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University in Prague, Břehová 7, 115 19 Prague, Czech Republic
* Correspondence: suleyman.inan@ege.edu.tr (S.İ.); michal.galambos@uniba.sk (M.G.)

Abstract: The efficiency of 133Ba and 137Cs removal from aqueous solution is vital to mitigate
ecological concerns over spreading these radionuclides in the environment. The present work
focused on the use of Turkish perlite for the sorptive removal of 133Ba and 137Cs from aqueous
solution by the radioindicator method. Perlite was characterized by XRF, XRD, FTIR, SEM–EDX, and
BET analyses. The maximum percentage removals of 88.2% and 78.7% were obtained for 133Ba and
137Cs at pH 6 and pH 9, respectively. For both ions, the sorption equilibrium was attained relatively
rapidly. Experimental kinetic data were well described with pseudo-second-order and intraparticle
diffusion models. The uptake of both ions increased with the increase in metal concentration
(1 × 10−5 to 5 × 10−2 mol/L) in solution. The maximum uptake capacities of 133Ba and 137Cs were
found to be 1.96 and 2.11 mmol/g, respectively. The effect of competing ions decreased in the order of
Ca2+ > K+ > Ni2+ > Na+ for 133Ba sorption, whereas for 137Cs sorption, the order was determined
as Ca2+ > Ni2+ > K+ > Na+. Selectivity studies pointed out that sorption of 133Ba onto perlite
is preferable to 137Cs. Therefore, Turkish perlite is a promising, cost-effective, and efficient natural
material for the removal of 133Ba and 137Cs from relatively diluted aqueous solution.

Keywords: cesium; barium; sorption; perlite; radioactive waste

1. Introduction
133Ba and 137Cs are both released into the environment via testing of nuclear weapons,

via effluents release containing radioactive waste from nuclear power plants (NPPs), pro-
cessing operations of nuclear fuel, and accidents in NPPs [1]. Barium and cesium have
many isotopes, but only some of them are important and possess major concern for the
environment due to their longer half-life. In the case of 137Cs ~ 30.08 years (β− emitter)
and for 133Ba ~ 10.55 years (γ emitter), both are generated during fission of uranium and
plutonium. Barium and cesium salts are highly soluble in water, which improves their
distribution in the soil. Both ions are not essential elements for plants and animals; however,
they are known for their toxic effect on them. Plants can accumulate 133Ba and 137Cs from
soil if adequately solubilized, helping them to enter the food chain and resulting in harmful
effects on animals and on plant species due to the internal exposure of β and γ radiation
caused by decaying radionuclides [2,3]. Concentration limits for 137Cs in drinking water,
milk, and food are provided in Table 1.
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Table 1. Concentration limits of 137Cs.

Unit (Bq/kg) EU [4] USA [5] Japan [6]

Drinking water 1000 1200 10
Milk 1000 1200 50

General foods 1250 1200 100

Therefore, the removal of potentially hazardous radionuclides from liquid waste
streams is a very important issue to prevent possible effects on living species and the envi-
ronment. There have been many different methods applied to remove barium and cesium
from the wastewater, mainly phytoremediation [7], ion-exchange [8], the ion floatation
process [9], chemical precipitation [10], solvent extraction [11,12], electrochemical purifi-
cation [13], membrane separation [14], and adsorption [15]. Adsorption is considered the
most useful method for the barium and cesium removal and has been widely used. Various
types of synthetic and natural materials have been proposed for the adsorption of barium
and cesium from aqueous solution and waste streams. Natural inorganic materials have
been preferred because of their abundance, low cost, radiation resistance, and reasonable
capacity for radionuclides. Among these, the most reported materials are zeolites [16–18],
clay minerals [19–21], rocks [22,23], and fly ash [24]. On the other hand, perlite is another
interesting naturally occurring mineral composed of amorphous alumina-silicate volcanic
rock belonging to the granite-rhyolite family under the sub-group of glassy rocks [25].
Perlite mine locations are in different regions of the world. Based on the estimated world
production for 2021, the world’s leading producers were China, Turkey, Greece, and the
United States. It was estimated that there are approximately 4200 thousand metric tons of
perlite produced around the world during 2021 [26].

Due to a certain amount of water in its internal structure, it has the capacity to expand
up to 4–20 times when heated at high temperature (760–1100 ◦C). By expansion, perlite
becomes very light and porous. Perlite rocks can have different properties in terms of color
and structure. The color of raw perlite can vary from transparent light gray to bright black.
The most important feature of perlite is the water it contains as a compound of 2.5% in the
hydrated glassy silica structure, and this water ensures the stability of the perlite [27]. It
is abundantly available and cheap in Turkish markets. Its high porosity and permeability,
large surface area, and ultra-light weight make perlite a suitable sorbent material for the
uptake of organic pollutants [28,29], heavy metal ions [30–33], and radionuclides [34,35]
from aqueous waste streams.

Talip et al. (2009) conducted batch tests to examine the effect of parameters for
thorium sorption on expanded perlite as a low-cost material. They reported that the
most dominant factors were solution pH and initial thorium concentration. Thorium
sorption was investigated between pH 2 and 7 and the maximum thorium sorption (%)
was obtained at pH 4.5. By the investigation of thorium concentration in the range of
20–250 mg/L, a sorption uptake (%) of 84 ± 4 was found at 50 mg/L concentration [34].
In another study, the removal of Sr and Ba onto Iranian expanded perlite was reported by
Torab-Mostaedi et al. (2011). pH, sorbent dosage, contact time, and temperature were the
affecting parameters under investigation. They said that the pH was the most significant
factor on Sr and Ba adsorption, and adsorption (%) was maximized at pH 6 for both
ions. From the isotherms, it can be deduced that the adsorption is Langmuir type and
the monolayer coverages of Sr and Ba ions were determined to be 1.14 and 2.486 mg/g,
respectively [35]. Cabranes et al. (2018) examined the use of Argentinian perlite for the
removal of radioactive cesium from wastewater. Although the surface area of the perlites
was low, it was observed that their capacity for Cs+ was good. They reported that the
increase in pH and modification with NaOH resulted in a higher percentage removal. The
Cs+ percentage removal of perlite obtained from Pava mine increased from 84 to 89% after
NaOH treatment when the sorbent dosage and initial metal concentration were maintained
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at 30 g/L and 10 mg/L, respectively. The maximum Cs+ adsorption capacity of Pava was
found to be 2.91 mg/g [36].

There are very few studies reported in the literature focused on the sorption of fission
products by perlite-based materials, and inactive ions were used in almost all these studies.
In addition, utilization of Turkish perlite as a sorbent for 133Ba and 137Cs has not been
reported yet.

In the present study, we focused on the characterization studies of Turkish perlite
and its sorption behaviors toward 133Ba and 137Cs from diluted aqueous solution. The
influences of pH, contact time, metal concentration, and dosage on sorption were investi-
gated. Sorption properties of perlite in the presence of competing ions were examined and
a selectivity study was conducted.

2. Materials and Methods
2.1. Materials

Perlite samples were supplied from Harborlite Aegean End. Min. San. A.Ş. (Bergama-
İzmir, Turkey). Following the extraction from the mine, perlite was subjected to pre-
crushing, drying, crushing, sieving, and classification processes. The particle size dis-
tribution was in the range of 0.075–0.6 mm. All chemicals used in experiments were of
analytical grade and supplied from Slavus, s.r.o, Bratislava, Slovak Republic, or Lacherna
n.p., Brno, Czech Republic. Radiotracer concentrations were as follows: 133Ba in the form of
[133Ba]BaCl2 (Eurostandard CZ s.r.o., Czech Republic) with a volume activity of 2 MBq/mL
and 137Cs in the form of [137Cs]CsCl (National Centre for Nuclear Research, Poland) with a
volume activity of 55 MBq/mL.

2.2. Sorption Experiments

The sorption of Ba and Cs on Turkish perlite was performed by the radioisotope
indication method using a radioisotope of 133Ba and 137Cs. Experiments were carried out
by the batch method under aerobic conditions and at the laboratory temperature. The
parameters affecting sorption were examined by adding 5 mL of aqueous phase to 0.05 g
of perlite in a plastic tube. Perlite and aqueous phase were mixed in a rotary laboratory
mixer with a constant speed of mixing. After sorption, the suspension was centrifuged at
8000 rot min−1 for 15 min and an aliquot of each supernatant was collected and analyzed
with a Modumatic model gamma spectrometer equipped with a NaI(Tl) detector. The
statistical error of the measurement was below ~1%.

The effect of initial pH on Ba and Cs sorption was investigated between pH 3 and
9. The influence of contact time was studied from 1 min up to 180 min. Isotherm studies
were carried out using a solution of Ba2+ or Cs+, with initial concentrations of 1 × 10−5 to
5 × 10−2 mol/L. The effect of sorbent dosage on sorption was examined from 5 to 80 g/L.

For competitive ion studies, Na+, K+, Ni2+, and Ca2+ were chosen as competing ions
and binary solutions of these ions with Ba2+ and Cs+. Each of these solutions was prepared
at pH 6 and 9, respectively. In the solutions, the concentration of Ba2+ and Cs+ ions was
fixed to 1 × 10−5 mol/L, whereas concentrations of Na+, K+, Ni2+, and Ca2+ as competing
ions were increased from 1 × 10−5 to 5 × 10−2 mol/L. An amount of 0.05 g of perlite was
contacted with each binary metal containing solution for 60 min.

Selectivity studies were performed by contacting 0.05 g of perlite with equimolar
(1 × 10−5 mol/L) Ba2- and Cs+-bearing solutions within the pH range of 3–9, for 60 min.

Sorption properties of perlite toward Ba and Cs were calculated using the follow-
ing equations:

Distribution coefficient (Kd)

Kd =
(a0 − a)

a
× V

m
(mL/g) (1)
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Sorption percentage (R)

R = (100 × Kd)/(Kd + V/m) (%) (2)

Sorption capacity (q)
q = Kd × Ceq (mmol/g) (3)

Equilibrium concentration (Ceq)

Ceq =
C0 × a

a0
(mol/L) (4)

Selectivity coefficient (β)

β1,2 =
Kd1
Kd2

(5)

where C0 and Ceq are the initial and equilibrium concentration (mol/L), respectively, V is
the volume of aqueous phase (mL), m is the mass of sorbent (g), a and a0 are the initial and
equilibrium volume activities of the solutions (mL/s), respectively, and Kd1 and Kd2 are the
distribution coefficients of 133Ba and 137Cs, respectively.

2.3. Characterization Studies

X-ray fluorescence analysis (XRF) was carried out for the purpose of perlite’s chemical
composition identification. X-ray diffraction (XRD) analysis was used to evaluate the crys-
tallinity and structure of perlite. The sample was measured on a MiniFlex 600 XRD diffrac-
tometer (Rigaku, Tokyo, Japan) in range of 5◦–80◦ at the velocity of 2◦ min−1. Fourier Trans-
form Infrared Spectroscopy (FTIR) spectra were acquired between 400 and 4000 cm−1 by a
Perkin Elmer Spectrum Two model FTIR-ATR instrument (Waltham, MA, USA). Brunauer–
Emmett–Teller (BET) surface area analysis provided data on the textural properties of the
sorbent material. BET surface area measurement was carried out using the MONOSORB™
MS-22 device (Quantachrome Instruments, Boynton Beach, FL, USA) by the one-point
measurement method with a working gas of 30 mol. % N2 and 70 mol. % He. Scanning
electron microscopy–energy-dispersive X-ray (SEM–EDX) analysis identified the morpho-
logical structure of the sorbent surface and gave an idea on the elemental composition of
the perlite surface. Scanning electron microscopy and EDX analysis of the perlite sample
were performed using a VEGA 2 SEM microscope (TESCAN s.r.o., Brno, Czech Republic)
coupled with a QUANTAX QX2 EDX detector (RONTEC, Denkendorf, Germany). Before
SEM–EDX analysis, the perlite sample was fixed on an aluminum sample holder using
conductive adhesive (Ag). The sample was then coated with Au using a vacuum coat-
ing system (TESLA ELMI a.s., Brno, Czech Republic). The analysis was carried out at
500× magnification, a pressure of 36 × 10−3 Pa, and a voltage of 30 kV.

3. Results and Discussion
3.1. Characterization of Perlite

The elemental composition (identification only) of Turkish perlite was examined by
XRF analysis. The most occurring elements were Si, Al, K, Fe, Ni, As, Zn, Rb, Mn, or Zr.
This identification proved that the composition of perlite is similar to other perlites used in
the literature [32,33].

XRD data of perlite are shown in Figure 1a. There are two amorphous peaks in the spec-
trum, one narrower—around 2θ ≈ 4◦, and one wider with a peak around
2θ ≈ 25◦. These two peaks probably correspond to the structure of amorphous volcanic
glass. Identifying sharp peaks is more difficult. The closest possible structures that could
belong to a given peak are: quartz and polylithionite. The FTIR spectrum of perlite is
illustrated in Figure 1b. The bands at 3620 and 1730 cm−1 are indicators of O-H stretching
and bending vibrations. The sharp peak at 1013 cm−1 represents the Si-O bond. The
peaks around 775 and 707 cm−1 can be attributed to the stretching of Si-O-Si and bending
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of Si-O-Al groups, respectively [37]. The BET surface area of perlite was determined to
be 1.4 m2/g. Similar values were reported by Torab-Mostaedi et al. [35] and Alkan and
Doğan [38]. The SEM–EDX analysis of perlite is presented in Figure 1c. The SEM image
illustrates the porous structure of the perlite surface. As expected in perlite, Si, Al, O, K,
Mg, Na, Ca, and Fe elements were determined and the data corresponded with the data
provided by XRF analysis.
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3.2. Sorption Studies
3.2.1. Effect of pH

The surface of perlite is mainly covered by hydroxyl groups attached to silanol groups
and alumina, which determines its sorption behaviors. Silanol groups and hydrous ox-
ide surface groups in alumina are responsible for the adsorption of Ba2+ and Cs2+ onto
perlite [29]. The schematic illustration of surface functional groups on perlite can be seen
in Figure 2.
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Figure 2. Functional groups on perlite surface.

pH is a significant parameter affecting the sorption of metal ions onto solid surfaces.
With the alteration of solution pH, protonation and deprotonation reactions occur and the
surface of the material is positively or negatively charged. As the solution pH decreases,
the surface of the sorbent becomes more positively charged and the sorption of metal ions
decreases. Conversely, with an increase in pH, the surface becomes negatively charged and
the sorption capacity increases. As shown in Figure 3, the ionization of silanol groups can
be enhanced by the increase in solution pH and hydrogen ions are transferred from surface
to solution. Thus, metal ions can be sorbed on negatively charged surfaces [39,40].
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Figure 3. Possible surface reactions and metal bonding mechanism.

In our study, Ba and Cs sorption as a function of initial pH was investigated in the pH
range of 3–9. Figure 4 shows that perlite had a higher sorption percentage for Ba2+ than
Cs+ ions in the whole pH range. At pH 3, the sorption percentage of both ions was lower.
The maximum sorption percentage was obtained to be 88.2% and 78.7% for Ba2+ and Cs+

at pH 6 and pH 9, respectively. Therefore, for further studies, the initial pH was fixed at
pH 6 and pH 9 for Ba2+ and Cs+, respectively.
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3.2.2. Effect of Contact Time

The uptake capacity of Ba2+ and Cs+ as a function of contact time is shown in Figure 5.
Perlite had a higher capacity for Ba2+ in comparison to Cs+ throughout the contact time
range. The uptake capacity of both ions increased up to 30 min, then became almost con-
stant. Further studies were conducted for 60 min to ensure the equilibrium was established.
Sorption equilibrium was also maintained at 60 min for thorium and 90 min for cesium,
barium, strontium, copper, and lead [34–36,41] in similar studies using perlite.

Materials 2022, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 5. Influence of contact time on the removal of Ba2⁺ and Cs⁺ using perlite (initial pH 6 for Ba2⁺; 
initial pH 9 for Cs⁺; metal ion concentration: 1 × 10−5 mol/L; dosage: 10 g/L; temperature: ambient 
conditions). 

Pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models 
were applied to explain the experimental data. The pseudo-first-order equation [42] in its 
linear form is given as: 𝑙𝑛 𝑞 − 𝑞 = 𝑙𝑛𝑞 − 𝑘 × 𝑡 (6)

where qt and qe are the amounts of metal ions sorbed at equilibrium (mg/g) and t (min), 
respectively, and k1 is the rate constant of the equation (min−1). The sorption rate constant 
(k1) represents the slope of the graph course drawn between ln(qe-qt) and t. The relatively 
low R2 values (0.14 for Ba2⁺ and 0.45 for Cs⁺ sorption) suggest that the sorption of these 
ions onto perlite does not fit a pseudo-first-order kinetic model (Table 2). 

Table 2. Pseudo-first- and second-order model parameters for Ba2⁺ and Cs⁺ sorption onto perlite. 

 
Pseudo-First-Order Pseudo-Second-Order 

k1 (1/min) qe (mmol/g) R2 k2 (g/mmol min) qe (mmol/g) R2 
133Ba 8.7 × 10−3 6.2 × 10−5 0.14 1524.11 9.1 × 10−4 0.999 
137Cs 1.9 × 10−2 6.9 × 10−5 0.45 1655.62 8.1 × 10−4 0.999 

The pseudo-second-order model has been proposed to predict the kinetic behavior 
of adsorption where chemical sorption is the rate control step. The linearized form of the 
model is expressed as follows [43,44]: 𝑡𝑞 = 1𝑘 × 𝑞 + 1𝑞 × 𝑡 (7)

where k2 is the second-order rate constant (g/mmol min); qt and qe (mmol/g) are the amount 
of metal adsorbed at adsorption time t (min) and equilibrium, respectively. The linear 
plots of t/qt versus t for the adsorption of Ba2⁺ and Cs⁺ ions onto perlite are shown in Figure 

Figure 5. Influence of contact time on the removal of Ba2+ and Cs+ using perlite (initial pH 6 for Ba2+;
initial pH 9 for Cs+; metal ion concentration: 1 × 10−5 mol/L; dosage: 10 g/L; temperature: amb-
ient conditions).



Materials 2022, 15, 7816 8 of 16

Pseudo-first-order, pseudo-second-order, and intraparticle diffusion kinetic models
were applied to explain the experimental data. The pseudo-first-order equation [42] in its
linear form is given as:

ln(qe − qt) = lnqe − k1 × t (6)

where qt and qe are the amounts of metal ions sorbed at equilibrium (mg/g) and t (min),
respectively, and k1 is the rate constant of the equation (min−1). The sorption rate constant
(k1) represents the slope of the graph course drawn between ln(qe-qt) and t. The relatively
low R2 values (0.14 for Ba2+ and 0.45 for Cs+ sorption) suggest that the sorption of these
ions onto perlite does not fit a pseudo-first-order kinetic model (Table 2).

Table 2. Pseudo-first- and second-order model parameters for Ba2+ and Cs+ sorption onto perlite.

Pseudo-First-Order Pseudo-Second-Order

k1 (1/min) qe (mmol/g) R2 k2 (g/mmol min) qe (mmol/g) R2

133Ba 8.7 × 10−3 6.2 × 10−5 0.14 1524.11 9.1 × 10−4 0.999
137Cs 1.9 × 10−2 6.9 × 10−5 0.45 1655.62 8.1 × 10−4 0.999

The pseudo-second-order model has been proposed to predict the kinetic behavior
of adsorption where chemical sorption is the rate control step. The linearized form of the
model is expressed as follows [43,44]:

t
qt

=
1

k2 × q2
e
+

(
1
qe

)
× t (7)

where k2 is the second-order rate constant (g/mmol min); qt and qe (mmol/g) are the
amount of metal adsorbed at adsorption time t (min) and equilibrium, respectively. The
linear plots of t/qt versus t for the adsorption of Ba2+ and Cs+ ions onto perlite are shown
in Figure 6a. The values of k2, R2, and qe are given in Table 2. The R2 values obtained were
relatively high (0.999) for Ba2+ and Cs+ sorption. These data suggest that the sorption of Ba2+

and Cs+ ions onto perlite fits well with the pseudo-second-order kinetics. Similar results
were also reported for the sorption of metal ions onto perlite-based sorbents [35,36,41,45].
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Weber and Morris (1963) developed and proposed an intraparticle diffusion model,
which is based on pore diffusion [46]. The linearized form of the model is as follows:

qt = Ki × t0.5 + C (8)

According to the internal diffusion model, the internal diffusion of the adsorbate is the
slowest step, and, thus, it is considered as the rate-determining step during the adsorption
process [47]. Diffusion and adsorption are both influenced by surface area, reactivity of the
surface, and reaction of the surface and pore structure for internal diffusion. Intraparticle
diffusion is characterized by efficient mixing, a bigger particle size of adsorbent, high
adsorbate concentration, and relatively low affinity of the adsorbate for the adsorbent. The
model is defined by a plot expressing the relationship between metal uptake (qt) and the
square root of time (t1/2), as shown in Figure 6b. The calculated model parameters are
provided in Table 3. In Equation (8), the C value denotes the boundary layer thickness, and
a higher C value means a thicker boundary layer [48–50]. If the value of C is zero, there is
no boundary layer and the curve intercepts zero. As a result, film diffusion is negligible
when the layer thickness is equal to zero, and, thus, intraparticle diffusion is considered
as the rate controlling step. However, this is a theoretical approach related to Equation
(8). Many adsorption studies have reported that both intraparticle and film diffusion are
responsible for the rate-limiting step. As shown in Figure 6b and Table 3, experimental data
were divided into two different sections for Ba2+ and Cs+ sorption. Figure 6b was divided
by two linear regressions, demonstrating that adsorption diffusion is controlled by both
film and intraparticle diffusion.

Table 3. Intraparticle diffusion model parameters for Ba2+ and Cs+ sorption onto perlite.

First Section Second Section

Kid1
(mmol/g min0.5) C R2 Kid2

(mmol/g min0.5) C R2

133Ba 5 × 10−5 7 × 10−4 0.936 1 × 10−6 9 × 10−4 0.069
137Cs 3 × 10−5 6 × 10−4 0.999 2 × 10−6 8 × 10−4 0.363

Comparing the data based on Table 3, Kid values for the film diffusion and intraparticle
diffusion sections for Ba2+ and Cs+ ions demonstrate that the rate limiting step was the
intraparticle diffusion. This is because the intraparticle diffusion constant Kid2 values for
Ba2+ and Cs+ ions were 1 × 10−6 and 2 × 10−6, respectively, lower than those for the film
diffusion constants Kid1 of 5 × 10−5 and 3 × 10−5 for Ba2+ and Cs+ ions, respectively. This
shows that the rate of intraparticle diffusion was slower and the rate determining step.
Furthermore, in the first regression line, the Kid1 value of Ba2+ was higher than that of
Cs+, while the Kid2 value of Cs+ was found to be higher in the second line. This means
the transport of Ba2+ ions from solution through liquid film on the adsorbent surface was
faster than that of Cs+ ions in the first part. Thereafter, in the second part, Cs+ ions filled
the micropores faster than Ba2+ ions did.

3.2.3. Effect of Metal Ion Concentration

The change in the uptake capacity of Ba2+ and Cs+ ions as a function of initial metal
ion concentration was studied in the range of 1 × 10−5 and 5 × 10−2 mol/L. For both
ions, similar isotherm curves were obtained. By the increase in the amount of metal ions
in solution, the uptake capacity of the sorbent increased. When the initial concentration
was equal to 5 × 10−2 mol/L, uptake capacities for Ba2+ and Cs+ were calculated as
1.96 and 2.11 mmol/g, respectively. Sorption isotherm curves of these cations are presented
in Figure 7a.
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Adsorption isotherms express the relationship between the concentration of adsorbed
species and the degree of adsorption at a constant temperature. The Langmuir model
assumes that the adsorption is monolayer and takes place at certain homogeneous regions
on the adsorbent surface. The linearized form of the Langmuir equation can be written
as follows [51]:

Ce

qe
=

Ce

qm
+

(
1

qm × b

)
(9)

where qe is the amount of metal ions adsorbed at equilibrium (mol/g), Ce is the concentra-
tion of metal ions in the solution at equilibrium (mol/L), qm is the monolayer adsorption
capacity (mol/g), and b is the constant related to the free energy of adsorption (L/g). The
fitting of the experimental data to the Langmuir model for the sorption of both ions onto
perlite was found to be poor based on the R2 values, as given in Table 4. This reveals that
sorption on the surface did not occur as a monolayer coverage.

Table 4. Langmuir and Freundlich isotherm model parameters.

Model Parameters Ba2+ Cs+

Langmuir
qm (mol/g)

b (L/g)
R2

0.031
44.62
0.322

0.038
34.81
0.317

Freundlich
1/n
Kf

R2

0.71
0.015
0.979

0.81
0.027
0.996

The Freundlich model [52] can be applied for multilayer sorption on heterogeneous
surfaces. It is written in its linear form as

logqe = logK f +
1
n
× logCe (10)

where Kf (mol/g) is a constant related to the adsorption capacity and 1/n is a parameter
dependent on the adsorption intensity. It is clear from Figure 7b and Table 4 that Ba2+ and
Cs+ sorption data fit the Freundlich model well. Kf and 1/n values were calculated to be
0.015 and 0.71 for Ba2+ and 0.027 and 0.81 for Cs+, respectively. The 1/n values obtained
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between 0 and 1 indicated that Ba2+ and Cs+ sorption onto perlite was favorable under
these working conditions.

Several types of natural inorganic sorbents have been used for the treatment of ra-
dioactive waste solutions. Ba2+ and Cs+ sorption capacities of different natural minerals
are illustrated in Table 5. Turkish perlite has a reasonable sorption capacity in comparison
with the other materials reported in literature.

Table 5. Comparison of sorption capacity of other natural inorganic sorbents for Ba2+ and Cs+.

Sorbent Metal
Ion

Metal
Concentration (mol/L) Initial pH q (mmol/g) Reference

Iranian expanded perlite Ba2+ 3.6 × 10−5–3.6 × 10−4 6 0.018 [35]
German beidellite Ba2+ 3.6 × 10−5–1.46 × 10−3 6 0.326 [53]

Turkish perlite Ba2+ 1 × 10−5–5 × 10−2 6 1.96 Present study
Argentinian perlite Cs+ 3.8 × 10−5–3.8 × 10−3 5 0.022 [36]

Serbian clinoptilolite Cs+ 3.8 × 10−5–7.5 × 10−3 5 0.369 [54]
Zeolite Cs+ - 7.5 1.48 [55]

Slovak bentonite Cs+ 1 × 10−5–5 × 10−2 7 0.88 [56]
Indian bentonite Cs+ 3.8 × 10−4–7.5 × 10−3 6 1.46 [57]
Turkish bentonite Cs+ 0–4 × 10−2 8 2.26 [58]

Chabazite Cs+ 0–1 × 10−1 5 2.07 [59]
Turkish perlite Cs+ 1 × 10−5–5 × 10−2 9 2.11 Present study

3.2.4. Effect of Dosage

The effect of sorbent dosage on the uptake capacity and sorption percentage of Ba2+

and Cs+ ions is shown in Figure 8. When the sorbent dosage was increased from 5 to 80 g/L,
the sorption percentage raised from 43.2% to 72.7% for Ba2+ and from 54.1% to 83.0% for
Cs+ ions.
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On the contrary, with the increase in sorbent dosage, a gradual decrease can be seen
on Ba2+ and Cs+ uptake capacity. The increase in the sorption percentage can be explained
by the increase in the active sites on the sorbent and, thus, the easier penetration of metal
ions into the sorption sites.

3.3. Effect of Competing Ions and Selectivity Studies

The metal ions to be removed in wastewater are found together with various similar
ions. These ions can compete for the active binding sites on the sorbent surface. The
influence of competitive cations (Na+, K+, Ni2+, and Ca2+) on the Ba2+ and Cs+ sorption
was studied. It can be clearly seen from Figure 9a,b that the sorption of Ba2+ and Cs+ on
perlite was gradually decreased with increasing concentration of competing ions in solution
with concentrations from 1 × 10−5 to 5 × 10−2 mol/L. Ca2+ was the most competitive
ion with both Ba2+ and Cs+. For Ba2+ sorption, the effect of competing ions was of the
order of Ca2+ > K+ > Ni2+ > Na+, whereas for Cs+ sorption, the order was as follows
Ca2+ > Ni2+ > K+ > Na+. On the other hand, even at the highest competing ion
concentration of 5 × 10−2 mol/L, the sorption percentage of Ba2+ and Cs+ was determined
to be above 40%.

Materials 2022, 15, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 9. The variation in sorption percentage of Ba2⁺ (a) and Cs⁺ (b) ions on perlite in the presence 
of competing ions (Na⁺, K⁺, Ni2⁺, and Ca2⁺) (concentration of Ba2⁺ and Cs⁺: 1 × 10−5 mol/L; 
concentration of competing ions: 1 × 10−5 to 5 × 10−2 mol/L). 

Figure 10a shows the change in Kd values of Ba2⁺ and Cs⁺ with the alteration of 
solution pH from 3 to 9. For both metal ions, a gradual increase was observed in Kd values 
up to pH 7, after which a gradual decrease was observed. Maximum Kd values for Ba2⁺ 
and Cs⁺ at pH 7 were determined as 960.4 and 418.6 mL/g, respectively. 

When the variation in the selectivity coefficients depending on pH was examined 
(Figure 10b), it was found that perlite showed more selectivity for Ba2⁺ than Cs⁺ ions at 
each pH under investigation. Above pH 4, the selectivity coefficient (β) of Ba/Cs was 
higher than 2, which is an indicator of a good selectivity. The highest value of βBa/Cs (2.69) 
was obtained at pH 6. 

 
Figure 10. The variation in (a) Kd values and (b) selectivity coefficients as a function of initial pH 
(concentration of Ba2⁺ and Cs⁺: 1 × 10−5 mol/L; contact time: 60 min; temperature: ambient 
conditions). 

4. Conclusions 
In this study, we present research on the use of Turkish perlite for the removal of Ba  and Cs  radioisotopes. Turkish perlite, a low-cost and an abundant mineral, 

Figure 9. The variation in sorption percentage of Ba2+ (a) and Cs+ (b) ions on perlite in the presence
of competing ions (Na+, K+, Ni2+, and Ca2+) (concentration of Ba2+ and Cs+: 1 × 10−5 mol/L;
concentration of competing ions: 1 × 10−5 to 5 × 10−2 mol/L).

Figure 10a shows the change in Kd values of Ba2+ and Cs+ with the alteration of
solution pH from 3 to 9. For both metal ions, a gradual increase was observed in Kd values
up to pH 7, after which a gradual decrease was observed. Maximum Kd values for Ba2+

and Cs+ at pH 7 were determined as 960.4 and 418.6 mL/g, respectively.
When the variation in the selectivity coefficients depending on pH was examined

(Figure 10b), it was found that perlite showed more selectivity for Ba2+ than Cs+ ions at
each pH under investigation. Above pH 4, the selectivity coefficient (β) of Ba/Cs was
higher than 2, which is an indicator of a good selectivity. The highest value of βBa/Cs (2.69)
was obtained at pH 6.
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4. Conclusions

In this study, we present research on the use of Turkish perlite for the removal of 133Ba
and 137Cs radioisotopes. Turkish perlite, a low-cost and an abundant mineral, exhibited
promising potential for the remediation of contaminated solutions. Our study is the first
focused on the removal of 133Ba and 137Cs by Turkish perlite.

To understand the physical characteristics of perlite, XRF, XRD, FTIR, SEM–EDX, and
BET analyses were carried out. Sorption tests performed in the range of pH 3–9 revealed
that the sorption of Ba2+ and Cs+ was not remarkably affected by pH, both showing more
than 75 and 60% of the uptake, respectively. The Freundlich isotherm model was the
best fit for both Ba2+ and Cs+, which indicates heterogenous multilayer sorption with R2

values of 0.976 and 0.996, respectively. The sorption of Ba2+ and Cs+ on perlite followed
pseudo-second-order and intraparticle diffusion kinetic models. The binary sorption
studies were conducted in the presence of different cations, which showed a reduction
in sorption percentage of Ba2+ and Cs+ in the order of Ca2+ > K+ > Ni2+ > Na+ and
Ca2+ > Ni2+ > K+ > Na+, respectively. The selectivity study confirmed that Turkish
perlite was selective toward Ba2+ ions and it had a β value of 2.69 for Ba/Cs at pH 6. Hence,
Turkish perlite is proved to be a useful, efficient material for the removal of Ba2+ and Cs+

from relatively diluted aqueous solution.
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O.R.; analyses, S.İ., V.V.K. and M.D.; writing—original draft preparation, S.İ. and V.V.K.; writing—
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Acknowledgments: Süleyman İnan would like to acknowledge scholarship support from the Na-
tional Scholarship Programme of the Slovak Republic (NSP). In addition, we would like to thank
Harborlite Aegean End. Min. San. A.Ş. for supplying us perlite.
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