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We report the observation of spin-polarized superconductivity in Bernal bilayer graphene when doped to a
saddle-point van Hove singularity generated by large applied perpendicular electric field. We observe a cascade
of electrostatic gate-tuned transitions between electronic phases distinguished by their polarization within the
isospin space defined by the combination of the spin and momentum-space valley degrees of freedom. While
all of these phases are metallic at zero magnetic field, we observe a transition to a superconducting state at
finite B‖ ≈ 150mT applied parallel to the two dimensional sheet. Superconductivity occurs near a symmetry
breaking transition, and exists exclusively above the B‖-limit expected of a paramagnetic superconductor with
the observed TC ≈ 30mK, implying a spin-triplet order parameter.

Spin-triplet superconductors are rare in nature. This
scarcity is traceable, at least in part, to the inapplicability
of Anderson’s theorem[1] that renders conventional super-
conductors immune to disorder. Realizing spin triplet super-
conductivity thus places stringent bounds on materials qual-
ity. Recently, graphene-based two dimensional materials have
emerged as a novel platform for superconductivity[2–6]. In
particular, two varieties of graphene trilayer—one rotation-
ally faulted[7], and one in a metastable rhombohedral stack-
ing order[6]—have shown superconducting states that are re-
silient to magnetic fields. Both appear to persist above the
nominal critical magnetic field[8, 9] for a paramagnetic su-
perconductor derived by comparing their critical temperature
to the Zeeman energy, suggestive of a spin triplet order pa-
rameter. Unfortunately, neither of these materials represents
a structural ground state. Rotationally faulted structures are
generally unstable, limiting sample uniformity and, conse-
quently, reproducibility[10]. Rhombohedral stacking orders,
meanwhile, are only metastable, allowing uniform structures
to be produced but at great cost in practical yield of working
devices. These drawbacks hamper efforts to systematically
vary experimental parameters, and to build more complex de-
vices making use of the array of gate tuned phases available
in these materials.

Here, we report magnetic field-induced superconductivity
in Bernal bilayer graphene (BBG), whose crystal structure
is shown in Fig. 1A. Bilayer graphene has been the subject
of hundreds of experimental studies since its original experi-
mental description in 2006[13]. However, prior explorations
of electron correlation physics have focused on instabilities
of the parabolic band touching that occurs in the absence of
an applied displacement field[14–17]. When a perpendicular
electric displacement field (D) is applied, the parabolic band
touching is replaced by a band gap (Fig. 1B), with van Hove
singularities characterized by divergent single particle density
of states appearing near the band edge. Energy bands and as-
sociated single particle density of states calculated within a
four-band tight binding model[11] are plotted in Figs. 1B-

C. Fig. 1D shows the calculated density of states and select
Fermi contours at interlayer potential difference of 50 meV,
corresponding[18] to D ≈ 0.5V/nm. A van Hove singularity
occurs at a carrier density of ne ≈ −0.5 × 1012cm−2, where
three low-density Fermi pockets merge into an annulus. We
note that our choice of tight binding parameters, derived from
numerical band structure modeling[11], has not been quanti-
tatively bench marked to experiment in the regime of interest.
However, the existence of a saddle point van Hove singularity
in this approximate density regime is expected to be generic.

The electronic structure of BBG resembles that of rhombo-
hedral graphite multilayers[19, 20]. However, BBG is con-
siderably easier to manufacture due to its structural stability.
Our devices consist of a BBG channel encapsulated in sin-
gle crystal hexagonal boron nitride gate dielectrics in which
the charge carrier density ne and electrical displacement field
D are controlled by single crystal graphite top and bottom
gates[21]. We report data from two devices which show nearly
identical behavior. Data shown in the main text are from De-
vice A, with data from device B is shown in [22].

Fig. 1E shows inverse electronic compressibility κ =
∂µ/∂ne[21, 23] measured for small hole doping. A series
of transitions are visible as dips in the inverse compressibility,
accompanied by concomitant sharp changes in the electrical
resistivity (see Fig. S2 in [22] for additional data). High res-
olution quantum oscillation data show that these features are
associated with changes in the Fermi surface topology linked
to breaking of the spin- and valley symmetries. Fig. 1F shows
the Fourier transform of the magnetoresistance ( see Fig. S3
in [22] for additional data), R(1/B⊥), measured at different
(ne, D) points indicated in panel 1E. Fourier transforms are
plotted as a function of the oscillation frequency normalized to
the total carrier density, which we denote fν . fν corresponds
to the fraction of the Luttinger volume encircled by the phase
coherent orbit that generates a given oscillation peak. To de-
termine ne, we use the geometric capacitances of the gates as
well as the spectroscopically determined[18] band gap ∆, so
that for hole doping ne = ctvt + cbvb + ∆/2. At high |ne|,
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FIG. 1. Broken isospin symmetry phases in Bernal bilayer graphene. A, Lattice structure of Bernal bilayer graphene. B, Band structure
calculated within a tight binding model[11] near the Brillouin zone corner. a0 = 2.46Å is the graphene lattice constant. C, Noninteracting
density of states, ρ. Different curves are calculated for varying interlayer potential difference as marked. Au.c. ≈ 5.24Å2 is the graphene unit
cell area. D, ρ as a function of carrier density calculated[11] for fixed interlayer potential difference of 50mV. Insets: Fermi contours at the
indicated values of ne, plotted on the interval (−0.06, 0.06)a−1

0 for both kx and ky . E, Experimentally determined inverse compressibility
at zero magnetic field. F, Fourier transform of Rxx(1/B⊥) measured at the (ne,D) points indicated by the colored symbols in panel E. The
x-axis is the frequency normalized to ne. Peaks reflect fractional area of the Fermi sea enclosed by a phase-coherent orbit. For each trace, we
show a schematic of the spin-dependent Fermi surfaces in the two valleys inspired by a rigid-band Stoner model of the type considered in [12].

a prominent peak is visible at fν = 0.25, along with associ-
ated harmonics. This is consistent with a state preserving the
four-fold combined spin- and valley degeneracy of the honey-
comb lattice which has a simple Fermi surface in each of the
four isospin flavors, as shown schematically at bottom right
of Fig. 1F. We denote this symmetric phase Sym4. At low
densities and high D, in contrast, the strongest peak occurs at
fν = 1/12. This is again consistent with intact isospin sym-
metry, but in the regime of density where trigonal warping
produces three Fermi pockets within a single isospin flavor.
This phase is denoted Sym12. In the single particle picture,
Sym12 and Sym4 are the phases that straddle the van Hove
singularity (Fig. 1D).

We also identify regions with lowered degeneracy. The
first, which appears at low density, is characterized by a broad
peak at fν = 1 and corresponds to a quarter metal with a
single, fully isospin polarized Fermi surface (we denote this
isospin ferromagnet IF1). Adjoining IF1 is a phase with a
strong peak at fν slightly smaller than 1. We associate this
signature with a partially isospin polarized phase featuring a
large Fermi surface of one isospin flavor and one (or possibly
more) smaller Fermi surfaces in a second, and denote it PIP1.
An additional phase appears as a sash at densities intermediate
between Sym4 and Sym12. This phase shows two prominent
peaks at fν = f1 and at fν = f2 such that f1 + f2 = 0.5.
We dub this phase PIP2 and associate it with the existence of
a single Fermi surface in each of two majority and two minor-
ity isospin flavors. Possible fermi surface topologies for the
observed phases are depicted in Fig. 1F, for the case where
spin and valley remain good quantum numbers. Notably, these
schematic depictions do not allow for the possibility of inter-

valley coherence, which is theoretically possible but cannot be
unambiguously determined from the quantum oscillation data
alone.

The symmetry breaking transitions move to higher |ne|
with increasing |D|, as expected from a Stoner picture given
that increasing |D| enhances the size of the van Hove singu-
larity favoring isospin symmetry breaking states at higher car-
rier concentration[24]. This behavior is analogous to that ob-
served in rhombohedral trilayer graphene (RTG)[12], but the
observed phases differ between the two systems. For example,
we find no signatures of the annular Fermi sea that hosts su-
perconductivity in RTG, nor do we find a spin-polarized half-
metal state. Finally, the quarter metal state IF1 occupies only
a very small domain in the parameter space. These differences
may be tied to subtle differences in the underlying band wave
functions in these two systems. Further differentiating BBG
and RTG, electrical resistivity remains finite at all densities at
B =0 (Fig. 2A).

Most unusually, superconductivity emerges with the ap-
plication of a finite magnetic field. Fig. 2B shows the re-
sistivity, measured at a nominal temperature of 10mK and
B‖ = 165mT applied in the plane of the sample. A zero-
resistance state appears at large D at the apparent transition
between the PIP2 and Sym12 states (similar data are obtained
for D < 0, see Fig. S4 in [22]). Figs. 2C-D show the tem-
perature dependent linear and nonlinear resistivity within this
zero-resistance state. We define TBKT = 26mK from the tem-
perature where the voltage V ∝ I3. The critical temperature
is not found to decrease significantly with appliedB‖ over the
accessible range (see Fig. S5 in [22] for additional data).

In many spin-triplet superconductors non-magnetic impuri-
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FIG. 2. Magnetic-field induced superconductivity. A,Rxx measured at fixedB‖ = 0 at a nominal temperature of 10mK. B, Same as panel A,
but measured atB‖ = 165mT. Zero resistance renders as bright cyan in a sash between the Sym12 and PIP2 states for D&1. C, ne dependence
of Rxx measured at fixed D = 1.02V/nm and B‖ = 165mT and variable temperatures. Inset: R(T ) measured at ne = −0.57× 1012cm−2

and D = 1.02V/nm. D, Nonlinear transport in the superconducting state measured at ne = −0.57 × 1012cm−2, D = 1.02V/nm, and
B‖ = 165mT. Inset: V (I) plotted on a log scale. Dotted line corresponds to V ∝ I3, from which we determine TBKT = 26mK. E, ne

dependence of Rxx measured at fixed D = 1.02V/nm and B‖ = 165mT, for variable B⊥. F, B⊥-dependent nonlinear transport for fixed
ne = −0.57× 1012cm−2, D = 1.02V/nm and B‖ = 165mT.

ties play the role of magnetic impurities in conventional su-
perconductors. To assess whether such orders are plausible,
we estimate the disorder strength, parameterized by the ra-
tio d = ξ/`mf [25] of the superconducting coherence length
ξ and the electronic mean free path in the normal state. ξ
may be estimated from the upper critical field at base tem-
perature of Bc⊥ ≈ 5mT (Fig. 2E-F) from the relation[26]
ξ =

√
Φ0/(2πBc⊥) ≈ 250nm. This value is compa-

rable to RTG[6] and much longer than in moiré graphene
multilayers[2, 7].

We may estimate `mf from the magnetic field where quan-
tum oscillations are first observed. This corresponds to `mf ≈
2πkf `

2
B , the circumference of a cyclotron orbit[27]. Fig. 3

shows quantum oscillation data in the vicinity of the super-
conducting state. At ne ≈ −0.57× 1012cm−2, on the cusp of
the superconducting state, two oscillation frequencies are ob-
served. Taking the higher fν / 1/2, from which we estimate
kf =

√
2πfν |ne| = 0.13nm−1. In this regime, the onset field

is found to be ≈140mT (see Fig. S6), giving `mf ≈ 5µm.
This estimate is comparable to device dimensions[28], so we
conclude that d < 0.05, placing superconductivity deep in the
clean limit. Exotic superconducting order parameters are thus

not ruled out by disorder considerations.
BBG and RTG share the same crystal symmetries, differ-

ing only in quantitative details. It is likely then that just as
for RTG, the bare fact that superconductivity occurs at a mag-
netic transition in BBG can be explained by both conventional
electron-phonon as well as electronically mediated attraction
[29–38]. We thus turn our attention to new constraints offered
by BBG on theories of the superconducting state that seek to
capture the qualitative details of the phase diagram.

In contrast to superconductors in RTG, the fermiology in-
dicates that the superconducting state in BBG emerges from
a partially isospin polarized normal state with both majority
and minority Fermi surfaces. In the domain of the supercon-
ducting state, both a high-frequency and a low frequency os-
cillation are evident (Figs. 3A-B, and additional data in Fig.
S7), evolving continuously from the peaks in the PIP2 phase.
The normal state has a somewhat distinct fermiology from
the PIP2 state observed at higher |ne|, with the two phases
showing contrasting ne-dependence of both the low- and high-
frequency oscillations. In the PIP2 state, dfν/dne is negative
for the low fν oscillation and positive for the high fν oscil-
lation, with these trends reversing abruptly at the boundary
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of the superconducting state. Intriguingly, the low frequency
peak in the superconducting regime continuously interpolates
between the area of the small Fermi surface in the PIP2 state
at high |ne| and the area of a single Fermi pocket of the Sym12

state, suggestive of a continuous transition between the two.
This picture implicitly requires significant reconstruction of
the Fermi surfaces relative to the single particle band struc-
ture through either inter-valley coherence or the development
of nematic order. Alternatively, the superconductor may arise
from a partially isospin polarized phase that is distinct from
the PIP2 phase, existing between the PIP2 and Sym12 phases
and breaking a different set of spin, valley, or lattice symme-
tries.

Comparing transport measurements at zero and finite B‖
(Fig. 4A) provides additional information. In the absence
of a field, the Sym12 and PIP2 states are separated by a re-
sistance maximum (Fig. 4A), where the resistivity shows
strong nonlinearity. Specifically, the resistance is constant up
to a sharply defined threshold in the applied current, where it
abruptly changes to a reduced value (Fig. 4B and S11). This
behavior is reminiscent of phenomena observed in charge den-
sity wave compounds associated with electric field induced
depinning[39]. Both resistance peak and nonlinearity are low-
temperature phenomena, appearing only below T ≈ 50mK
as shown in Figs. 4B and S8. Like superconductivity at fi-

nite B‖ (Fig. 4E-F), at B=0 the threshold current reaches a
maximum in between the Sym12 and PIP2 states (Fig. 4C-D).
These facts suggest that the nonlinearity is the signature that
the low-temperature ground state at zero magnetic field has
broken symmetries distinct from the neighboring PIP2 phase.

The threshold observed at B=0 is continuously suppressed
by applied magnetic fields (Figs. 4g-h) independent of the
field direction, and disappears completely for |B| > 75mT
(Fig. S9). This suggests that the zero field phase is spin unpo-
larized, and that the suppression of the nonlinearity is driven
by a spin polarization transition. As shown in Fig. 4I, the
boundary between the PIP2 and Sym12 phases shifts to lower
|ne| with increasingB‖. Tracing the nonlinear transport along
the boundary between the Sym12 and PIP2 phases (Fig. 4J) re-
veals that the suppression of the resistive state coincides pre-
cisely with the onset of superconductivity. We conclude that
the observed superconductivity arises as soon as the Zeeman
energy is sufficient to spin polarize the electron system, de-
stroying the B=0 phase and turning on the superconducting
ground state.

The current results introduce significant new constraints
to any universal theory of superconductivity in graphene
systems—assuming such a theory exists. In particular, the
difference in Fermi surface topology between the BBG,
RTG, and moiré systems in their respective superconducting
regimes suggests that Fermi surface details are not central to
the superconducting mechanism. In contrast, proximity to an
isospin ordered phase is a generic feature of both moiré and
crystalline graphene superconductors, suggestive of a fluctua-
tion mediated or other purely repulsive mechanism.

However, we note that our experiments do not yet rule out
a phonon mediated mechanism, where generic pairing only
leads to observable superconducting TC in a narrow density
range and for a specific underlying isospin ordered phase.
With respect to resolving the mechanism of superconductiv-
ity, the greatest impact of the current work to be practical: the
stability of BBG allows exceptionally high-quality systems to
be made with high yield and reproducibility. Moreover, van
Hove singularities of the type explored here and in RTG are
generic to all graphene multilayers, so we expect field-effect
controlled superconductivity to be a widespread phenomenon
in graphene allotropes with sufficiently low disorder.
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MATERIALS AND METHODS

The bilayer graphene, few-layer graphite and hBN flakes are prepared by mechanical exfoliation of bulk crystals. The van der
Waals heterostructures are assembled using a dry transfer technique[28] with poly-propylene carbonate (PPC) film for Device A
and poly bisphenol a carbonate (PC) film for Device B. Device A, shown in the main text, was previously studied in references
[21] and [41], where it is denoted Device C and C1, respectively. These references also describe the fabrication methods in more
detail. To form graphite contacts for device B, the graphite flake was patterned with anodic oxidation using an atomic force
microscope[42]. Both devices have a dual-graphite gate structure[21] to minimize the charge disorder and to allow independent
control of the carrier electron density (ne) and the electrical displacement field (D).

All electrical measurements are performed in a dilution refrigerator equipped with a 9T/1T/1T superconducting vector magnet.
The vector-field control is essential forB‖-dependence measurements, allowing precise control of the field direction, in particular
removing residual B⊥. Transport measurements are performed using lock-in techniques at a frequency f < 45Hz to reduce the
electronic noise. Low-pass electronic filtering basd on [43] is applied to lower the electron temperature. Penetration field
capacitance was measured using a capacitance bridge circuit with an FHX15X high electron mobility transistor serving as an
in-situ impedance transformer, as described in [21]. An excitation frequency of 54245.12Hz was used to obtain the capacitance
data. To convert the measured values to inverse electronic compressibility κ we use low-magnetic field Landau levels as a
calibration for perfect screening and perfect penetration, a procedure described in detail in Ref. [12].

SUPPLEMENTARY FIGURES

V

I

bilayer graphene region

graphite contacts

metal electrodes

A B

FIG. S1. Geometry of Device A and transport measurement wiring. A, Optical micrograph of the sample studied. Scale bar represents
5µm. The entire sample consists of a graphite-hBN-BBG-hBN-graphite stack, with the graphite layers functioning as gates and hexagonal
boron nitride layers functioning as gate dielectrics. Additional graphite serves as contacts to the BBG, as shown in the figure. Both top- and
bottong hBN flakes are 38nm thick. B, Configuration of the transport measurements.
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FIG. S2. Comparison of resistivity and inverse compressibility at zero magnetic field A, Resistivity versus carrier density measured at
D = 0. B, Inverse compressibility versus carrier density measured at D = 0. C, Same as A, measured at D = 0.6V/nm. D, Same as B,
measured at D = 0.6V/nm. E, Same as A and C, measured at D = 1.02V/nm. F, Same as B and D, measured at D = 1.02V/nm.
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FIG. S3. Quantum oscillation data used to generate Fig 1f. Resistivity as a function of B⊥ at fixed ne and D. Panels A to E correspond
to traces used to generate Fig. 1F from bottom to top respectively.
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FIG. S4. Superconducting phase at negative displacement field. Measurement was performed at B‖ =0.165T. Superconductivity is visible
as a bright cyan sash between ne ≈ −.6 and ne ≈ −.7× 1012cm−2 and |D| & 1 V/nm.

-0.59 -0.57 -0.55

20

40

60

10

30

50

-0.58 -0.56 -0.54 -0.56 -0.55 -0.54 -0.53

10

20

30

40

50

-0.58 -0.57 -0.56 -0.55 -0.54
ne (1012 cm-2) ne (1012 cm-2) ne (1012 cm-2) ne (1012 cm-2)

T 
(m

K)

T ½
 (m

K)

0
230

R
xx  (Ω

)

B|| = 0.165T B|| = 0.3T B|| = 0.5TA B C D

0.165T

0.3T 0.5T

FIG. S5. B‖-dependence of the superconducting phase. A, Rxx versus carrier density and temperature measured at D = 1.02V/nm and
B‖ = 0.165T. B, Same as A, measured at B‖ = 0.3T. C, Same as A and B, measured at B‖ = 0.5T. D, T1/2 versus carrier density extracted
from the data in panel A-C. T1/2 is the temperature at which the resistance is 50% of the normal state resistance.
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FIG. S6. OnsetB⊥ of quantum oscillations oscillation. A, MeasuredRxx as a function ofB⊥ at ne = −0.57×1012cm−2,D = 1.02V/nm
near the superconducting state. B, The same data as in panel A, after applying a Fourier domain band bass filter to isolate the higher frequency
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FIG. S11. Data from Device B. A, Optical micrograph of the sample. Scale bar represents 10µm. For this device, the gate dielectrics were
9nm and 18nm thick. B,Rxx measured at fixedB‖ = 0 at a nominal temperature of 10mK. C, Same as panel B, but measured atB‖ = 150mT.
D, Nonlinear transport in the superconducting state measured at ne = −0.652× 1012cm−2, D = 0.96V/nm, and B‖ = 150mT. Inset: V (I)

plotted on a log scale. Dotted line corresponds to V ∝ I3, from which we determine TBKT = 22mK. E, ne and T dependence of Rxx
measured at fixed D = 0.96V/nm and B‖ = 150mT. F, ne and B⊥ dependence of Rxx measured at fixed D = 0.96V/nm and B‖ = 150mT.
G, B⊥-dependent nonlinear transport for fixed ne = −0.652× 1012cm−2 and D = 0.96V/nm. H, ne-dependent nonlinear dV/dI measured
at D = 0.96V/nm, B‖ = 150mT. I, dV/dI as a function of I measured at the same D and B‖ as those in panel h and ne values indicated by
arrows in panel H. J, Same as panel h, B‖ = 0. K, dV/dI as a function of I measured at the same D and B‖ as those in panel j and ne values
indicated by arrows in panel J. L, B‖-dependence of linear response resistivity measured at D = 0.96V/nm, B⊥=0. M, dV/dI measured
along the trajectory shown by the dashed line in panel L.
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