) ox-gnrwl.Mm) (1-16)

Jo 2
for all m = 1,2,.... Similarly for m # n

0= zn(yl(iJim)y dx-hn-yl(l, fin), (1-17)
Jo 2

and trivially

0= (yliPm))'dx---yl(l,fin). (1-18)
Jo fc 2

However,

r 2 * 2

Jo "
 2 M" " 2 ^ > / ln

2 2 f _ 2 ,

Jo 2 M"

_ 2 2 f 2

Jo
Formulae (1.16)-(1.19) show that no {zn, /in} is in the closed linear span of the other

vectors.

By the same method

f' b2

0= zn(zm)'dx-—hnhm,
Jo 4

2

and for m ̂  n

However, by (1.19)

o=r<z.r
Jo

f' b2

0 = H>n(zm)'dx-— gn/im.
Jo 4

f
1
 fe

2

wn(zn)'dx-—gA^x^O.
Jo 4

— /] m for all m,
4
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Thus we may conclude that no {wn, gn} is in the span of the other vectors.
Finally we note that

zndx = wndx = 0,
Jo Jo

so that {1,0} is orthogonal to the span of

{{wn,gn}, {zn, hn},n >1}

but obviously not orthogonal to {1,2/b}. •

2. Flows

In this section we begin by finding vector fields (q, B) which are tangent to M. In
the case of periodic boundary conditions, the vector field (q, B) with

and B = 0 is tangent (cf. [5]). We will use (2.1) for q here, but to get a vector field
tangent to M we will need to make B non-zero. One natural way to arrive at the
correct expression for B is simply to compute

[•
using (2.1) and then choose B so that A(/u,) = 0. This is the approach we will take here.

From theorem 1.2 we have

( 2 3 )

x)),

where all functions are evaluated at (•, A, q). The derivative (dA(\)/dq(x))' is the
derivative of the right-hand side of (2.3) with respect to x. The key to evaluating
(2.2) is the result of the computation (1.15), i.e. if we let w+ and w_ denote two
solutions of —w"+ qw = Aw, then

P 1
w+w_(z+z_)'dx = (w+»v-z+z_)|o +

Jo / * - "

(2.4)

The integrand in (2.2) is clearly a linear combination of terms like the one evaluated
in (2.4). Hence one could apply (2.4) directly to (2.2). However, it is better to try
first to find solutions of -u"+ qu = AM, /+ and /_, such that

dq(x)

Then one can evaluate (2.2) with a single application of (2.4).
The functions f± in the factorization turn out to be the solutions of -u"+qu = \u

associated with the eigenvectors of BF(\). Let/±(x, A) = yt(x) + c±(\)y2(x), where
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One computes easily

f± = yl(x, A) +

The eigenvalues £± are the roots of £2-A(A)f +1 =0, and hence £+£_=l and
£+ + £_ = A. The product

,(l, A))2\

To simplify this, note that the denominator of the coefficient of (y2(x))2 equals

y2(l, A)/,(l, A))

y',(l, A))

since ad -be = 1. Thus

(ay2(l, \) + by'2(l, A))j2

(2.5)

directly from (2.3).
Now combining (2.1)-(2.5), we have

However, since B is symplectic, by the definition of / ±

[

Thus

and one is left with

i:
9UVJ

(2.6)

Note that (2.6) is also true, trivially, when /x = v.

Now we are ready to choose B(A) so that the flow determined by (q(t, A), B(t, A))
with q given by (2.1) will be isospectral. Since

^ 7 « V 2 ( 1 , A ) + ^2(1,A), ^ 7 ^
dq(O) dq(l)

https://doi.org/10.1017/S0143385700009470 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700009470


Isospectral sets for boundary value problems 317

one can use the trivial relations

3A(A)
= >>,(1,A), ——- = / , ( l , A),

db

,A

>>,(1,A),
da db

, dA(A)

dd

to conclude from (2.6) that the correct choice is

0 \

\, k) + by'2{\, A))/'l,A)) b{ay2{\,

(2.7)

Thus we have proven:

THEOREM 2.1. For all real A r/ie vector fields (q, B) = V(q, B,\), given by (2.1) and

(2.7), are tangent to the isospectral manifold M at (q, B).

Replacing the constant A in V(q, B, A) by any smooth function X(q, B) gives a

new vector field tangent to M. If we let A = fin(q, B), the nth generalized Dirichlet

eigenvalue, we get an analytic vector field Vn(q, B). The vector fields Vn give rise

to commuting isospectral flows. The proof of this will be based on the uniqueness

theorem (theorem 1.6) of § 1. We will show that fim, m^n, and y2(l, (tm, q), m^ n,

do not change under the flow of Vn and that the motion of /*„ and y2{\, fin, q) is

determined by A(A, q, B) alone. Since the flow is isospectral for the generalized

periodic spectrum, A(A, q, B) is constant on the orbits. Thus it will be clear that the

induced flows on {/xn}^=1 and {y2(l,fin, <7)}^=i commute, and, since all the flows

fix b, d and ad - be, the uniqueness theorem implies the flows commute.

We begin by showing that fim, m # n, is constant on integral curves of Vn. Let

denote the derivative along Vn. The derivative y2(x, /*, q), with fi constant, satisfies

Thus

qy2
2(x, (i) dx = (y2y'2-y^yJW^o,rJo

and, evaluating at fj. = fim, we have

qy2
2(x, Mm) dx=yA\*m) (ay2(h »m) + by'2{\, /*„)). (2.8)

b

Hence, since a{t)y2(l, fim(t), q(t)) + by'2(\, fim(t), q(t)) = Oby definition, using the

chain rule and substituting (1.2) and (2.8), we have

( —b f' \ b f1

—T. r yl(x, fim) dx )/im +— qyl(x, fim) dx.
y2^,^m) Jo / >'2(l,Alm)Jo

Thus, using (2.7),

(J
(2.9)
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To avoid complications in the factorization (2.5) when A = fin, we first compute
Jo 4yl(x, Mm) dx, assuming q is given by (2.1), and then pass to the limit A = fin(q, B)

at the end of the computation. From (2.4) and (2.5) we have

Jo

X [yi(x, /*«),/+(*, A)][>>2(x, fim),Mx, A)]

Note by the formula for f±

. (2.10)

and at x = 1

b

, Mm)

Moreover, by (2.3)

dq(l)

Thus, combining (2.9) and (2.10), we conclude that along Vn

I yf(x,Mm)dx)Mm = l hm

\Jo /
A -

'0, n 1* m,

,Mm) \

To further simplify the case n = m, one may use (2.8). The final result is: the derivative
of Mm along Vn is given by

0 if m # n,

b

,/*») b
if m = n.

(2.11)

Since

(2.12)
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one sees

/in=VA2(/in)-4, (2.13)

where v "̂ denotes either the positive or negative square root. The correct choice of

y/~ at t = 0 is given in (2.11). Subsequently the sign of /!„ changes from + to - when

fin hits A2n, and from - to + when /*„ hits A2n_,. Thus, since A(A) is constant on

integral curves of Vn, fin(t) is determined by the initial values of /in , y2(l,fin, q)

and A(A).

Finally, since for fim = nm(q, B)

we have

where £ ( / O is one of the roots of £2-A(/4m) + l. For m # n, since b, A(A) and jum

are constant on the integral curves of Vn, and y2(l, Mm, 9(0) is continuous in t, we

conclude j^Cl, Mm. <i) is constant on the integral curves too. For m = nwe still have

A(A) determined by the initial data and

y2(h ftn(t), q{t)) = -ft/kOMO), (2-14)

but now * = ± is determined by

Ai» = -k(MB(0) + fi;W0). (2-15)

Thus we have proven:

THEOREM 2.2. The flows generated by the vector fields Vn, n = 1 , . . . , commute. The

data fjim and y2(l, /xm, q) are constant on the integral curves of Vn for m¥^n. On

integral curves of Vn, fin and y2(l,fin,q) are determined by (2.13), (2.14) and (2.15).

As in the earlier papers in this series, the vector fields Vn can be integrated

explicitly. As before, the integration is based on the following tricky but directly

verifiable observation which actually goes back to Darboux (see the discussion in

chapter 5 of [6]): if
-d2f/dx2 + qf=af (2.16)

and
-d2g/dx2 + qg = Bg,

and we set
.2

q = q-2—2\o$\f\,

f=\/f and g = (l//)[/,g], then

-d2f/dx2+qj=af, -dg/dx2+qg = f3g.

These equations only hold where./V0, and since/ in general will have zeros, the

usefulness of this observation is not immediately clear. However, one can repeat

the argument with q in place of q and (1//) [ / g] in place of/ in (2.16). Then setting

2

'=*-2hl°* ~fU,g\ (2.17)
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one again has -/"(*) + q(x)f(x) = #/(x) when [f, g](x) * 0. Moreover, if -h"+ qh
yh, then, setting

£ f

one has —h"(x) + q(x)h(x) = yh(x) when [/ g](x)^0. As we will see, it is possible
to choose / and g in the cases we require so that [/, g](x) ^Oon [0,1].

Given (q, B), we let nn(t) be the solution of (2.13). To integrate Vn, we must
choose / and g and B so that

m(q, B), m?5 n,

n(t), m = n

The correct choices turn out to be

where once again *= ± is determined by (2.15). Taking (2.17) with these choices
of/ and g as the definition of q, we need to show that (2.17) does define a potential
in L2[0,1], choose B and then show that (2.19) holds.

LEMMA 2.1. [^2(Mn,/*(A)](x)<0/or (x, A)e[0, l]x[A2n_,, A2J.

/ This proof follows the proof of lemma 6.1 in [6] closely. We have

b **v "

Since A(/i.J = -fc/y2(l, /JLn)-y2(l, fin)/b, we have tj*(nn) = -b/y2{\, fin) = &(»„)
or £*(/!.„) = —J2(l,v-n)l° = ^(Mn)- Thus [y2(/in),/|.(A)](x)<0 for Ae[A2n_i,A2J
when x = 0 or 1.

Since ayx(\, fin) + by\(l, fin) = -b/y2(l, fin),

lim [y2(fin),

(see (2.8)). Thus the limit is monotone in x and by the preceding paragraph we
conclude

lim

forxe[0,1].
Let /I=sup{Ai'<A2n: [y2(/*n),/*(M)]<0 for (x, n)e[0, l ]x[M n , M']}. If

for xe[0,1], /Z = A2n and we have part of the conclusion. If

xo€ (0,1), 0 = [J>2(AO,/*(M)]'(XO) = (A - M J ^ U O , Mn)/*(x0, /I),

and [y2(/J'n),/*(M)](^) does not change sign at x = x0. From [y2(Mn),/*(£)](*o) = 0

and either y2(xo,fin) = 0 or/^(xo,/I) = 0, it follows that y2(x0, M J = / * ( ^ O , M) = 0.
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Since both these zeros must be simple, it follows that

with k # 0. This contradicts [^(/O,/*(£)](*) being of one sign on [0,1] and we
conclude

for (x, A)e[0, l]x[ju.n, A2n]. The argument for A e[A 2 n - i , fin] is identical. •

With lemma 2.1 we know that for /!„ € [A2n_i, A2n]

g = q-2—ilog[f^(iln),y2(fjLn)]

is a well defined potential on [0,1]: q — q is absolutely continuous. Thus by (2.17)

satisfies -y"+ qy = Atn.v. Since y{G) = 0 and y'(0) = 1, we see

To choose J§ so that /u.n(q, B) = / in , we need to pick a so that

We have

.y2(i, £„,<?) = - *

^ ( l ) l(h )( ~ Hn)f*(h fin,

-y2(l, Hn, q) ,* A Iy2(l, f^n, q)

5 &0*) j (
« A

Thus

- - -. - 1 / A „ fc%(l,Mn,Q)\

Thus we require

(2.20)

>2(l,/tn , q)

and define

where c is determined by ad-bc=l.

L E M M A 2.2. /*„,(<?, B) and y2{\, fim{q, B), q) are given by (2.19) for all m.
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Proof. By (2.18), since [y2(/xn),.^(A)] vanishes to second order at x = 0, we have

>>2(x, A, q) = y2(x, A, <?)+- — - —

Hence

^A,«>h(U,9)+^ : i~7^^/*(l,A«) (2-21)
A "Mr. £*(Mn)

and

XI v *\ X, » N , Hn ~ fin (b(ld.n ~ \)y2(l, \, q) *

y'2{\, A, q) =y2(l, A, q)+- 1 „ /*( ! , /*„, g)
n~fin(l

~̂̂  /*(l,Mn,'

Thus, since ay2(l, (xm, q) + fe^2(l, û.m, q) = 0, it follows directly from (2.20) that for

m 5̂  n

^ 2 ( 1 , Mm, 9) + by'2(l, (j.m, q) = 0.

In § 1 we showed

Thus /im must actually be the mth zero of dy2(l, \, q) + by2(l, \, q) for m large.

Consequently, this function has no zeros other than {fi}m*n and /£„. Thus

m{q,B), m^n,

fin, m = n

Finally we note that (2.21) implies y2{\, (j.m, q) = y2{\, fim, q) for m^n and

D

Combining theorem 2.2, lemma 2.2 and theorem 1.5, we have proven:

THEOREM 2.3. The solution to (q, B) = Vn(q, B) with initial data q(0) = q, fl(0) = B

is given by

d2

I , M « ( 0 , q) ,1

———— d\

where fin = /J.n(q, B), and fj,n(t) and * are determined from (2.13) and (2.15).

The formula in theorem 2.3 may be iterated to give the result of moving successively

on integral curves of Vn<,..., Vnk. Without further computation this would involve

y2(x, A, q,) and /*(*, A, q,, B,-), 1 = 0 , . . . , k - 1 , where (qt, Bt) is the result of moving

(fli-i, B,-_,) along an integral curve of Vj. However, since the flows commute, it is
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possible to derive manageable expressions for the final (q, B) in terms of _y2(x, A, q0)

and/^x, A, qo,Bo).

To derive the formula described in the preceding paragraph, we begin by comput-

ing the analogue of (2.21) for /#(x, A, q, B). For fin, /I and A distinct, and a = ±,

S = ±, let

- —/o-Cx, A, q, B)+- — —— .-,/a(x, Ain, 9, B).
A M A t [>'(M)/(MJ]

Note that /(0) = 1 and by (2.17)

- / '+<?/= A/

Thus to show that f(x) =/,(x, A, q) it suffices to show

We will do this without assuming A(A, q, B) = A(A, q, B), hence proving (q, B) is

isospectral to (q, B) without using theorem 2.3. We have, with fT(A) equal to the

root of f - A(A, q, B)f +1 = 0 used in defining fT(x, A, q, B),

0 \

/»(i,/2-)/

Hence, since [^2(^),/*(A)](0) = 1,

= /fl-a 0\r/A-/i,\//cr(ltA)\

Vc-c O^L\A-/iJVT.(l,A);

\M/.(1,/J-)/

Since

2n) /
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we have

as claimed. Thus

/„(*, A, q, B) = (j^JfAx, A, q, B) + (yf£=) [^ffr^f]fs{x> **"• 9, B^
(2.22)

To get a compact formula for the result of moving fik to p.k, k = 1 , . . . , N, we

will need a compact formula for [y2(a, 4),/*()8, <?, B)]. For this we note first

_/̂ (x, /tn)[y2(Mn). y2(«)] =>;2(:'(:, a)[>'2(Mn)./):(Mii)]~J;2(;!<:> Mn )[ ̂ ( ^ )>f*(fi'n )]•

Hence (2.21) may be rewritten

, o, / « ~ /2n\ (jln-fln\ [y2{<X,f*{ij-n)] , x
y2(x, a, <j) = l )y2(*,«, 9) + l h—: !• / » M ̂ 2(x. Mn, ?)•

\ a - / x n / \ a-fin/ iy2{fin,j*(iJLn)]

(2.23)

Next by (2.22) and (2.23)

n/j Jcr\P) J

\ot-fin/\B-fin / [^(/O./atMn)] J '

and we conclude

since both sides of this equation equal - 1 at x = 0.

THEOREM 2.4. Assume nk ^ (ik for k = 1 , . . . , TV. Let

k, q, B)]
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and let 0(q, B) be the matrix with entries 0jk. Using the flow of Vk, k = 1 , . . . , N, to

move fik to fik and y2(l, fik, q) to -6£^(/£ fc), i = l,..., N, one reaches (q, B), where

d2

q = q-2—2\og\dtt 6(q, B)\,

v h? FT= a-l,b [I

v UAc = c- I bd

= d and b = b.

Proof. Letting (q0, B0) = {q, B) and (qm, Bm) be the result of moving from

(qm-i, Bm_,) in the flow of Vk, formula (2.24) implies for j , k¥" m

JH,,- Mm )(ff* -Mm)

Consider the process of reducing 6 to upper triangular form by Gauss elimination.
Letting 6Jk(qm, Bm) = 6jk(m) and

after the entries below the diagonal in the first column have been cancelled, (2.25)
implies

/ M O ) ••• *1N(O) \

0 c22(l)022(D • • • c2N(l)02N(l) j

1) • • • cNN(l)0NN(l)l

,i(0) • • • elN(0)\
0 M l ) • • • 02NU)

det 0 = det

\ o

= n«/(D n wDdet

\ o eN2(i)

Thus, proceeding in the same manner,

d e t ^ C n ' fl aj(m) f[ bk(m)) fl

Since theorem 2.3 implies

l 2 i | t f ( B

WD/

we have proven the formula for q in theorem 2.4.
To prove the formula for B in theorem 2.4, it clearly suffices to prove the formula

for a and we will use induction on N for that. In the case N = 1 the formula reduces
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to (2.20). Assuming the formula for N = M - 1 and applying it to (qt, B,),

y 2 *

However, (2.22) implies for fc = 2 , . . . , Af

LS\, y-k, qi,Bl)=- ~ / ^ ( l , Mk, <Zo, 5 o ) + ~ —/<r,(l, Mi, <?o, Bo).
MJk-Mi Mi~Mfc

Thus, using (2.20) to replace a, by a0, to complete the proof of theorem 2.4, it
suffices to show

(2.26)
k=2Mi~Mfc'=2 MM

Formula (2.26) is just the statement that the sum of the residues of

1 ^

at z = / I , , . . . , /IM must be 1, which follows from lim|z|_co zF(z) = 1. •

Remark 2.5. In theorem 2.4 we assume fi.k # fik, k = 1 , . . . , N, since otherwise 6 will
be undefined. However, in theorem 2.3 the corresponding assumption, /*„ #/u.n(f),
is not made. While strictly speaking [/*(/*„, q), y2(fin, q)] is undefined, it should be
clear from the computation in the proof of lemma 2.1 that in theorem 2.3 one should
define

1
It is possible to extend theorem 2.4 to general (Lk, k = 1 , . . . , M, in a similar fashion,
but, since we will not have further use for q, we will leave the extended formula
for q to the reader. To extend the formulae for B in theorems 2.3 and 2.4 to general
fi,k, one has only to observe that

hm

flT(l,Mk) + o ^ ( l , / * f c )

3. 77ie manifold M

In this section we give M the structure of a real analytic manifold. The strategy for
doing this is quite simple. In § 1 we showed that the mapping 4> was an analytic
homeomorphism. Elementary considerations show 4>(M) is contained in an explicit
analytic submanifold N of S. Using the flows of § 2, we can show <!>( M n {d = d0}) =
Nn{d = d0} when Mn{d = do}^0. In § 5 we will see that the range of d on M
is R, and we will conclude <&(M) = N. Here we only show that there is a dx so that

= Nn{d <dao}. Hence M inherits its real analytic structure from Nn
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The manifold N is the subset of S defined by the relations

2 «n + b2 = 0, n = l , 2 , . . . , (3.1)

, Id 2(a0 + d0) , f
fc = bo, y + r = ^ + J qodx = Io, (3.2)

where (q0, Bo) e M. The function r is the coordinate function on S from (1.13). We
have already seen that

„ o^ ~b y2{\,nn{q,B),q)

(see (2.12)), so that (3.1) holds on <£(M). Moreover, combining theorems 1.3 and
1.4, we see that (3.2) holds on <I>(M) also. Thus <$>(M)<= N.

That N is an analytic submanifold of S is a consequence of the properties of A
stated in the Introduction. These imply that

(i)
(ii)

(iii) if A2n_i < A2n, then dA/dA # 0 at A2n or A2n_,.
Hence for each n (3.1) defines a real analytic curve—topologically a circle in the
(Mn, fcn)-plane if A2n_!<A2n. When A2n_,=A2n this curve degenerates to a point
and (/un, kn) is constant on N. By (1.6) the number of indices n for which A2n = A2n_,
must be finite, and we delete them in what follows. We may give N locally as an
explicit submanifold in S by solving

for kn or fin as is appropriate for each admissible index n.

Since the topology on S is induced by the topology on / | via the coordinate map
s-> s, any point soe N has a neighbourhood U in S such that on U

lM n - (« -3 )V-Kso) l< l and \xn<b

for n > n(s0). Hence, since N will be an analytic submanifold if it is given locally
as the graph of an analytic function, and the preceding remarks show we can ignore
any finite set of indices in proving this analyticity, it suffices to prove the real
analyticity on V = {{/j,n}n>ni:{b, d, fj,u K,, .. .}e U for some {b, d, /x,, * , , . . . , /*„,,

Kn.Kn.+l,.. •}} Of

where

and n,>«(i0) is chosen large enough so that on U one has A2n_i </un < A2n for
n>«! . Since each component of F is clearly analytic on V, =
{Wn>n,:{ReW}n>n ,e V, |Im{Mn}|<l and {Im {/*„}}„>„, e I2), it will suffice to
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show that the image of V, under F is bounded, i.e. that {{*„}„>„,: {*„}„>„, 6 F{ Vi)}

is bounded in I2, where *„ = n2(«n + ( - l )" /n) ; cf. theorem A.3 of [6].

Showing F is locally bounded requires a sharper estimate on A(/O than we have

used up to now. Since, given (q0, B0)e M,

A(/i) = ao)>,(l, n, qo) + by'1(l, p , qo) + coy2(l, fi, qo) + doy'2(l, ft, q0)

and \yfjji^, — (n — ̂ )ir\ <A/n on V], one sees easily from theorem 1.1 that on V,

To avoid the O(l) error term in the basic estimate for y[, we use

^ yiyi-l -sin2(/nn
I/2) + (cos(/tn1/2))O(Mn1/2) + O(u^)

y[(l,Hn,q0)= = ^T7T~- 177

y2 (l,Mn,<Jo) /*"
 S i n

 P"

Thus |A(/O~ bv(n —1)(—1)"|^ C/n on Vs and

D
- 3 •

Thus, since D is constant on V,, we see {(Kn,(ju,ni),...): (/ini,...) e V,} is bounded

in the /2-norm. Thus we conlude that TV is a real analytic submanifold of S.

Given (q0, B0)e M, one sees from theorem 2.2 that by using the flows from the

vector fields V,, V2,... successively, one can reach a subset of M n{d = d0} whose

image under 4> contains all points of N n {d = d0} such that for n sufficiently large

(Mn, Kn) = (nn(q0, Bo), y2(l, fin(q0, Bo), <7o))- (3.3)

By (3.2) on Nn{d = d0}

r=I0~2d0/b0,

i.e. on N n{d = d0}

Mn = (n -k)
2
ir

2
 + I0-2d0/b0+ l\n),

and we see that the points of Nn{d = d0} satisfying (3.3) for all but finitely many

n are dense in N n{d = d0}. Since $ " ' is continuous and Mn{d = d0}—as the

intersection of closed sets—is closed in L^[0,1] x SL(2, R), we have proven:

LEMMA 3.1. <J>(Mn{d = do}) = Nn{d = d0}.

To complete the argument outlined in the first paragraph of this section, we only

need the following:

LEMMA 3.2. The range of d on M is (-oo, d^) for some d^^oo.

Proof. In this lemma we make our first use of the *-involution. Since this involution

fixes M and interchanges a and d (cf. lemma 4.1), a and d have the same range

on M. Thus we only need consider the range of a on M. Given (q, B) e M, we have

from theorem 2.3

a(t) = a-b (nn(t)
y2(\, fx,n(t), q) + by'2(l, /!„(/), q)

as one moves (q, B) under the flow of Vn. In particular, if we move to the point
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with /xn = fin(q, B) and xn = b2(y2(\, /*„, q))~\ we have (see remark 2.5)

an = a-b2 yi

dy2,.dy2
a 1- b

dfi dfJL.

= a + b-

\\Ux,tin,q)dx
Jo

by (1.2). Since

ylil, y^n, g) = sin2 ir{n-\)x/TT2{n-\)2+ O{\/n*),

we have

an = a-2b2ir2n2+O(n). (3.4)

Thus d(M) = a(M) => (-00, a].

Since (q, B) was an arbitrary point of M, to complete the proof we only need
show that d cannot assume its least upper bound on M. Suppose it did assume this
maximum value at (q0, Bo). Then we could choose a Ao such that aoy2(l, Ao, qo) +

by'2(l, Ao, <7o) 5* 0- By theorem 2.1 d ̂  0 at (q0, Bo) on the integral curve of V(q, B, Ao)
through (q0, Bo). Since this curve lies in M, the proof is complete. •

4. Even points

In this section we will describe the points of M which are fixed by the involution

q(x) -> q*(x) = q{\-x),

(a b\ la b\*_/d b\

\c d)~*\c d) ~\c a)

on M. The fixed points of this involution play the role of even potentials for Dirichlet
and periodic boundary conditions and, following [4], we call them even points.
These points are important when one considers the submanifold of M, MB, obtained
by fixing the boundary condition B.

We begin with two simple lemmas.

LEMMA 4.1. The *-involution maps M onto M.

Proof. Suppose —y"+q(x)y = \y and

(a b\(y(l)\Jy(0)\

\c d)\y'(l)J \y'(O)J'

Letting z-y(l-x), we have — z"+ q*(x)z = kz and

la * \ / z ( 0 ) \ / z ( l ) \

\c dJ\-z'(O)J \-z'(l)J

Thus

z{\)
1 = 1 ii 1 1 11

^z'(O)

= / l 0\(a b\-*n 0 \ / z
\0 - lAc d) \0 - lAz '

Jd c\lz{\)\Ja 6\*/z(l)\
\b a)\z'{\)J \c dj \z'(l)/
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since det (" d) = 1. Thus (q, B) e M=$>(q*, B*) e M and, since * is an involution, the

proof is complete. •

LEMMA 4.2. The following identities hold:

(i)

(ii)

(iii) y'l(l,\,q*)=y\(l,\,q),

(iv) y
2
2(l,\,q) + bA(A)y2(l,\

= (ay2(l, A, q) + by'2(l, A, q))(a*y2(l, A, 4*) + by'2{\, A, g*))

= yj(l, A, q*) + bA(\)y2(l, A, 9*) + b\

We have already used (iv) in the special case A = /in(a, b, q).

Proof. To verify (i)-(iii), we note that since J>,(1 -x, A, q*), i = 1,2, solves —y"+ qy =

\y, we must have

A - x , A,

for some constants ahi= 1,... ,4. Evaluating (4.1) and its derivative at x = 1, we have

^0/ \a3 aJ\y2{l,X,q))'

>20,A,.

Hence

\a3 a4/ \y2 —y'2J \y2(l,X,q) — y\{\, A, i

by the Wronskian identity. Substituting for (^ £j) in (4.1) and evaluating the resulting

expression and its derivative at x = 0 gives (i)-(iii).

To verify (iv), we compute as follows:

= L
y2

bayxy2 + b2yxy'2 + bcy\ + bdy2y'2 -

I bayly2 + b2yy2 + ady2
2 + bdy2y'2 b y2~\

L ^ 2 y2 *>J

|"(qy2+fc>>2)(d>'2 + fej;i) b y 2 l
= T T U . A, q).

L *>j>2 ^2 b\
Now (iv) follows by multiplying by by2 and collecting terms. •

The identity (iv) is important here because it is related to the basic formula
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of § 2. By (iv), [y2+b^](l, fiJt q) = 0 only if £, is a root of [ay2+by'2](l, A, q) = 0

or of [dy2+ feyiKl, A, q) = 0. We let the roots of [dy2 + by^l, A, q) = 0 be vx, v2,

Since the v are just the fi for {q*, B*), they have all the properties of the /x established

in § 1. In the next lemma we think of y2 + bgit. as a function on

but we denote the two branches as €±(n) as before.

LEMMA 4.3. If vn= /*„ and A2 n-i#A2 n , then A2 n_,</in < A2n and one branch of

y2+b£* has a zero of order 2 in fj. at /x = /*„. y2 + b^ has no other zeros and hence

is of one sign for A2n-i ^ /t — A2n. Moreover, y2 + bg% is of one sign for K2n-X < /x < A2n

only ifvn = ^n.

Proof. By theorem 1.3, ay2 + by'2 and dy2+byx have simple zeros at /*„ and vn for

n = 1,2,. . . respectively and no other zeros. The first step in this proof is showing

that, if ixn = vn = A2n or /*„ - vn = A2n_1; then A2n = A2n_,. If either of these occurs,

it follows that y2{\, /*,,) = ±fc, ^ 2 (1 , /*„) = To, y,( l , ftn) = *d and thus / , ( 1 , /*,,) = ±c,

since y\y'2-y'\y2= 1. Hence

Thus the generalized periodic eigenvalue at A = fj.n has multiplicity 2 and we conclude

A 2 n - i = A2 n .

Since [ay2 + by'2](\, A) and [dy2+byt](l, A) both have the asymptotic form

b cos VX+ O ( 1 / V A ) ,

it follows that their derivatives at /in and vn respectively have the same sign. If

vn = fin, it follows from lemma 4.2(iv) that [(y2+ bg+)(y2 + bf_)](l, /u.) is non-negative

on [A2n^,,A2n] and that it has a double zero at ix=jxn and no other zeros in

[A2n_,, A2n]. Since | + # f_ on (A2n_,, A2n), it follows that, if A2n_, < A2n, one of the

factors y2 + bg± must have a double zero at fi = fin and the other factor is non-zero

on [A2n_,,A2n]. On the other hand, if vn # fin, then lemma 4.2(iv) implies [(^2 +

H+)(y2 + b^)](l, /J.) is negative on the interval between vn and /*„. The lemma

follows immediately. •

Now we are ready to study the fixed points of the *-involution. The point of

contact with the preceding discussion is the following lemma:

LEMMA 4.4. The point (q, B) is fixed by the involution if and only ifvn{q, B) = fin(q, B)

for all n.

Proof. By lemma 4.2(i) and (ii) for each n

Vn(q,B) = ^n(q*,B*).

Thus the necessity of the condition is obvious.

Suppose )*.„ = vn, n = 1, 2, Since by theorem 1.3

\n),
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we conclude a = d. Since y2{\, M«» 9) = J^U, A1*, <?*) for all n by lemma 4.2(i), we
see <*>(q, B) = <t>(q*, B*) and hence (q, B) = (q*, B*). D

Lemmas 4.2, 4.3 and 4.4 make it possible to assign an index to the fixed points
of the *-involution. If (q, B) is fixed, then

is of one sign on the 7th gap, i.e. on

The index of (q, B) is the set I(q, B) of j for which \2j-i < A, and Fj is non-positive
on the7th gap. This set is always finite: since y2(l, A, q)->0 as A -»oo, one sees from
lemma 4.2(iv) that the sign of Fj on the jth gap for j large will be the sign of
^±(fij)(ady2/dfi(l, ^j, q) + bdy2/dfj,(l, /j.j, q)). From (1.2) and the asymptotics of
A(A) and y2(l, A) as A -»oo, one sees that this expression is positive for j large.

The main result of this section is the following converse to the preceding remark:

THEOREM 4.5. For each finite subset I of Z+\{j: \2j~i = A2>} there is a unique fixed
point of * on M of index I.

Our strategy in proving theorem 4.5 will be to exploit the fact that the fixed points
are precisely the critical points of the function a on M. Using the mapping <£> of
§ 1 to identify M with Nn{d<d^}, we may consider a as an analytic function on
Nn{d <d,x,}. Given a finite subset J of Z+\{j: A2J_, = A2j}, it is natural to split
N n{d < d j into the product of the finite-dimensional torus

Nl = {(/*;, ,Kh,..., (Ij,, KjJ-.ji 6 / }

and the infinite-dimensional analytic manifold

N,< = { ( b , d, fj.h ,*,- , , . . . , nj,, K h , . . . \ j i € l c , d < d x } .

The points of N, and Nt< are subject to (3.1) as well as, in the case of Af/% (3.2)
and the asymptotic conditions defining S. Clearly N n{d < dx) = N, x N,*, and we
denote points of N as pairs (r, s), re N,, s e N^.

LEMMA 4.6. There is an analytic function r(s) from N,< to N, such that

a(r(s), s) = min a(r, s).

Moreover, a(r, s)> a(r{s), s) for r # r(s).

Proof. Since /(r) = a(r, s) is a continuous function on a finite-dimensional torus, it
assumes its minimum at a point we call r(s). Then, using the formula from theorem
2.4 with (q, B) = (q(s), B(s)) = 4>~'(r(s), 5), the values of a(r, s), re N,, are given by

(4.3)

where (o>, &(o))) ranges over Q = {(/*, £) = £2-A(M) + l =0, A y . , s M s A s } for
j e I, and we use remark 2.5 when cr, = /MJ. Since y2 + b(j must be non-positive on Cj,
we see from lemma 4.3 that Vj(q(s), B(s)) = nj{q(s), B(s)), j e I. Moreover, since
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lemma 4.3 also implies that

is the only zero of y2 + bg on Q, it follows from (4.3) that a(r(s),s)<a(r,s) for

To see that r(s) is real analytic, we first note that given soeN,<, A2;-i<
/*/(?(*<))» B(so))<\2j, jel, and hence {LJt jel, defined in (1.13) are admissible
coordinates on N, near r(s0). From (4.3)

0,
B2a

,2[ (d/dti)(y2+b^) ]„ ...
~

fe
 a /a a I. a '/a (l,^(g(^o),g(^o))), «=J-

Moreover, since the zeros of y2 + b^ at

(fij(q(s0), B(s0)), -b-ly2{l, /^(gU), B(s0)), q(s0))), jel,

are exactly of order two, (d2a/8fl2)(r(s0), s0) >0,je I. Thus we may use the implicit
function theorem to solve

with base point (r(s0), s0). This yields an analytic function r(s) defined near s0 such
that (da/dfij) (r(s), s) = 0,je I, and (d2a/dfijdfli)(r(s), s) is positive definite. Setting
(q(s),B(s)) = <b~\r(s),s), it follows from lemma 4.2(iv) that vj(q(s), B(s)) =

Hj{q(s), B{s)), j e /, and hence Fj(fi, f;) is of one sign on Q, j e I. The positivity of
the Hessian of a at (F(s), s) then implies fj is non-positive. Thus (4.3) with (r(s), s)

replaced by (f(s), s) implies a(r(s), s)<a(r, s), re N,, and we conclude r(s) = r(s)

for s near s0- D

The uniqueness statement in theorem 4.5 is a consequence of the following:

PROPOSITION 4.7. Suppose (q0, Bo) = <i>~*{r0, s0) a jixed point for the *-involution of

index I. Then ro=r(so) and

a(r(s0), s0) > min {a(r(s), s), d(r(s), s)}

for s 5̂  s0.

Proof. If (<7o, Bo) is of index I, it follows immediately from lemma 4.6 that r0 = r(s0).

Let a'=a{r(s'), s'), d' = d(r(s'),s') and ao= a(r(s0), so) = d(r(so), s0), and sup-
pose min{a',d'}2:a0. Since the *-involution fixes y2(l, /A) and A(/A), and hence
a(r(s)*, s*) = minNl a(r, s*), the involution must take (r(s),s) to (r(s*),s*) for
some s* e N^ by lemma 4.6. Hence we can assume without loss of generality that
a'< d'. If a'> a0, then, as in the proof of lemma 3.2, we can use the flow of Vj for
j sufficiently large, and hence in Ic to move a' down below a0. Thus we have 5"
such that a(r(s'),s")<a0 and hence a(r(s"),s")<a0, but d(r(s"), s") = d'. Since
N,< n{d = d'} is connected and a is continuous, it follows that there is an s'" such
that a(r(s'"), s'") = a0 and d(r(s'"), s'") = d'. Finally, using the involution, we get s,
such that a(r(s,), s,) = ^ ' s a o and d(r(st), s,) = ao=d(r(so), s0).
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Let (q\ B') = <p-\r(s0), s,) and set

for JG /c. By theorem 2.4 and the continuity of <£"'

a(r(so),Sl)=\\m ao-b
2 I (/Z,-/i;) n ( ^ Z ^ ) [ *2+fcf*,l(l, A), (4.4)

where the //,, and >>2 are computed at (qo,Bo) and SN = / c n { j < N } . Thus
a(r(,s0), s,)<a0 and d' = a(r(s,), s,)<a(r(50), s,). Since d '>a 0 , we conclude d' =
a0. This means that we can repeat the preceding argument with (r(s'), s') in place
of (r(s,), it), i.e. (4.4) holds with a(r(s0), s,) replaced by a(r(s0), s') and {{Lh ^(/I,-)).
jslc, defined as before with 5] replaced by s'. Thus, since a'^a0 by assumption,
we conclude a' = a0 and (/Z,, £*(/!,)) = (/x,(<70, Bo), —^"'^(l. Mj(̂ o, -Bo), 9o)) forje
Ic. Since d' = d(r{s'), s') = ao = d(r(so), s0), we have s' = s0. D

Proposition 4.7 implies that to find a fixed point of the involution with index I,
we only need find an soe I, where supN/< a(r(s), s) is assumed. However, since N7>
is not compact, we have not been able to do this directly. Instead we will exploit
a connection between maxima of a and minima of

{k + q)2dx

on M n{a = d}.

LEMMA 4.8. For any real constant k, the derivative of £ Jo (k + q)2 dx on the flow of

the vector field (q, B) = V(q, B, A) in theorem 2.1 is given by

(4.5)

Proof. We have

[
r i "1 r I

\ (k + q)2 dx \—i (k + q)qdx.
Jo J Jo

Since (2/fc)(a + b) + J0 qdx is constant on M (see (3.2)) and the vector field is
tangent to M, we have (see (2.7))

fcf1 . __k .
2 Jo b

Using the abbreviations

the formula for dA(X)/dq(x) given in (2.3) becomes

Substituting the derivative of this expression for \q and systematically replacing qy
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by y" + \y, we arrive at

= [-ay[ + \byt - cy2 + Xdy2-Xay2-\by2 + cyx + dy\](l, A)

) . (4.7)

In passing to the third equality, we used (y\y'2-y2y'\) = 1 four times. Combining

(4.6) and (4.7) gives (4.5). •

The following proposition completes the proof of theorem 4.5.

PROPOSITION 4.9. Given a finite index set I, let M, = <P~1({(r(s), s): s e N,<}), where

r(s) is the analytic function of lemma 4.6. Then for k sufficiently large

lim
4,^{a = d) Jo

(q + k)2dx

is assumed at a fixed point of index I.

Proof. First we show the minimum is assumed. Since, as noted in the proof of

proposition 4.7, the involution leaves M, invariant if a - d is not identically zero

on M,, it must be of two signs on M,. Hence, since N/< is connected, we conclude

M, n{a = d) is non-empty.

Choosing a sequence (qj, B}) in M ; n{a = d} on which

•1"(q + k)2dx

tends to its infimum, we can choose a subsequence such that qh -> qx weakly in

L2[0,1]. The sequence a, = d} is bounded, since (2/fc)(a, + d,) + J0 q}dx is constant

on M, and Cj = a2-l/b, since B,eSL(2, R). Thus we may assume B,. -»Bco with

To see that (qx, Boo) e M, n{a = d}, we note first that theorem 1.5 of [6] implies,

for 1=1, 2, y,(x, A, q}l) -*y,(x, A, qx) uniformly on bounded subsets of [0, l ] x C .

From the formulae

y\{x, A, q) = -A1/2 sin A1/2x+ cos \1/2(x-t)q(t)yi(t, \,q) dt,
Jo

cosA '^x -O^O^CA.q)^ ,
JoJo

one sees that y',(\, A, qJi)^y',(l, A, qx) for AeC. Thus A(A, q^, Bco) = A(A) and

(<7oo, B<»)e M. Finally, since

y2(l, /A,

on Q for j € /, the characterization of r(s) in lemma 4.6 shows (<7co, B J e M,.
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Since Jo (q + k)2 dx can only jump down on weakly convergent sequences,

(k + qoo)
2dx= min (k + q)2dx,

Jo M,n{a = d} J o

and the derivative of

along any differentiable curve in M, n{a — d) must vanish when the curve passes
through (̂ oc-Boo). If M, n{a = d} is a smooth submanifold of M, the preceding
condition is equivalent to: the derivative of

lo

along any differentiable curve in M, tangent to M, and {a = d}at(qoo, £„), vanishes
when the curve passes through (q^, B^). The second form is much more convenient
for us, so we will show that {a = d} and M, intersect transversally and hence
M, n{a = d} is smooth.

Given (q, B)eM, n{a = d}, theorems 1.7 and 2.2 imply that {Vn.(q, B): je 1} is
a basis for the tangent space at (q, B) to *"'(N7 x{s}), where s is the component
of 4>(g, B) in N,<. Thus, since Vx(q, B) is in the tangent space to M at (q, B), there
are unique c, e R such that VA -£,-e / CjVnj is in the tangent space to M, at {q, B).
Let y(t) be a smooth curve in M with y(0) = (q,B) and y'(0) = VA - I J £ / c,VM..
Then, since /*,(<?, B) = r,(g, B), je I, for (^, B) e M,,

and, since h(\) = 2b2 cos A1/2+ O(A 1/2), it follows that for suitable A

jt[d-a](y(t))*0.

Thus {d = a} and M, intersect transversally at (q, B).

Now continuing with the same notation, let (q, B) = {qx, Bx) and let y(t) be a
smooth curve in M with -y(O) = {qx, B J and, for /e / ' ,

By construction y'(0) is tangent to M, and {a = d}, hence

=o. (4.8)

Since doo = ax>, and ^(^co, Bx) = Hj{qx, Bx) for j e /, it follows that y'2{\, fij, qao) =
.Vi(l, Aij, ôo) for j el. Thus, when one uses lemma 4.8 to compute the derivative in
(4.8), it yields

^ ] ( 1 , A,
fl(A)
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However, since h(fi,) = [b2(y, -y'2)](l, fit, <7<x>), we have

(4.9)

Thus either [yi-y'2](l, Hi, <?«>) = 0 or the other factor in (4.9) vanishes identically

in A. Since c > - I / f t on M n {a = d}, we may assume that k was chosen large enough

at the outset that cx+ ft(A + fc) is strictly positive on all the gaps. Thus, if the second

factor vanishes identically, [yi—y'i\{\, A, qK) must vanish at every zero of h(\).

Note that

= b{[axy2+ by'JH, \, q^) + [doay2+ byi](l, \, qoo)) = bf(\) + bf*(\).

Since / and / * have the same sign at A2n-i and the same but opposite sign at A2n

for all n, we see that h(\) has a zero £, in A2 n_1^ A <A 2 , for all n. If[>>i -}>2](1, £.) = 0

as well, then £, = M-I(<7OO, #«,) = vn(qx, Bx). Thus, if the second factor in (4.9)

vanishes identically, we can still conclude [j>, -y'2~\{\, /u.;, qoo) = Q. Since / was an

arbitrary element in Ic, we get Vj(qx, #») = (J>j(q<x>, Boo) for all j , and by lemma 4.4

(qoo, Baa) is a fixed point of the *-involution.

Now we only need show that (qx, Bx) has index I. As in the preceding paragraph,

we assume k was chosen so that Cco+ft(A + fc) is positive on all gaps. Since

h(nj,qac,Boo) = 0 for all ;, given lelc, V^iq^, Bx) is tangent to Mn{a = d}.

However, VM( is tangent to M7 as well. To see this, note that, as in the proof of

lemma 4.6, near ^(qx,, B^), d, r and the /I are admissible coordinates on N n

{d < doo}. As in the proof of lemma 4.6,

Thus, differentiating the equations

da
— (r(s),s) = 0, jel,

with respect to /x( we see

= 0, jel.
dp.

Thus V^iq^, Bx) is tangent to M, at (q^, Bx).

Note that the image of {V^iq, B):j = 1,2,...} under &'(q, B) is clearly

codimension 1 in the tangent space t o J V n { d < d^} at <&(q, B). Moreover, VK{q, B)

for A # fij(q, B), j=l,2,...,is not in the closed linear span of

since d # 0 on its integral curve at {q, B). Thus, since $ ' is an isomorphism, we may

conclude that the closed linear span of {VK{q, B): A e R} is the tangent space to M

at (q, B).
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If we set (q, B) = Vx(qx, Bx, A), it follows immediately that a + d = 0 for all A.
Likewise by lemma 4.8

(k + q) 2dx = D
lo

for all A. Thus the gradients of a + d and \\{k + q)2 dx as functions on M vanish
at (<7oo, Boo). Hence by the chain rule, given y{t) in M with y(0) = (floo, Boo), the
second derivatives at t = 0 of these functions restricted to y(t) depend only on y'(0)-

To use the observation of the preceding paragraph, we note that the second
derivative at f = 0 of 4^0(k + q)2 dx along y(t) in M, n{a = d} with y(0) = (qoo, BX)
and ?'(()) = VM,(Oco, B«) must be non-negative. Hence the same is true if we take
V(/) to be the integral curve through (q^, B^) of Vil(q B)(q, B), where 6(<7, B) is
the zero of /i(A, q, B) in A2,_, =£ /u. =£ A2/. An argument from Rouche's theorem like
that used in the proof of theorem 1.3 shows h(k, q, B) has exactly one root counted
by multiplicity in A2/_, < fi < A2/ for each /. Thus gi(q, B) is a well defined analytic
function on M. Since a -d = 0 on y, y(t) lies in Mn{a = d}.

By theorem 4.8 for / near zero

(k + q(y{t))) dx ) = (c(t) + b(gi{t) + k))[yt — y2](l, 6(0,

and by (2.7)

— [a + d](y(t)) = — b2[yl — >'2](1, 6(0 ,

Thus we must have (d2/^'2)([f l + ^](r(0))l<=o:S 0. Again, since the gradient of a + d
on M vanishes at (̂ co, Bx), this remains true if we replace y(t) by the integral curve
of VM( through (̂ oo, B^). Thus we conclude F,(fi, f, qo,, B^) is non-negative on Q,
le Ic, and (̂ co, Bx) has index I. •

In the course of the proof of proposition 4.9 we saw that a fixed point of the
involution was necessarily a critical point of a + d on M. Conversely, lemma 4.5
implies a critical point of a + d must be fixed by the involution. Thus we have:

COROLLARY 4.10. The fixed points of the involution on M coincide with the critical

points of a + d on M.

5. The range of B

If we consider B as a function on M, then its range is simply the set of boundary
conditions which give rise to the generalized periodic spectrum defining M for some
potential q. Since b is constant on and c = b~l(ad -1) , it suffices to determine the
range of (a, d). Using the results of §§ 2 and 4, one can find the range of (a, d) on
M, for all I.

THEOREM 5.1. Let (q,, B,) be the fixed point of * on M of index I. Then the range

of (a, d) on M; is {(a, d): a + d<2a,}u(a,, a;)}. In particular, this gives the range

of B on M when I is the empty set.
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In proving theorem 5.1, we will use one of the formulae of theorem 2.4 extended

to the case where one moves all the fi, namely

We claim that (5.1) is valid whenever

s = (b, d, cr,, -fe^(o-,), <r2, -

is in the range of <$. From the continuity of <&"', defining (q, B) = <
that a = lim aN, where

1 ).

), it follows

( 5 . 2 )

Thus (5.1) will hold if the sum of products on the right-hand side of (5.2) converges

to the right-hand side of (5.1). This holds under the weaker assumption \o-k- /xk\ < C

for all k and |^(<rfc)|< 1 for k> ICQ. TO see this, we note that

and

C
(5.3)

for some C independent of i, / Thus we see that the products are convergent and

uniformly bounded in / Using theoreem 1.1 and lemma 4.2(iv), we estimate the

term (ay2+ b^)(ay2+ by'2Y
l by

sin

Thus, since we have (o-j)l/2 = n(j -{•)+ O(l/j),

Thus the right-hand side of (5.1) is convergent and, by dominated convergence, is

the limit of the sequence of the aN.

Since proposition 4.7 implies

a, = max (min {a, d}),
M,

if (a, d) = (a , , dx) at (<j,, B^e M,, we may assume, using the involution if necessary,

that ax < a,. Choosing k sufficiently large, we may use the flow of V̂  as in the proof

of lemma 3.2 to move a, down to a,, moving (q,, B,) to (q2, B2). Then, applying

the involution, we arrive at (<7*,B*) with (af, a*) = (a,, a,). Since (qf, B*) has
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(a*, d*) = (dl, a^, and we know from lemma 3.1 that <t>(Mn{d = a,}) = Nn

{d = a,}, it follows that we can choose {crk, £%(crk)), k = 1 , . . . , so that

f) (5.5)

as in (5.1), where vk is the zero of \_a* + by'{\(\,X., q*) in A2j_,<A < \2j.

To arrive at the formula we need for the proof of theorem 5.1, we need to follow

the operations that lead to (q*, B2) back to (q,, B,). This is not difficult. We have

1, A, q%) = y2{\, A, q2) and, combining (2.20) and (2.21),

A, q2) = y2(h A, l, A, q,), (5.6)+ 7^ [ f
0 I A - /j.k

where nk is the zero of [a,y2 + by'2](1, A, q,) in A2/c i<A <A2(t. Since [a2y2+by'2]x

(l,\,qf) and [a^+fcy-jKl, A, q,) are entire functions of order \ with the same

asymptotics as A -» 00,

)[a,y2+by'2](l, A, q,).
7

(5.7)

Substituting (5.6) and (5.7) into (5.5), we have

^ ) . (5.8,

Note that the infinite products in (5.8) are convergent by (5.3).

LEMMA 5.2

(5.9)

/Voo/ Since |oy - TT2(J -\:)2\ < C for all j,

is the sum of the residues of

/ ( * ) = •

in z

z - ^ f c i = 1 z-cr,

< TT2N2 for N sufficiently large. On \z\ = TT2N2, estimating as in (5.3),

Z-(T,

; - l

where C is independent of N and 1. Hence, as N-*oo, fj^i (z~Mi)(z~cri) '
uniformly on |z| = IT2N2. Hence, as \z\ = IT2N2,

1 n
Z - fMk i=i Z-CTj Z - IMk

Using §\z\=7r
2
N

2f(z) dz = 2iriSN, we conclude limN^0O SN = 1. To see that limN^ooSN

is the sum in (5.9), one may again use (5.3). •
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Substituting (5.9) into (5.8) gives a formula which implies theorem 5.1:

Proof of theorem 5.1. Since {qx, Bs) is in M,, and, as noted in the proof of proposition

4.7, M, is *-invariant, it follows that (qf, Bf) e Mt. Thus, if we move <r, to fij and

£%{o~j) to ixifij) for 7 e /, we will not decrease a*, and (5.5) will become

where

Hence the remainder of the proof of (5.10) after (5.5) shows

Since (q,,B,) has index I,

is non-negative on C, for jelc. Thus (5.11) shows at + dt<2a,. Moreover, if

a, + d, = 2a;, then »> = /*/ for jelc. By theorems 1.3 and 1.4

where /M = 2(a + d)/b + Ĵ  q dx is constant on M. Thus, since / is finite, a, = a,.

To complete the proof, we only need show, for arbitrary ax < a,, sup {a + a,) = 2a;,

where the supremum is taken over M, n{d = a,}. Let (qn, BN) be the element of

Mi with

Ute/.B/), jeIcn{j<N},

fe , jeIcn{j>N},

and

where |^(oy) |^ l for je Icn{j> N}. To see that there is an element of M, and

hence an element of M,, with these coordinates, note that by §3 4>(M)=>Nn

{d = d,}, and by (5.12) there are points in Nn{d = a,} with the given data. Since

ai<a, = d,, we see that {qN, BN) exists and lies in M, n{d = a,}. Thus, setting

Hj = tLj(q,,B,), fijN = fij(qN, BN) and c = 2(a, -ax)/b, and applying (5.10) to
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{q%, B%), we have for N large

- b I (M, - / * , ) ! I] „ ( N I , . , (1. M, ,

(5.13)

Since the /if, ie I, lie in bounded intervals and / is finite, (5.3) and (5.4) imply
that the final sum in (5.13) tends to zero as*JV-»oo. However, since (q,,B,) has
index I,

Fjif-, £) = (/*-/«•./) — — — (i, M,

La,y2+by'2]
is non-positive on C, for j e /. Thus

lim inf aN + a, >2a,. D
N->oo

6. The level sets of B on M

In this section we apply the results of the preceding sections to study isospectral
sets when the boundary conditions are fixed. The subset of M with boundary
condition given by B = (" b

d) will be denoted by MB. Since q->q* is an analytic
homeomorphism of MB onto MB, we only need consider the case a a d for the
results given here.

Proposition 4.7 implies that, when a = d — a, and 1 = 0, then MB consists of a
single point, and by theorem 5.1, if a + dsz2a0, then MB = 0 unless a = d = a{3.

The first result of this section is that these are the only cases where MB is compact.

THEOREM 6.1. Ifa + d<2a0, then MB is not compact.

Proof. If a + d < 2a0, then by theorem 5.1 there is a point (qx, B,) e M with d, = d
and a, > a. The strategy for proving this theorem is to show that using the flows
from Vj, j large, to move a, down to a, we can construct a non-compact set of
points in MB. By theorem 2.3 on the orbit of (qlt B,) under the flow of V}

2

T 2 O I ) 2For | ^ - T T 2 O - I ) 2 | < C and | ^ ( / i ) |< l , (5.4) implies that

—7—71(1, M> <7i) = 01-3].

Thus, since ^ ( ^ i , B,) = 77-2(j-|)2+O(l), there is a 70 such that for j>j0,

| B i ) | < l and |
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On the other hand,

\ b(

2 + by'2\
{l> ^ *> - b cos

by (1.6). Thus there is aji>j0 such that for j>j{

,\v,q1). (6.3)

Combining (6.1) and (6.3), we see that for each y > j , , MB contains a point (qjt B)

with

for k^j and

This implies that the image of MB under $ is not compact and hence MB is not

compact. •

Since lemma 4.2(iv) and lemma 4.4 imply the gradient of a on M n{d = d0} can

vanish only at fixed points of the involution, and conversely one sees from lemma

4.2(iv) and formula (5.1) with (q, B) = (q,, B,) that MB does have a conic singularity

at fixed points of the involution, we have the conclusion:

THEOREM 6.2. MB is an analytic submanifold o/L2[0,1] x (SL (2, R)\b = 0) unless it

contains a fixed point of *; hence it is analytic unless (a, d) = (a,, d,) for some I ^0.

If (a,d) = (a,,a,) for some 1^0, then MB has a conic singularity at {q,,B,).

One property of MB which holds without exception is connectivity.

THEOREM 6.3. MB is connected.

Proof. Given any point (q0, Bo) in M^ which is not fixed by the involution, there

is a j such that (da/d^j)(^{q0, B0))^0 when we consider a as a function on N.

Thus, using the splitting N = N, x 7V;< with / = {j} and the implicit function theorem,

we get r(s) such that ^'(/-(.s), s) e M^ for 5 in an open subset of AT,< n {d = d0}.

Since points with

Hn = TT2(n-{-)2+IM-2d0/b

and \KK\ < b for n beyond some point are dense in N,< n{d = d0}, it follows that we

can connect (q0, Bo) to (g,, Bo) in M^, where

Hn(qi,B0) = Tr2(n-\)2+IM-2d0/b (6.4)

and \y2(\, fin,ql)\<b for n> n0.

Let (q2, B2) be a point where a assumes its maximum on the subset So of M

satisfying (6.4). As in lemma 4.6 (see formula (4.3)), one sees that a is strictly less

than its maximum on So away from (q2, B2) and hence (q2, B2) is unique. Moreover,

a has no other local maxima on So and all its critical points on the torus So must

be non-degenerate and hence finite in number. Thus, if (qlt Bo) ̂  (q2, Bo), we may

construct a continuous curve y(t) = (q(t), B(t)) in So with y(0) = (q1,Bo) and

= (q2, B2) such that a is strictly increasing on y.
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Next we will move the values of a on y down to a0 by using the flow from VJy

J> n0 sufficiently large. Since {y(t): 0< / < 1} is compact, it follows that the estimate
(6.2) with (a^qi) replaced by (a(t),q(t)) and the corresponding estimate for
/j, = X2j-\ hold uniformly for t e [0,1]. Moreover, as always, for each t the function

has a unique maximum and minimum on C, and no other critical points. Thus for
/ sufficiently large we have two continuous functions fi±(t) with A2j-i<M-(0 —
fi+(t) < X2J such that

ao = a(t)-b2FAfi±(t),€(ti±(t));t)

when |f(/*±(0|< 1. Thus, picking fij(t) = (i*(t) and K, = -ft£(M*(0), where * ( = ±)
is chosen so that M*(0) = ir2(J-\)2 +IM -2do/b, and fij(t) = Hj(y(t)) and Kj(t) =
Kj(y(t)) for jy* J, we have a curve in M^ connecting (^i, Bo) to either (q2+, #o) or
(q2-,B0), where

/f/(92±, Bo) = V-Mi, B2), j # J,

MJ(92±,BO) = M ± (D , (6-5)

K,(<72±, Bo) = Kj(q2, B2) V/.

To see that (q2+,fio) and (<jf2_,B0) can be connected in MB, we consider a
restricted to the two-dimensional torus To obtained by fixing the coordinates on
M n{d = d0} at their values in (6.5) for j # J, J +1. As before, a has only one local
maximum on To and this is non-degenerate. Moreover, any other critical value for
a on To must be a global minimum of a on the orbit of the critical point under the
flow of Vj or V,+1. Using the representation for a on To from theorem 2.4 with
base point (q2, B2) and moving on the flow of V, or VJ+i to the point used in the
proof of lemma 3.2, one sees that any critical value of a on To below the maximum
must be below a0 for J sufficiently large. Thus the level set ao = a on To which
contains (q2+, Bo) and (q2-, Bo) is connected. Thus {qt, Bo) can be connected to
both (q2+, Bo) and (<?2_, Bo).

If (q, Bo) and (p, Bo) are points in M^ which are not fixed by the involution,
taking n0 = max {no(q), no(p)}, we can assume (qt, Bo) and (/»,, Bo) are both in So.
Hence the preceding argument shows any two points of M^ which are not fixed
by the involution can be connected in M^. Since fixed points of the involution are
never isolated in M^, we conclude M^ is connected. •

If we let A = {I: ao+ do>2a,} and Bo = (?° <?„), then theorem 5.1 implies the M^
is contained in

1<EA I
M,)n{d =

I

We will conclude our study of M^ with a theorem on the relation on the topological
structure of M^ to that of So.
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THEOREM 6.4. Assume that ao+ d09
i2alfor all I. Then the homotopy groups of M^

and So are isomorphic.

Proof. We will show that the natural homomorphism of the homotopy groups of
MB into those of So is injective and surjective. The proof of injectivity will have
two main steps. We will show:

(i) If y: Sm->MBo, then given j>jo(y), y is homotopic in M^ to y, where for
all s € Sm the roots of

on Q are contained in |f |< 1 and ft = /*,-("y(s)) is the greater root.
(ii) If F: Smx[0, l]-»S0 is a homotopy of y in (i) to a constant map, then we

can replace F by a homotopy f of y to a constant such that f: Sm x[0, l]-»Son
{a 2= a0}.

Given (i) and (ii), one can complete the proof of injectivity as follows. Choose
j\>jo(y) sufficiently large that the range of FJ-,(/u, ij; t(s, t)) on C,n{|f|< 1} contains
(a 0 - a(f (s, t)))b~2 for all (/, s) e [0,1] x Sm. Then extend f to Sm x [-1,1] by letting
f on Sm x [ - l , 0 ] be the homotopy from (i) in Af̂  of y with j =_/, to y. Finally,
changing /tyi(f(5, t)) to /A+(S, f) as in the proof of theorem 6.3 gives a homotopy in
M^ of y to a constant and completes the proof of injectivity.

The proof that the mapping of the homotopy groups is surjective is similar and
simpler. Given/: Sm-»So, we deform/in So to y: Sm->Son{a> a0} as in (ii) and
then deform y in Son{at > a0} to y as in (i). Then moving fiJt(y(s)) continuously
up to fi+(s), we deform y to a curve in M^. Note that this deformation automatically
remains in So since a>a0. We believe that the proofs of the simpler versions of (i)
and (ii) used here to prove surjectivity will be evident from the proofs of (i) and (ii).

Proof of (i). Since M^ contains no critical points of a + d on M by hypothesis,
and hence no critical points of a on M n{d = d0}, the gradient of a as a function
on M n {d = d0} does not vanish on M^. Moreover, since y(Sm) is a compact subset
of M^, there is a finite set Jo such that the gradient of a as a function on N,o does
not vanish on y(Sm).

The idea of this proof is to use the 7V,0-gradient flow of a to bring the deformation
of y moving /t/(y(s)) into fij(y(s)) back into M^. However, getting the necessary
uniform estimates in j requires some additional work.

Using theorem 1.1 as in the derivation of (5.4), we have for (/*, £) e C, n {|£| < 1}

;(M, €; q, B) = (n-Hlq, B))[ f l^^,]( l , H, q)

where both O terms are uniform on bounded sets in (||q||, ||B||). Moreover, if
denotes the derivative along a flow moving q and a but not d, A(A, q, B) or /j,j(q, B),
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theorems 1.1, 1.2 and lemma 4.2(iv) give

J
for (vL,€)eCjn{\i\<l}J>M\\q\\, \\B\\). In (6.6) we set

\\4ll (6-7)

with |5|< 1. Using theorem 1.3, this gives for |&|< 1

Fjifis, &; <j, B) = 5 tan 5/2+0(1/;), (6.8)

uniformly on bounded sets in (||g||, ||B||, I/ft) and | 5 | s l . In (6.7) we consider
(/*, £)€ Dj = Cj(-\{|f|< 1}n{\n - fjLjiqj, B)\< ir(j-£)} and conclude

^ l l ) 1 / b ) | |4 l l (6-9)

for j>jl(\\q\\, \\B\\). The estimates (6.8) and (6.9) will suffice for this proof.
Since Fj has just one maximum and one minimum on C, for all (j, B, q), it is

clear from (6.8) that for any 5e(0,1) &ndj>j2{\\q\\, ||B||, I/ft, 1/5) the minimum
of Fj on Cj must occur in

and the range of Fj on Is(j) is contained in [-5, 5]. However, (6.8) also implies
that for j>j3(\\q\\, \\B\\, I/ft, 1/5) the range of Fj on 7/5) includes [0, 5/2 tan 5/2].
Hence, taking 0 < e < j t a n | , we can move along the flow of Vj, j>
max {jidl^H, ||B||, I/ft, 2/e), i = 2,3}, in the direction of increasing n until a =
a(q, B) - eb2 at fi = nf(q, B) and be sure that:

(i) ^{q, B) is greater than the minimum of fj(/u., £; e, B) on C,,
(ii) the values of a in this process remain in \a-a(q, B)|<4eft2and(/i, f) remains

in Dj. Since the flow is transverse to the level surface a — a(q, B) - eb2, this gives
us smooth functions /A(t,q,B) and t(q,B) such that ^{q, B) = fi(0, q, B) and
H{t{q, B), q, B) = rf(q, B). We set M,K q, B) = p(t(g, B)T, g, B) for

j > max

Since the JV,0-gradient of a does not vanish on y(Sm), we may choose a neighbour-
hood U in N,o of the projection of y(Sm) onto Nlo such that the Af;0-gradient of a
is bounded away from zero on (J. Moreover, by (6.9) there is ajs(y, U) such that
the N/o-gradient of a is bounded away from zero uniformly on

{(r, u, v) e N,ox 7VU} x N(,0^{J}y}: reU,u€ Dj(y(s)), v = v(y(s)), s e Sm),

uniformly inj>js(y, U). Hence we can choose an e > 0 such that for j>js(y, U)
the N,0-gradient flow out of £, = {(r, u, v) e N,ox N{j} x N(,owU})': r = r(y(s)),
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ueDj(y(s)), v = v(y(s))} moves a through [a(e)-Seb2, a(e) + $eb2] for all eeEj
before r leaves U. (We define the 7V;0-gradient flow of a as the flow of the vector
field E/e/0 djVj, where a, denotes the derivative of a on the flow of Vj in (2.7).)

Now define

(a, 0) = (max |k(4>"'(r, «))||, max
G

where

G = {(r, u) 6 NhxNa: rzN,0, u = u(y(s)), se Sm}.

We Iet7o>j6('y) = max {jA(cc, @, l/b, 2/e),j5(y, I/)}. For such aj0 we have a deforma-
tion H(f, g) of G given in our coordinates on N by

f/*/(*•, g), 7= Jo,

W#)> 7 ^ Jo,

r,g)),\S\<h 7=7o,

g), j^jo,

such that for (T, g) € [0,1] x G:
(i) \a(H(r,g))-a(g)\<2eb2,
(ii) a(H(\, g)) = a(g) — eb2,

(iii) M/0(l, g) is greater than the value of /J. at the minimum of FJ((JL, g; g) on Cj.
Moreover, letting <j>r be the N/o-gradient flow of a,

ao=a(H(T, <f>r(y(s)))) = a(<f>r(H(T, y(s))))

is uniquely solvable for r(r, s) with 0r(T>J)e G for (T, S) 6 [0,1] x Sm. Now F(s, T) =

H(T, <t>r(s,r)(y(s))) gives the homotopy of y required for step (i) with the jo(y) in
(i) given by j6(y).

Proof of (ii). In proving (5.10) we used the assumption (q, B)e M, only to insure
that min {a, d} < a,. Hence (5.10) gives a representation of a + d at a general point
(q, B) of M in terms of the coordinates of (q, B) when d < a,. Since /^(M, £; <?,, B,)

is positive on C, for jelc and negative on C, for 7 e/, one sees as in (5.13) that
for d0 ̂  a,

min sup a>2a, -d0. (6.10)
N ,

Since T maps Sm x[0,1] into a compact subset of Mn{d = d0}, there is a fc such
that r(Sm x [0,1]) n M 0 1 = 0 forj > fe. Let T denote the set of subsets / of { 1 , . . . , k}

such that ao+do<2a,. Since r(Smx[0,1]) is compact, one sees that the tails in
(5.10) are uniformly small on T(Sm x [0,1]). Hence the proof of (6.10) implies that
there is a /> k such that for all / e T and (s, t)eSmx [0,1]

min max a>2a, -do> a0, (6.11)

rcN, E,(r,s,f)

where

E,(r, s, t) = {(M, v, w)eN,x N , . M U S / ) X N{J>I): u = r,w = w(T(s, t))}.
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In what follows we will work on the compact tori, parametrized by Sm x [0,1],

N(s, t) = {(«, v) e N{jsl} x NU>1}: v = v(T(s, t))}.

Formula (6.11) will be the basis for the rest of this proof. We are going to imitate

the proofs of Morse theory and use flows <j>r(s, t) on N{s, t) closely related to the

N{jsi] -gradient flow of a to deform F into the set where a > a0.

Given any finite subset / of Z+, we can repeat the construction of r(s) in lemma

4.6 to get an analytic function h(s) on N,< such that a(h{s), s) is the strict maximum

of a(h, s) for h e N,. Then we set

S,={<p-\h(s),s):seN^}, •

in analogy with M,. Finally, for / c { 1 , . . . , /} and (s, t)eSmx [0,1] we set

M,(s,t) = Mln<t>-l(N(s,t)),

Sl(s,t) = S,n<t>-\N(s,t)).

Now (6.11) can be rephrased as: for all I e T and (s, t)eSmx [0,1]

a(S,^u^i}(s,t))>a0. (6.12)

Moreover, by hypothesis, for all (s, t)eSm x [0,1]

T(s,t)fiMI(s,t), (6.13)

when I = {j}, k<j< I, and when /<={1, . . . , /} and ao+do>2a,.

As defined earlier, the JV(js/}-gradient field of a is given by

V(q,B)=i dj(q,B)Vj(q,B),

where a, denotes a on the flow of Vj. The flow of this vector field leaves M(s, t)

invariant and d > 0 o n the flow, vanishing only at zeros of V. If (q, B) is a zero of

V on M(s, t), then for some set /<= { l , . . . , /}

(q,B) = Mj(s,t)nSAs,t), (6.14)

where J' = {1,..., l}nJc. By (6.13), F(s, /) can be a zero of V only if / in (6.14)

belongs to T - note that M,(s, t) n M,(s, t) = M,^,(s, t) - and hence a(T(s, t)) > a0

by (6.12). However, this does not imply that the flow of V will eventually make

a > a0. In what follows on M(s, t) we change V to V(s, t), depending continuously

on (s, t), with the following properties:

(a) V(s, t) has the same zeros as V on N(s, t) and a is non-decreasing on V(s, t).

(b) V(s, t) is tangent to M,(s, t) for all /<= { 1 , . . . , /}.

(c) If (q, B) = Mj(s, t) n Sr(s, t) is a zero of V, then Mj(s, t) contains the stable

manifold of (q, B) under the flow of V(s, t).

(d) V(s, 1) is independent of s.

Since Sm x [0,1] is compact and all dependence on (s, t) is continuous, it follows

from (6.12), (6.13), (6.14) and (a)-(d) that, letting <f>r(q, Bjs, t) denote the flow of

V(s, t), there is an R such that for all (s, t)e Sm x[0,1]

a(^R(r(s,t)-s,t))>a0. (6.15)
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Given (6.15), we can build f by defining

rruo), os is),
r 'u"- { rK2.- i ) , j s ( s l .

Hence this proof will be complete once we construct V(s, t).
The construction of V(s, t) is based on facts already used in proving lemma 4.6:

if (q, B)eM,nSr,Inr = 0, then (d2a/d/lidtlj(^(q, B))), ij e / u /', is a diagonal
matrix with d2a/d/Z2>0 for ie / and d2a/d/I2<0 for ie / ' - we allow / or / ' to be
empty. As in lemma 4.6, an implicit function argument implies that locally one has
an analytic function f: N ( / u ,y-» N,^r so that 4>(M, n S,) is given by (r(«), w). If
we choose /•(«) so that

max a(h(u, v), v, u)
N

is assumed at (h(u, v), v) = r(u), where ^(M,) is given by (h(w), w), it follows that
<$>~\r(u), u)eM, n Sr, and the argument used to prove proposition 4.7 shows r(u)

is unique. Hence r(u) = r(u) and is analytic. Now setting R, r = M, n S r , we have

Ri.r = *-\{r(u),u):ueNilyjir}),

generalizing the constructions of Mj and Sj.. Hence for /, J ' c { l , . . . , /}, setting

«,,,(5, /) = /?,,,.nM(s, 0 = M7(s, 0 n S r ( s , r),

we see that <&(Rj ,(s, t)) is an analytic subset of N(s, t), given globally by
r: N(/u/|)'^(j=/}~* Nj^r, where r also depends continuously on (s, t). In the case
/ u / ' = { l , . . . , / } , if (q,B) = RhIis,t), the fact that (d2a/dfLidfLj(<t>(q,B))), I si,

j s /, is diagonal implies that the tangent spaces satisfy

TUB)(Mu}(s, /)) = span {V,(q, B): i * j , i < /} for; 6 /,

r(,)B)(So)(s, 0) = span{V,(g,B): iVy, i</} forjel'.

Moreover, d2a/d/l*>0, ie I, and d2a/d/Z2<0, ie /', imply that the AT(js/}-gradient
flow of a on Af (s, t) has a hyperbolic fixed point at (q, B), with stable manifold
tangent to M,{s, t) at (q, B) and unstable manifold tangent to S,(s, t) at (q, B).

We let V denote the N{JS,}-gradient field of a as before, and begin by constructing
V(s, /) near the zeros of V. As noted earlier, the zeros of V on M(s, t) are the union
of the distinct (since we ignore degenerate gaps) points RJJ(S, t), where /, J' range
over disjoint sets satisfying J u / ' = {1, . . . , /} . In view of (6.16), we can introduce
coordinates « , , . . . ,« ; near Rjj(s,t), continuously in (s, t), so that tij = O on
M{j)(s, t), jeJ, and ̂  = 0 on S{J)(s,t),jeJ', and the Jacobian (ditj/dflk) will be
diagonal at Rjjis, t). Let Vn. denote the vector field tangent to the curves y(t, n0)
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given by nk = n°k, k¥>j, n} = n° +1. Near RJtJ{s, t) we set

XAs,t)=i Cj(s, t)njVKj,
j=i

where the coefficients c,(s, t) are chosen so that Xj(s, t)—V vanishes to second order

at RJyJ(s, t). The vector field Xj(s, t) is tangent to all the manifolds Mt{s, t) passing

through RJyA
s,'), and a will be strictly positive on the flow of X} (s, t) on a punctured

neighbourhood of RJJ(S, t). Hence we can choose a cut-off <f> on N(s, t) depending

continuously on (s, t) such that <j> = 1 near RJ,J{S, t), <f>(s, 1) is independent of 5,

and a will be non-negative on the flow of

on all of N(s, t).

The vector fields Wj(s, t) have the properties we require near the points

Rj,jcr,{jsi}{s, t). Now we need a vector field tangent to all the Mj(s, t),J ^{l,..., /},

such that a > 0 on this vector field outside a small neighbourhood of the

Rj,jn{j^i}(s, t). To build this, we consider the set ^ of all subsets of { 1 , . . . , /} and

let % denote the subset of % with # { / } = / Given Ie <€n, we set

on M,(s, t), where the fe, are uniquely determined by the requirement that V/(s, t)

is tangent to M,(s, t). We are going to take V(s, t) = U,(s, t) on M,(s, t) outside a

small neighbourhood of

Kn(s,t) = (u U M;(M))u( U Rj
\j>n ;e<gj / \J<={1 /}

Note that V(s, t) is well defined on M,(s, t) since M,(s, t)nMj{s, t) = M /uJ(s, 0

and # { / u / } > « unless /=> J. Moreover, on Mj(s, t), d = Y.ierc^{j^o (a;)2 and this

is strictly positive on M,(s,t) off 1JJ={I «^ 'nus i ) (s , ')• We extend U,(s, t)

continuously in (s, t) to a neighbourhood of M,(s, t) in N{s, t) so that it is tangent

to M{j](s, t), jel, and then set

where (̂  = 1 on M,(s, t) off a sufficiently small neighbourhood of Kn{s, t), (f> = 0

on a neighbourhood of Kn_,(s, t)\M!(s, t), and <f> also vanishes outside a sufficiently

small neighbourhood of M,(s, t). Choosing the 'sufficiently small' neighbourhoods

here first for n — I — 1, then for n = l — 2 and so on, we can, for each n > 0, make

ZK(s,t)=l I Y,(s,t)+ I Wj(s,t)

tangent to M,(s, t) for all / and make a >0 everywhere and a > 0 on

(UU«|(J,O)\( U Kw'rWM

on the flow of Zn(s, t). Moreover, we can choose the cut-offs <f> to depend con-

tinuously on (5, t) and be independent of s when t = 1.
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Now we conclude by setting

where <t> is a cut-off vanishing on a neighbourhood of K0(s, t) with <f> = 1 off a

sufficiently small neighbourhood of K0(s, t), and we have a vector field with the

desired properties. •

Remark 6.5. In the proof of the injectivity of the homomorphism of the homotopy

groups of M^ into those of So, it is not necessary that the deformation of F into

F in step (ii) be done in So. However, it is essential that the corresponding

deformation in the proof of the surjectivity of the homomorphism remain in So.

Hence it is important to note that the deformation in the preceding proof can be

done in So. To see this, recall that, given (q, B) in M, there is a j0 such that for

j>jo the coordinate Kj satisfies \KJ\> b at the minimum of a on the orbit of (q, B)

in the flow of Vj. Since the minimum of a on this orbit never occurs when fij = X2j

or nj = \2j-\ (cf- lemma 4.3), it follows that, for j>j0, \KJ\> b on M{J}. Since

F(Sm x [0,1]) (or/(S"") when one is proving surjectivity) is compact, it follows that

there is a J , > J 0 such that \i<j(r(Sm x[0, l]))\<b for ./>./,. Choosing k in the

preceding proof larger than j \ , one sees that

N(s,t)nMj = <t>

for all (s, t)eSmx[0,1] unless J<={1 ; . . . , /}. Since the flows used in the proof

preserve Mj for J<= { 1 , . . . , /}, it follows that the deformation remains in 50.

Appendix A. Boundary conditions of the form

(a 0 \/>(l)\=/>(0)\

Ac l/fl/\/(D/ \/(0)A

1. Asymptotics. We will first discuss the asymptotic behaviour of the eigenvalues

Am, n = 0 , 1 , . . . , for these problems. For a # 1 the techniques in § 1 can be used to

obtain

q(t) dt + f(n),
Jo

where fc = cos~' (2/(a + l /a)) . This means that the nth gap length is

-M1

a + a Jo

fl + fl"1 Jo

and the nth band length
2 i1{n), n>\.

We note that if k e (0, TT/4), the bands grow faster than the gaps, and if k e

(TT/4, IT/2), the gaps grow faster than the bands.

The case a = 1 is different and has more resemblance to the case of periodic

boundary conditions. To find the asymptotics of the eigenvalues, one can here use

the refined estimates of ylt y2, and y2 discussed immediately following theorem 1.3
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in [6]. We find that for A e R+

y}(l, X, q) = cos VI + ̂ 2 - ^ q(t) dt + %-~^ £ cos Wk2t)q(t) dt

2(1, A, «) = cos Vx+S^^ £ 9 ( 0 d ' - ^ £ cos (VA20 *(*) df

where /?x, /?2, and R3 are O(l/A). Using Rouche estimates on yu y2 and y'2, we
find that for A = A2n_, or A2n, V\ = mr + rn with rn = O(l/n). For a sequence {An}"
with such asymptotics we have

{R,(Xn)}Tell(Z+), i = l , 2 , 3 ,

where /|(Z+) is the set of all sequences {an}f with {nkan}fe /2(Z+). This is seen by
observing that in this case the remainder term consists of sums of Fourier coefficients
of q multiplied by O(l/An) plus terms which are O(l/A^/2).

We recall that the eigenvalues A2n_, and A2n are roots of the equation

which in the case a = 1 reduces to

Now using the asymptotics for y,, y2 and y'2 stated above, we see that the terms
involving the Fourier coefficients of q in (A.l(i)) and (A.l(iii)) cancel in the equation
for the eigenvalues precisely when a = \. Setting \/~X = mr+rn, where A=A2n_, or
A2n, we derive the equation

2cosrn=2-2

t + l2{n)

We now divide this equation by 2 cos rn and solve the second-order equation in rn

that we obtain by deleting terms in /2(Z+). For c>0 this gives us the asymptotics

Jo

2 n_, = «27T2+

Jo
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and for c < 0

\
Jo

= n2n2+\ qdt + l\n), n>0,
J

Jo

The nth gap length is therefore

A2n-A2

and the nth band length

2. Isospectral flows. The theorems and arguments of this section are completely

analogous to those of § 2. We will therefore just state our results.

We fix p e LR[0, 1] and define the isospectral set

L(p) = {qe L2
R[0,1]: \n(q) = K(p), n > 1}.

To study the geometric nature of L(p) we first construct vector fields on L{p):

THEOREM. Let p e LR[O, 1]. Then for each AeRtfie vector field

Zx(q) = '.

is tangent to L(p). That is, a solution of the differential equation

q(x,t) = [Zx(q)](x,t)

with initial data in L(p) stays in L(p) for all time.

As in § 1, we can map the isospectral set L(p) into a space S consisting of

sequences of the form

where

10

From theorems 3.5 and 3.6 of [6] we know that the map

given by

<t> = (Mi(tf), log (-I)y2(l , Pi(q), q), tt-iiq),

log (-D2y'2(l, »2(q), q),---, Vn(q), log ( - 1 ) > 2 ( 1 , f*n(q), q),...)

is an analytic homeomorphism of {q e LR[0, 1): $*0 q dt = J0p dt} and the sequence

space S with the /2-coordinatization given in [6]. Using the definition of A,

Htin) = ayi(l,f

and the Wronskian identity
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we derive the equation

(y'2(l,tin))
2-aA(tin)y'2(l,

which we can write in terms of the Kn as

Thus <j>(L(p)) is contained in a product of real analytic curves which are topologi-

cally circles.

Let

and let crn(q) e {+, —} denote the sign of the radical in the equation

Now let Zn denote the vector fields ZA with A = /Mn(q( •, t)). For these vector fields

the integral curves have a very simple description in terms of the pn as is seen by

the following result.

THEOREM. Under the flow of Zn the points pm(q(-, t)), m^n, remain fixed on their

circles, while the point pn{q(-, t)) moves clockwise around its circle. It moves in such

a way that

dfin(q( •, t))/dt = <rn(q{ •, 0 ) • (A2(MJ -4 ) 1 / 2 .

We can in fact integrate the vector fields Zn explicitly. Thus we will be able to

see directly how a potential changes as we move along an integral curve of Zn. The

explicit integration of Zn is given by the following theorem, analogous to theorem

2.3.

THEOREM. Let qoe L(p) and let fj.n(t) denote the unique solution of

for which the point pn(t) — (fin(t), «„(<)) starts at pn(q0) and moves clockwise around

its circle without pausing. Here the sign in front of the radical is chosen to be o-n(q0)

for / = 0 and then to change when the radical vanishes. Then the integral curve of Zn

passing through q0 is given by

d2

q(x, t) = ^{x)-!-—^log |X,,(1)(Mn('), q0), yiit**, 9o)l,

where f±{x, A, q) are the solutions of —u"+qu = \u associated with eigenvectors of

BF(\) as in §2.

3. Geometry of L(p). We are now in a position to describe L(p) as a submanifold

of LR[0, 1]. As in § 3, we will proceed by determining the image of L(p) in the

sequence space S under the coordinate map <f>.

As noted earlier, the coordinates (n\, K, , /JL2, K2, . . . ) of a point in L(p) satisfy

the equations

e2"" + (-l)n+1aA(nn)e
K» + a2 = 0, n > l . (A.3)

Let N be the subset of S defined by these equations. We claim that N is a real
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analytic submanifold of S. From the properties of A it follows that for each n

equation (A.3) defines a real analytic curve which topologically is a circle in the

(fin, /cn)-plane unless A2n-i = A2n, in which case the circle degenerates to a point.

From the asymptotics of the A it follows that this degeneracy can only occur a finite

number of times. We may give TV locally as an explicit submanifold of S by solving

(A.3) for fin or Kn as appropriate for each n for which the corresponding circle is

non-degenerate. In the case a ^ 1 the asymptotics of

A(/i») = <y,(l, / * „ ) + - ^ ( 1 , fin) = ( - ! )"( a + - ) + o ( - )
a \ a) \nj

imply that there is an n0 such that for n > n0

on the intersection of TV with a bounded subset of S. Thus TV is qualitatively the

same as Nn{d = d0} in §3 and, since the proof that TV is real analytic exactly

follows the proof given there, we will not repeat it here.

In the case a = 1 but c ̂  0 the situation is different. We will see that in this case

we can solve for fin as a function of «„ in equation (A.3) for n large. This will

enable us to prove that TV is a real analytic submanifold of S. More precisely our

strategy is as follows: given (fi, * ) e TV,

we need to show that the intersection of TV with a neighbourhood of (/2, K) in S

consists of points in S with \xn = //.„(*„) for n s n0, where each component of the

function iA(K) = (/iMo(«no), M«o+i(K"o+i)' • • •) i s analytic on the ball | |K - / f | | <e in

complex-valued I2, and the /2-norm of the sequence

f' "1°°
! - Pdt\

JO J n = n0

is uniformly bounded on that ball.

As in § 3, we can then conclude that ^ is real analytic. Since TV for n > n0 is the

graph of ^ and for n < n0 we can solve for /xn or Kn locally using real analytic

functions, TV is a real analytic submanifold of S. We will now carry out this plan

in detail.

Since a = 1, we can write (A.3) as

On {||»C-K|| < e}, \Kn\<2e/n for n> «I(K, e). From this it follows, using Rouche's

theorem to compare the roots of (-1)"A(A)(2 cosh « „ ) " ' - 1 and the roots of

( - p " cos \f\-\, that there is a constant A and an n2(i<, e) such that for all K in

{ | | K - K | | < e } , (A.3') has exactly two roots (*.„(><„) such that

with |j8M| < A/n, when n>n2(K, e).
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Using the asymptotic expansions from (A.1) and analysing the error terms as

before, we can write (A.3') in a form analogous to (A.2):

COS0

where the remainders rn are bounded by a fixed sequence in l\ for all sequences

{Bn} satisfying \Bn\<A/n. Dividing by 2cos/?„ and denoting another sequence of

remainders bounded by a fixed sequence in l\ by {rn},

cosh Kn fin f , c Bn 1 /{* ' \ 2 c f1 , ,» ,*
= H pdt-\ — -5 I pat) — ~2 \ qdt + rn. (A.5)

cos pn 2mr j 0 2 nir 8(nw) \Jo / 4(nir) Jo

From the Taylor expansion of cos /3n we have

cosh Kn B2
n

-— = cosh Kn+— cosh Kn + rn cosh /<„.
cos /?„ 2

Substituting this expansion into (A.5) and treating the resulting equation as a

quadratic equation for Bn, we obtain

— [c2 + 8 cosh K n ( l - c o s h Kn)n
277

nv

where {\bn\} is bounded by a fixed /2-sequence for all sequences {(*„, fin)} with \<n\

bounded and |/3n| = A/n. For e small enough relative to c it follows that, assuming

r±(n)\j c±c+r±(n)\ (A.6)

where the error terms r±(n) have /2-norm uniformly bounded on {\\K - K\\ < e} and

there is an n3(i<, e) such that | r±(n) |< e for M > n^K, e) uniformly on {||/c — K\\ < s}.

We know that for n> n2(i<, e), (A.3') does have exactly two solutions fin(k) with

the corresponding P satisfying \fin\< A/n. Thus, since we can choose a neighbour-

hood 0 of (/£, K) in S small enough that for any (/*, K) in 6 we have \fin - n2w2-

\op dt\ < e for n > n4(jji, e), and we may assume e < |c|, we have nearly completed

the proof that N is an analytic submanifold. It only remains to show that for e

sufficiently small and n sufficiently large:

(i) (A.3') could not have two roots satisfying (A.6) with the same choice of sign

so that (A.3') does have roots satisfying (A.6) for both choices of sign.

(ii) The roots of (A.3') in satisfying (A.6) with the minus sign are analytic functions

of Kn for
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Fortunately both (i) and (ii) follow from an estimate on aA/dA proven by the

same method as (A.2) and (A.4):

where \bn\ is bounded by a fixed sequence in I2 for |/3n|< A/n.

In conclusion, let us indicate how we can give L(p) a real analytic structure. For

the details of a completely analogous argument see § 3. Using the flows of the vector

fields Zn, we can show that <t>(L(p)) contains all points of N whose coordinates

agree with those of p beyond some index n, for any finite n. Since these sets are

dense in N, L(p) is closed in L«[0,1] and </> is a homeomorphism, it follows that

<f>(L(p)) = N. Since </> is a real analytic homeomorphism, L(p) inherits the real

analytic structure of N.

Appendix B. Properties of A(A)

In this appendix we give proofs for the properties of A(A) cited in the Introduction.

Since these are standard results in Floquet theory, it is quite possible they have

appeared elsewhere, but we were unable to locate a reference.

The key facts are:

(i) A(A) is an entire function of order \ (cf. theorem 1.1).

(ii) All roots of A(A) = 2 and A(A) = - 2 are real, since they are eigenvalues of

self-adjoint boundary value problems.

(iii) Zeros of A2(A)-4 have multiplicity at most 2.

To prove (iii), it is convenient to use the formula

\1

Jo
[ ^ ^ d x [a>2+^](l,A) \f+(x,\)Mx,X)dx, (B.I)
o 9q(x) Jo

which one obtains by combining theorem 1.2 and formula (2.5). If Ao is a zero of

A2(A) - 4 , it follows from (B.I) and the definition of/± that if [ay2+ by'2](l, Ao) * 0,

then /+(*, Ao) =/-(*, Ao) and A'(A0) ̂  0. If Ao is a zero of A(A) = ±2 of order more

than 2, then both roots of £2-A(A)£+1=0 satisfy

Thus, since the roots of [ay2+by'2~\{\, A) = 0 must be simple (cf. (1.2)) and

db(\)/dq(x)eL2[0,1] for all A, it follows that

lim I /+(x,A)/_(x,A)dx= | g\x)dx,
*->AoJo Jo

where

g(x) = y,(x, Ao) + ( lim |~g(A) °*1 by[](l, \))y2(x, Ao).
\A-AO |_ ay2 + by'2 J /

However, by (B.I) this implies A'(A) has a simple zero at A = Ao. Thus we conclude

(iii) holds.
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Combining (i) and (ii), Hadamard's theorem gives the product representations

A ( A ) ±2 = fl±Ak* fi ( l — V ) ,

where the af are real and increasing with j . Hence

A'(A) k± - 1
+A(A)±2~ A + , t , A - <

'(A) y -*. g i

( B - 2 )

Thus, by (B.3), A'(A)(A(A)±2)"' is strictly decreasing in A. Then, letting {8;}°°=,

denote the real zeros of A'(A) and recalling that A(A) -» +oo as A -* -oo (cf. theorem

1.1), we see from (B.2) that

A o < A 1 < 5 1 < A 2 < A 3 < 5 2 < A 4 - • • .

Moreover, A2j_, < 8, < X2j unless A2y_i = A2j. This establishes the result on the critical

values of A(A) cited in the Introduction.

To show that the multiplicity of the A, as roots of A2( A) - 4 equals their multiplicity

as eigenvalues, we note that if Ao is a zero of order 2, then [ay2 + by'2](l, A) = 0 by

the analysis in the preceding paragraph, and [ay, + by\](l, \) = ±1, since BF(k0)

must have eigenvalues equal to ±1. The identity (cf. lemma 4.2(iv))

[y22+bA(X)y2+b2](l,\) = [(ay2+by'2)(dy2 + bl)](l,\) (B.4)

then implies y2(l, Ao) = Tft, which in turn implies that the right-hand side of (B.4)

vanishes to second order at A =A0 and hence [dy2+byx](l, Ao) = 0. Thus one has

J'2(l,A0) =
 :Fft, _v2(l,A0) = ±a, yt(l,\0)=

z±d and y'2(l, X0) =
 :¥c, which implies

BF(\0) = ±I and Ao is an eigenvalue of multiplicity 2.

Conversely, if Ao is a simple zero of A2(A) - 4 , then either [ay2 + by'2](l, Ao) # 0,

which implies BF(k0)^ ±1, or, if [ay2 + by'2]{l, Ao) = 0,then (B.4) implies J>2(1, Ao) =

=Ffe and [dy2 + byl](l, Ao) ^ 0 . Hence >>i(l, Ao) # ±d. However, this shows

is non-zero, and we again conclude BF{\0) # ±1. Thus Ao is a simple eigenvalue.
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