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Abstract

Loop-mediated isothermal amplification (LAMP) of aquatic invasive species environmental

DNA (AIS eDNA) was used for rapid, sensitive, and specific detection of Dreissena sp. rele-

vant to the Great Lakes (USA) basin. The method was validated for two uses including i)

direct amplification of eDNA using a hand filtration system and ii) confirmation of the results

after DNA extraction using a conventional thermal cycler run at isothermal temperatures.

Direct amplification eliminated the need for DNA extraction and purification and allowed

detection of target invasive species in grab or concentrated surface water samples, contain-

ing both free DNA as well as larger cells and particulates, such as veligers, eggs, or seeds.

The direct amplification method validation was conducted using Dreissena polymorpha and

Dreissena bugensis and uses up to 1 L grab water samples for high target abundance (e.g.,

greater than 10 veligers (larval mussels) per L forDreissena sp.) or 20 L samples concen-

trated through 35 μm nylon screens for low target abundance, at less than 10 veligers per

liter water. Surface water concentrate samples were collected over a period of three years,

mostly from inland lakes in Michigan with the help of a network of volunteers. Field samples

collected from 318 surface water locations included i) filtered concentrate for direct amplifi-

cation validation and ii) 1 L grab water sample for eDNA extraction and confirmation. Though

the extraction-based protocol was more sensitive (resulting in more positive detections than

direct amplification), direct amplification could be used for rapid screening, allowing for

quicker action times. For samples collected between May and August, results of eDNA

direct amplification were consistent with known presence/absence of selected invasive spe-

cies. A cross-platform smartphone application was also developed to disseminate the ana-

lyzed results to volunteers. Field tests of the direct amplification protocol using a portable

device (Gene-Z) showed the method could be used in the field to obtain results within one hr

(from sample to result). Overall, the direct amplification has the potential to simplify the

eDNA-based monitoring of multiple aquatic invasive species. Additional studies are
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warranted to establish quantitative correlation between eDNA copy number, veliger, bio-

mass or organismal abundance in the field.

Introduction

The use of environmental DNA (eDNA) for aquatic invasive species (AIS) detection has the

potential to increase the likelihood of early detection [1] and enhance the probability of suc-

cessful eradication [2]. Simplifying the analytical approach and decreasing the time-to-result is

a key first step in developing rapid, field-deployable nucleic acid- based eDNA detection meth-

ods. Direct amplification, i.e., amplification without DNA extraction or purification, satisfies

both these attributes. Elimination of DNA extraction and purification steps simplifies the pro-

cess and may avoid the need for sample transport [3,4]. For detection of invasive species at

very low abundance, sample concentration is often useful and necessary. However, sample

concentration may also lead to simultaneous concentration of substrates inhibitory to Taq

polymerases used in polymerase chain reaction (PCR)-based eDNA assays [5].

Isothermal amplification polymerases (such as Bst polymerase), have been found to be less

impacted by the PCR inhibitors [6–8]. Compared to Taq polymerases, they have been shown

to work significantly better even when crude lysates and whole cells are used as targets for

amplification [3]. The loop-mediated isothermal amplification (LAMP) technique is one such

isothermal approach (63˚C) that utilizes Bst polymerase. LAMP could be well-suited for

directly amplifying eDNA including cells, juveniles, eggs, or seeds, without extensive cell lysis

and has been shown to directly amplify relatively unprocessed biological material such as cells,

spores, and parasites [9–13]. Hence, direct isothermal amplification (i.e., amplification without

carrying out DNA extraction and purification), combined with simpler field-deployable con-

centration approaches for samples containing much lower abundance of target species, have

the potential to complement eDNA-based surveillance programs for invasive species [14].

To enhance the likelihood of detection, sample concentration (increasing the quantity of

DNA or particles per unit volume) must be performed for low population abundances and is

typically conducted ina laboratory either by filtration of 45 mL to 2 L water samples [15–18]

through membranes of 0.45 to 10 μm pore size filters followed by eDNA extraction [15,19] or

by eDNA precipitation [20]. Filtration is time consuming and often leads to filter clogging.

However, it is possible to filter large volumes which may be needed at very low abundances

[21,22] by using larger pore size (e.g., 10 to 60 μm [15]) filters and simultaneously collect

sloughed tissues, veligers, juveniles, and fecal matter. In fact, filtration of large volumes is rou-

tine using plankton net tows to collect and concentrate microscopic organisms [23].

Overall, invasive species surveillance programs are currently hampered by the number of

samples and the time required in getting them to the lab for processing. We hypothesize that

by concentrating these cells using larger pore size filters in combination with direct amplifica-

tion of eDNA in the field (both extracellular and present within these larger cells), we can

increase likelihood of detection by providing a rapid methodology that could eliminate the

need for complex sample processing. Furthermore, providing a laboratory-based confirmation

of results could increase sensitivity and enhance the likelihood of detection. In this study, a

direct eDNA amplification approach based on loop-mediated amplification was developed for

the rapid detection of Dreissena sp. in the field. This methodology is further confirmed by iso-

thermal amplification in the laboratory using eDNA extracted from 1 L samples. To test the

effectiveness of this method, a total of 318 surface water samples were collected and analyzed.

Direct isothermal amplification ofDreissena sp. environmental DNA (eDNA)
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The direct amplification protocol was also validated in a pilot experiment using a field-deploy-

able, real time isothermal amplification device (Gene-Z) to evaluate amplification from sam-

ple-to-result under field conditions. To our knowledge, this study represents the first attempt

of using a direct amplification approach for eDNA detection and has the potential for rapid

(under 90 min), field-based detection of invasive Dreissena sp.

Materials andmethods

Loop-mediated isothermal amplification forDreissena sp. detection

Loop-mediated isothermal amplification mixture consisted of 1X isothermal amplification

buffer (New England BioLabs; Ipswich, MA), 1.4 mM each dNTP (Invitrogen; Carlsbad, CA),

0.8 M Betaine solution (Sigma-Aldrich; St. Louis, MO), 6 mMMgSO4 (New England Biolabs;

Ipswich, MA), 6.4 U Bst Polymerase 2.0 WarmStart (New England Biolabs, Ipswich, MA),

1 μL primer mixture (described in the next section), 20 μM SYTO82 Orange Fluorescent

Nucleic Acid Stain (ThermoFisher Scientific; Waltham, MA), 2.8 μL DNA extract, and PCR-

grade water to a 10 μL total reaction volume [24]. Incubation for amplification was performed

using a Chromo4 real-time thermal cycler (BioRad; Hercules, CA) located in a separate room

(to eliminate contamination) using an isothermal protocol of incubation at 63˚C for 60 min

with fluorescence measured at one-minute intervals. Filtered pipets, sterile pipet tips, auto-

claved tubes, and PCR-grade sterile water were also used. Negative and positive controls (n = 3

each) were run concurrently to ensure reagent quality and absence of contamination. Negative

controls included PCR-grade water. Positive controls included DNA extracts containing D.

polymorpha cytochrome c oxidase (CO1) target DNA. To prevent ambient contamination of

amplicons after amplification, tubes were placed in zip lock bags and discarded in the separate

room without ever opening the tubes. Benchtops were sterilized with 70% ethanol daily and

10% bleach weekly.

Primer design for Dreissena sp.

Species-specific isothermal amplification primers were designed for the CO1 gene for D. poly-

morpha (Accession #: AF120663) and D. bugensis (Accession #: DQ840132; Table 1) using

sequences obtained from GenBank [25]. One genus-specific sequence was also developed for

Dreissena sp. using the 18S rRNA gene (Accession #: AF305702). Primer sets for each gene

included six primers: loop forward (LF), loop backward (LB), forward (F3), backward (B3),

forward inner primer (FIP), and backward inner primer (BIP). These were designed (Table 1)

as per LAMP primer design requirements [24,26,27] using Primer Explorer V4 software and

procured from Integrated DNA Technologies (Coralville, IA). The final primer mixture for

the LAMP reaction contained 16 μMFIP and BIP, 8 μM LF and LB, and 2 μMF3 and B3.

To establish analytical sensitivity, standard curves were prepared using 10X serial dilutions

of target DNA in the range of 10 to 100,000 copies per reaction (using synthesized sequences).

Species-specific LAMP assays were numerically evaluated using Basic Local Alignment Search

Tool (BLAST [28]). Briefly, each primer sequence that was entered in BLAST was compared to

sequences for mollusks and clams that are found in the same region (S1 File). Individual prim-

ers were evaluated for specificity by analyzing the following four BLAST parameters: max

score, % query coverage, E value, and % identity. Primers of non-target species that have

matching values to the target species are most likely to be non-specific. As LAMP utilizes 6

primers that target 8 regions, increased specificity to the target species is often observed as

compared to qPCR, which only utilizes 2 primers [29]. Specificity was also determined experi-

mentally by analyzing assays against related, non-target species.

Direct isothermal amplification ofDreissena sp. environmental DNA (eDNA)
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Validation of direct loop-mediated isothermal amplification ofD.
polymorpha and D. bugensis tissues and whole veligers

Amplification mixture for direct amplification followed the LAMP protocol described above

except that 2.8 μL of extracted DNA was replaced by the same volume of crudely lysed water

sample. For validation of the direct amplification procedure, samples of tissue from D. poly-

morpha and D. bugensis were obtained from organisms found at Muskegon Lake (Muskegon

Co., MI). Crude lysate was obtained by removing shells, crushing the entire remaining organ-

ism using a pestle, and vortexing for 1 min. Four mg of tissue (wet mass) was diluted with 1

mL of deionized water and serially diluted (10X; ranging from 1.12 μg to 1.12 ng), then 1 μL

was added directly to the amplification reaction, with three replicates per dilution. Standard

curves were generated for D. polymorpha and D. bugensis tissue mass using CO1 primers. This

experiment was repeated thrice to account for run-to-run variation and average standard

curves were generated for each (9 total replicates). Assay sensitivity was calculated based on

the amplification of 9 replicates. The probability of detection was calculated for each dilution

as the number of successful calls divided by the total number of replicates [30]. Best-fit straight

trend lines for each data set were fitted, and the corresponding equations were used to deter-

mine the mass of target tissue. Using these standard curves, the mass present in each reaction

was estimated for environmental samples, by comparing to the time to positivity (TTP)

obtained.

To further validate the performance of direct amplification at much lower concentrations

of mostly veligers and tissues, field samples were collected from Klinger Lake (St. Joseph Co.,

MI) using a plankton tow net (Wildco; Yulee, FL). Approximately 500 L of lake water was con-

centrated to a final volume of 500 mL and immediately transported to the laboratory for fur-

ther analysis. The number of D. polymorpha veligers per mL of filtrate was counted under a

Table 1. List of LAMP primers used in this study.

Species/Gene Accession
Number

Primer Sequence (5’– 3’)

Dreissena sp./ 18S rRNA AF305702 FIP TGA AAG ATA CGT CGC CGG CGA ACT CGT GGT GAC TCT GGA C
BIP TGC CTA CCA TGG TGA TAA CGG GTG TCT CAT GCT CCC TCT CC
LF GTG CGA TCG GCA CAA AGT T
LB TAA CGG GGA ATC AGG GTT CG
F3 GTT AGC CCA GAC CAA CGC
B3 CTT CCT TGG ATG TGG TAG CC

Dreissena polymorpha/ cytochrome c oxidase
(COI)

AF120663 FIP AGA GAC AGG TAA AAC CCA AAA ACT AAT TGA TTG GTA CCA ATA ATA
CTG AG

BIP ATT TTG TTC AGC TTT TAG GGA AGG AAA AAT CTA TCG CAG GGC C
LF CGA GGG AAA CCT ATA TCA GGA AGA
LB GGA TTC GGG GGT GGT TGA ACC
F3 TAA TGG GGG GAT TCG GAA
B3 GCT CCC CCA ATA TGA AGA G

Dreissena bugensis/ cytochrome c oxidase (COI) DQ840132 FIP AAG AAG CTC CAC CGA TAT GAA GAG CCA CCG TTA TCC AGG ATT
BIP AGA ACA TGA GGA AAT ATA CGT GCC CAC CAA TAG AAG TAC AAA ACA

AAG
LF ATG GCT GGC CCT GAA TGC C
LB GGG TGT CAT CAG TTT TAT CGG GT
F3 ATT TGG TGG GGG TTG AAC
B3 GGC TAA AAC AGG TAT TGC TAA

https://doi.org/10.1371/journal.pone.0186462.t001
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microscope using a Sedgewick-Rafter counting cell (Wildco; Yulee, FL). Three serial dilutions

of veligers were prepared in quadruplicate (0.09, 0.009, and 0.0009 veligers per μL) and sub-

jected to: i) heat treatment at 95˚C for 3 min, ii) pestle crushing, iii) heat treatment at 95˚C for

3 min followed by pestle crushing, and iv) no treatment. Veligers were directly amplified with-

out employing any DNA extraction procedure using D. polymorpha CO1 primers.

Collection, processing, and analysis of surface water samples

Surface water samples were collected (a total of 318 samples; Fig 1) from lakes and streams

located in Michigan and northern Wisconsin with assistance from over 100 volunteers (see

Acknowledgements). Sampling kits provided to volunteers included: i) a filter funnel made by

Fig 1. Location of 318 lake samples collected between November 2013 and August 2015.

https://doi.org/10.1371/journal.pone.0186462.g001

Direct isothermal amplification ofDreissena sp. environmental DNA (eDNA)

PLOSONE | https://doi.org/10.1371/journal.pone.0186462 October 16, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0186462.g001
https://doi.org/10.1371/journal.pone.0186462


attaching a 35 μmmesh filter to a modified 1 L bottle with 35 μmmesh netting (Wildco, Yulee,

FL), ii) conical tubes (50 mL), iii) a 1 L bottle for collection of grab water samples, and iv)

instructions. Two sample types (a field-concentrated sample and an unconcentrated sample)

were collected and sent to the laboratory for analysis.

The field- concentrated samples (n = 318) were obtained using a filter funnel with 35 μm

mesh netting to achieve a 1000-fold concentration (20 L to 20 mL). Volunteers dipped the fil-

ter-funnel in the surface water 20 times to achieve concentration of 20 L. Following filtration,

the 35 μmmesh filter and particulates were added to a conical tube containing 20 mL of the

same surface water. Samples were then frozen (-20˚C) immediately by volunteers for at least

12 h, then shipped to the laboratory via overnight shipping. Upon receipt samples were crudely

lysed using a pestle, heated to 95˚C for 3 min, and then promptly stored at -20˚C until analysis

to reduce chances for eDNA degradation [31].

To validate this sample concentration approach, samples were collected from two sites; one

with a high population of D. polymorpha and another with a low population. At each location,

two water samples were collected including an unfiltered water and concentrated water from

the filter funnel (for 1000-fold concentration of AIS eDNA). To capture a high population

abundance scenario (where there is a known infestation with peak reproduction seasons), sam-

ples were collected from Klinger Lake (St. Joseph Co., MI) in mid-June when high population

densities have been previously observed.

To test how crucial the date/time of year of sample collection was for sensitivity, a

selection of collected samples was obtained from the same location, but at multiple time

points during the year. Concentrated samples (from 20 L to 20 mL) were collected from

selected Michigan inland lakes including Klinger Lake (St. Joseph Co., MI), Au Train Lake

(Alger Co., MI), Antoine Lake (Dickinson Co., MI), and Higgins Lake (Roscommon Co.,

MI).

A total of 174, 1 L grab un-concentrated surface water samples were also collected by volun-

teers to compare extracted DNA results with direct amplification. These were collected first by

volunteers to ensure no contamination by the field- concentrated samples and also frozen

immediately for at least 12 h before shipping overnight to the laboratory. Once received, sur-

face water was filtered through 0.45 μm pore size filters (Millipore; Billerica, MA). DNA was

then extracted using PowerWater DNA Isolation Kit (MoBio; Carlsbad, CA) following manu-

facturer’s protocols. Total DNA was quantified using Qubit 2.0 fluorometer with the Qubit

dsDNA HS Assay Kit (ThermoFisher Scientific; Waltham, MA).

Volunteer training

A smartphone application, termed “eDNA” was developed to train volunteers in sample collec-

tion and disseminate results. A video detailing the sample collection protocol was included as

part of the application. In the documentation provided with the sample collection kit, particu-

lar emphasis was placed on sample handling and prevention of sample cross-contamination.

Though equipment was pre-sterilized, volunteers were instructed to avoid sample to sample

contamination and wash equipment thoroughly with a 10% bleach solution if contamination

is suspected. Furthermore, samples collected at the beginning of this study by volunteers we

collected in parallel with scientists to ensure similar results. The protocols provided empha-

sized that the sterilized sample collection bottles must only be opened once at the sampling

location. To prevent DNA degradation within the collected sample, samples were frozen at

-20˚C within 4 h. Samples were then stored for at least 12 h until shipping to the laboratory for

further processing and analysis. Samples were sent to the laboratory via overnight shipping

and were typically still frozen upon arrival.

Direct isothermal amplification ofDreissena sp. environmental DNA (eDNA)
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Pilot tests using Gene-Z for rapid, field-based Dreissena sp. detection

Field tests of a portable gene analyzer (Gene-Z) were conducted at two locations: Klinger Lake

(St. Joseph Co., MI) in June 2014 and Muskegon Lake (Muskegon Co., MI) in August 2015.

Briefly, Gene-Z is a battery-operated, handheld gene analyzer that utilizes isothermal amplifi-

cation and microfluidic cards capable of analyzing 64 isothermal reactions simultaneously

[32]. The disposable cards are manufactured as previously described using a 40 W CO2 laser

[7] and prior to field use, primer sets were dispensed into the reaction wells of each chip,

dried, and stored at -20˚C. At Klinger Lake, water samples were first collected using a hand fil-

ter and concentrated 1000-fold (from 20 L to 20 mL). At Muskegon Lake, water samples were

collected without concentration step. Samples were then pipetted into a microfluidic chip

which automatically distributes the samples into 64-wells using an airlock mechanism [3],

then sealed with an optically transparent tape and inserted into Gene-Z device. The device was

operated at an isothermal temperature of 63˚C, with fluorescence measured every 15 seconds

for each well. Fluorescence signals were tracked using an iPod touch, which also operated the

device. Upon completion of the run, data was emailed from the iPod touch to a PC for further

analysis in Excel.

Data and statistical analysis

In all experiments, the following statistical analysis process was used. First, using raw fluores-

cence data, signal to noise ratio (SNR) at time t was calculated as the raw fluorescence minus

the median background divided by the standard deviation of the average background signal.

The TTP (the time at which the reaction is first positive) was calculated as the time when SNR

crossed a threshold of ten [6]. All amplification reactions were performed in triplicate or

higher. Based on positive amplification at the lowest copy numbers (1 target copy per well), a

TTP of 50 min was selected as a cut-off for positive amplification. As stated earlier, the lower

limit of detection for the assays was defined as the copy number at which at least 2 out of 3 rep-

licates were positive [7]. The limit of quantification required at 3 out of 3 replicates (or a 95%

detection level as is recommended [33]) to establish a standard deviation. Environmental sam-

ples were considered positive for the target of interest if positive signals were observed in at

least two of the replicates [7] but were not used for quantification. A student’s t-test was used

to determine significant differences between two means using n-1 degrees of freedom and cut-

off p-values of 0.05.

Results and discussion

Primer validation for analytical sensitivity and specificity with synthetic
target gene DNA and extracted genomic DNA

From amplification reactions conducted with a dilution series of synthesized targets, the ana-

lytical sensitivity of the developed D. polymorpha and D. bugensis CO1 assays were calculated

as 10,000 and 1,000 copies of target per reaction, respectively. For the 18S rRNA gene assay,

the detection limit was 100 copies per reaction. In general, the primer set designed for the 18S

rRNA gene was more sensitive than those designed for mitochondrial genes. Based on the

known ideal LAMP primer parameters, this increased sensitivity for the primer set can, in

part, be attributed to higher GC content [26] than the AT-rich CO1 genes. The mitochondrial

CO1 genes have been reported to be more specific to the organism of interest, however,

with more variability between species than other genes, making it ideally suited for eDNA

detection [34,35]. These sensitivities were comparable with other studies [30,36]. It has also

Direct isothermal amplification ofDreissena sp. environmental DNA (eDNA)
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been suggested that more copies of mitochondrial genes are present in cells than other genes

[37], which may allow primers that target CO1 to overcome GC content limitations.

In specificity assays using extracted genomic DNA from the two closely related Dreissena

sp. and other mussels expected in MI lake waters, the primers specific to D. polymorpha only

amplified D. polymorpha extracted DNA (TTP = 13 ± 0 min.; Fig 2A). Similarly, the primers

designed to be specific to D. bugensis CO1 gene only gave amplification product only from

D. bugensis extracted DNA (TTP = 14.3 ± 2.3 min.; Fig 2B). Primers for Dreissena sp. 18S

rRNA gene successfully amplified DNA from both D. polymorpha and D. bugensis. Species-

specific Dreissena sp. CO1 primers were also determined to be specific when tested experimen-

tally against Sphaerium sp., Viviparus sp., and Corbicula fluminea (S1 Fig).

Validation of primers for direct amplification from tissues and veligers

Using a dilution series prepared in the range of 0.1 ng/μL to 10 μg/μL of ground D. polymorpha

and D. bugensis tissue samples, the sensitivity of the direct amplification of tissue was obtained.

The detection limit was 0.01 μg tissue per reaction for the D. polymorpha CO1 gene assay,

0.001 μg tissue per reaction for the D. bugensis CO1 gene assay, and 0.0001 μg tissue per reac-

tion for Dreissena sp. 18S rRNA gene assay (Table 2a). For field applicability, the likelihood of

detection at a given tissue concentration was also calculated based on the number of positive

reactions per set of 9 replicates (3 replicates each across 3 separate runs). For D. polymorpha

CO1 primer sets, the likelihood of detection at 0.112 μg per reaction was 0.89 with 8 of the

nine replicates yielding positive amplification. At 0.0112 μg per reaction and below none of the

replicates amplified indicating that the likelihood of detection was close to zero. For D. bugen-

sis likelihood of detection at 0.112 μg per reaction was 0.56 with 5 out of 9 replicates yielding

positive results, and at 0.0112 μg per reaction, it was 0.375 with 3 out of 9 replicates with posi-

tive amplification. As this is first work investigating direct amplification of biomass for eDNA

detection, we were not able to directly compare biomass sensitivities (0.000112–0.0112 μg tis-

sue per reaction and 0.0009 veligers per reaction) to other studies, though other studies have

Fig 2. Specificity of assays validated withD. polymorpha andD. bugensis.D. polymorphaCO1 primers resulted in positive amplification only
whenD. polymorpha genomic DNA was present (A). SimilarlyD. bugensis CO1 primers gave amplification product only whenD. bugensis genomic
DNA was present (B).

https://doi.org/10.1371/journal.pone.0186462.g002
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linked eDNA results to organismal biomass [38]. It is possible that a small amount of extracel-

lular DNAmay also be detected, though DNA size is much smaller than 35 μm and thus may

not be concentrated by this approach.

Although, the whole genome information for D. polymorpha is still evolving, estimates are

in the range of 1.7 pg per genome [39]. The total number of genes present in D. polymorpha

(or other less studied mussels) is not yet fully assessed but studies related to D. polymorpha

transcriptomics are emerging [40]. Based on the information gathered about genomes size and

an assumption of 10,000 genes per 1.7 pg of DNA and a DNA: tissue weight ratio of 0.1%, the

lower limit of detection was approximately 104 gene copies per reaction for D. polymorpha at

0.112 μg tissue per reaction for CO1 gene. Further dilutions will of course lead to ~1 gene copy

per reaction which will not always be present in each reaction well.

Direct amplification was also evaluated for D. polymorpha veligers in samples collected

from Klinger Lake (St. Joseph Co., MI). Amplification was successful for as low as 0.09 veligers

in the concentrated sample per reaction (TTP = 39.67 ± 1.53 min; Table 2b), without any sam-

ple processing. For 0.009 veligers per reaction, only one of the three replicates was positive and

at 0.0009 veligers per reaction, no amplification was observed. Heat treatment enhanced the

limit of detection with three of six replicates amplifying (six replicates included three for the

mixed samples and three for non-mixed samples) for 0.0009 veligers per reaction. Heat treat-

ment also improved the likelihood of detection, particularly at 0.009 veligers per reaction. All

three replicates were positive, as opposed to only one of three successfully amplifying for the

non-heat-treated group. In general, differences between the heat-treated and control groups

were statistically significant (p = 0.0019). The effect of cell crushing using a pestle was not sta-

tistically significant (p = 0.065).

Validation of filtration approach for sample concentration in the field

To validate the filtration approach for sample concentration, results from concentrated sam-

ples were compared with un-concentrated surface water. At high abundances (samples

collected at Klinger Lake in St. Joseph Co., MI in June) positive results were obtained from

both sample types, suggesting that with large population abundances no sample concentra-

tion is required (concentrated sample TTP = 22.3 ± 3.2 min and un-concentrated sample

TTP = 23.3 ± 1.53 min; Fig 3). Similarities in TTPs obtained can be attributed to the plateau

in decreasing TTP observed in the standard curves of organismal biomass (Table 2a). For

the lower population density case (where there is a known population but outside of repro-

duction peak season), samples were collected from Lake Lansing (Ingham Co., MI) in

mid-November when veliger and tissue abundances are low. After concentrating the water

sample by 1000-fold with the hand filter, positive amplification (concentrated sample

TTP = 32.0 ± 3.0 min) was seen in all replicates. Without the concentration step, no amplifi-

cation was observed in 60 min.

Direct amplification of filtered surface water samples

In general, detection of D. polymorpha was significantly widespread, with 27 positive detec-

tions throughout the state (Fig 4; S2 File). D. bugensis was only detected in 3 out of the 318

samples (Fig 4). A total of 168 out of 318 samples were also analyzed for Dreissena sp. and 59

samples were found positive. Increased observance of Dreissena sp. may be due to higher ana-

lytical sensitivity of the 18S rRNA gene primers compared to the species-specific primers.

Based on the results from the tissue mass presented in the above section, standard curves

were generated for use in quantification of mass from field data using linear trendlines. While

this is the first use of these standard curves for estimation of quantification of AIS tissue mass
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Table 2. Results obtained for different sample types including:Dreissena polymorpha tissues,Dreissena bugensis tissues,D. polymorpha veli-
gers, 1000X concentrated water, and un-concentrated water. Information for each sample includes the location, the month and year of sample collection,
sample processing, primers used, estimated target per reaction, and measured TTP.

Sample Type Location Month, Year
Collected

Sample
Processing

Primers Target/
Reaction

Av. TTP ± SD

a. Direct amplification of Dreissena tissues

Tissue (Dreissena sp.) Muskegon Lake (Muskegon
Co., MI)

July, 2015 Heat Treatment* Dreissena sp. 18S
rRNA

11.12 μg 19.67 ± 0.71
1.12 μg 20.78 ± 0.44
0.112 μg 20.11 ± 1.05
0.0112 μg 22.56 ± 2.55
0.00112 μg 28.33 ± 7.70
0.000112 μg 35.83 ± 10.13

Tissue (Dreissena
polymorpha)

Muskegon Lake (Muskegon
Co., MI)

July, 2015 Heat Treatment* Dreissena
polymorpha CO1

1111.2 μg 22.00 ± 0.00
111.12 μg 22.67 ± 2.08
11.12 μg 24.22 ± 2.64
1.12 μg 26.00 ± 2.55
0.112 μg 31.00 ± 4.32

Tissue (Dreissena
bugensis)

Muskegon Lake (Muskegon
Co., MI)

July, 2015 Heat Treatment* Dreissena bugensis
CO1

11.12 μg 27.13 ± 5.41
1.12 μg 31.13 ± 5.14
0.112 μg 40.20 ± 9.78
0.0112 μg 41.00 ± 3.46

b. Direct amplification of Dreissena polymorpha veligers

Veligers (Dreissena
polymorpha)

Klinger Lake (St. Joseph
Co., MI)

June, 2014 Heat Treatment* Dreissena
polymorpha CO1

0.09 veligers 33.67 ± 1.15
0.009 veligers 32.33 ± 5.69
0.0009 veligers 50.00a ± N/A

None 0.09 veligers 39.67 ± 1.53
0.009 veligers 43.00 a ± N/A
0.0009 veligers ND**

c. Effect of sample collection date on results

Lake water concentrate
(1000X)

Klinger Lake (St. Joseph
Co., MI)

Oct., 2013 Heat Treatment* Dreissena
polymorpha CO1

N/A ND**

May, 2014 ND**

June, 2014 28.67 ± 6.35
Lake water concentrate
(1000X)

Au Train Lake (Alger Co.,
MI)

Nov., 2013 Heat Treatment* Dreissena
polymorpha CO1

N/A ND**

July, 2014 29.67 ± 1.53
Aug., 2014 ND**

Lake water concentrate
(1000X)

Antoine Lake (Dickinson
Co., MI)

Nov., 2013 Heat Treatment* Dreissena
polymorpha CO1

N/A ND**

Nov., 2014 22.67 ± 1.15
Lake water concentrate
(1000X)

Higgins Lake (Roscommon
Co., MI)

Oct., 2013 Heat Treatment* Dreissena
polymorpha CO1

N/A ND**

July, 2014 32 ± 0.00
Lake water concentrate
(1000X)

Gun Lake (Barry Co., MI) Sept., 2013 Heat Treatment* Dreissena
polymorpha CO1

N/A ND**

Oct., 2013 ND**

May, 2014 42.0 ± 5.20
Aug., 2014 ND**

June, 2015 32.0 ± 0.00

aOnly 2 of 3 replicates amplified.

*Heat Treatment = 95˚C for 3 min.

**ND = Not Detected

https://doi.org/10.1371/journal.pone.0186462.t002
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from field data for direct amplification, it is commonplace for quantification of DNA from Ct

values obtained with qPCR [41,42] and has also been presented with LAMP for quantification

of cells [43]. For D. bugensis CO1 gene primers, the equation used was y = −2.02 ln(x) +

32.571, where x is the mass and y is the TTP obtained. Similarly, for D. polymorpha CO1 and

Dreissena sp. 18S rRNA, equations were y = −1.474 ln(x) +27.238 and y = −1.315 ln(x) +20.151,

respectively. Theoretical mass at each location was also calculated based on the earlier pre-

sented linear trendline equations for tissue mass for D. polymorpha CO1, Dreissena sp. 18S

rRNA and D. bugensis CO1. A visual representation of the mass values at each sampling loca-

tion are also shown in Fig 4.

To obtain efficacy information about these results, known D. polymorpha infestation infor-

mation was obtained from the United States Geological Survey (USGS) online database [44].

Of the total positive detections obtained from samples collected in the sampling period (May

2014 to August 2014 and May 2015 to August 2015; 171 out of 318 samples), 65.4% of which

corresponded with reported infestations. For 15.4% of the total samples, previous D. polymor-

pha infestations were reported but not detected by the eDNA protocol, suggesting future stud-

ies could focus on the improvement of the detection limit or variability due to sampling

locations.

Fig 3. Direct amplification results for sample collection strategies including 1000X concentration (20 L hand-filtered to
20mL) and un-concentrated water, at high initial population abundances (circles; open for concentrated and closed for
un-concentrated) and low initial population abundances (triangles; open for concentrated and closed for un-
concentrated). At high abundance, no change in TTP was observed between 1000X concentration and water-only. At low
abundance, positive results were observed only after 1000X concentration.

https://doi.org/10.1371/journal.pone.0186462.g003
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For most lakes, direct amplification of was positive from approximately May to August dur-

ing a given year. Time to positivity values obtained from the same locations by date is shown

in Table 2c, using primers for D. polymorpha CO1. This may correspond with reproduction

for D. polymorpha, which occurs when water temperatures exceed 12˚C and would suggest

that the number of veligers in the water column is much higher [45]. It also further confirms

that the persistence of eDNA in the environment is important [46–48]. In the summer months,

there is a potential for mixing from recreational activities which is at its peak [49]. Summer

months are also the recommended time for completing D. polymorpha veliger surveys as well

Fig 4. Results from direct amplification of environmental samples.Mass estimates forD. polymorphaCO1 (blue
circles),D. bugensisCO1 (red triangles), andDreissena sp. 18S rRNA (black squares). Larger shapes correspond to a
high concentration tissue detected.

https://doi.org/10.1371/journal.pone.0186462.g004
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as other eDNA analysis methods [50]. This suggests that the implementation of the direct

amplification method could complement these other approaches as they could be completed at

similar times of the year. However, lakes (especially deep lakes) are typically stratified during

warmer temperatures [51], which may complicate sample collection as there would not be

complete mixing throughout the waterbody.

Of the 174 unconcentrated samples that were sent to the laboratory for DNA extraction

and amplification analyzed and compared to their corresponding direct amplification sample,

11 were positive for D. polymorpha CO1 by both methods (Fig 5). A total of 5 positive results

were obtained with direct amplification of filtrate samples and not with amplification of

extracted DNA. A total 12 positive results were obtained with amplification of extracted DNA

and not with direct amplification of filtrate.

Fig 5. Comparison of results between the field-concentrated samples with direct amplification and the unconcentrated samples with DNA
extraction and amplification. This 1:1 plot shows amplification results of the field-concentrated samples with direct amplification as compared to the
results of 1 L unconcentrated samples following DNA extraction. Points along the y-axis only amplified with the field-concentrated samples and direct
amplification while those along the x-axis only amplified with the unconcentrated method. Points in the center correspond to positive detections using
both methods.

https://doi.org/10.1371/journal.pone.0186462.g005
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Results from pilot tests of Gene-Z for field-based detection ofDreissena
sp.

In a pilot scale test at Klinger Lake (St. Joseph, MI) of a field-deployable device (Gene-Z)

concentrated lake water was collected using the field-concentration approach. Once the filtrate

was collected and crudely lysed as mentioned in the methods section, it was dispensed into

the microfluidic cards and the card was sealed with optical film. Analyzing the concentrated

lake water resulted in positive results for D. polymorpha using primers for the CO1 gene

(TTP = 33.3 ± 3.8 min). When testing the un-concentrated water directly at Muskegon Lake

(Muskegon, MI), positive detections were observed for Dreissena sp. (18S rRNA gene;

TTP = 42.76 ± 8.8 min).

Conclusions

The results obtained in this study through the collection and analysis of 318 samples supports

that direct amplification may be useful for field monitoring of aquatic invasive species. While

this is not the first study to analyze large numbers of samples for eDNA from aquatic invasive

species [52] including Dreissena sp. [53], it is the first of its kind to analyze large numbers of

samples for Dreissena sp. using LAMP. This highlights the advantages of a direct amplifica-

tion-based eDNA approach, in that large numbers of samples are easily analyzed for dozens of

species in a short time. Furthermore, through the laboratory-based confirmation of 1 L grab

water samples, processed via filtration through a 0.45 μm filter following by DNA extraction,

the likelihood of obtaining a positive result is significantly increased. The findings presented

here show that extraction of DNA followed by LAMP may be slightly more sensitive than

direct amplification and this is supported by the fold concentration of water that occurs with

each (20 L– 20 mL for direct amplification; 1000-fold vs. 1 L– 50 μL for amplification following

extraction; ~10,000 fold). The combination of both field-based direct amplification for rapid

detection on- location combined with further laboratory confirmation would give more power

to results obtained by increasing likelihood of detection overall, but also allowing rapid

responses should positive results be obtained in the field.

Experiments conducted as part of this study show that the developed concentration tech-

nique and direct isothermal amplification combined with a field-deployable device could be

used as a rapid warning tool to detect invasive species, with a total time required (from filtra-

tion to results) of about 90 min. When sample concentration is not needed due to high abun-

dances, less than 30 min may be sufficient. By increasing the efficiency of AIS screening, often

spread over a larger geographic area, it allows for more samples to be analyzed and thus

enhances the likelihood of detection if a species is present. Appropriate location for such sam-

ples must obviously be decided based on field data. Moreover, the inclusion of volunteers

reduces travel requirements and helps to educate and involve the public. Taken together, the

procedure and programs developed here provide a useful tool for AIS detection. Data pre-

sented here describe the performance of an approach and platform for basin-wide surveillance

using primers for Dreissena sp. Future studies should optimize the particulate concentration

protocol for detection of other species (invasive or native), such as plant seeds.

Supporting information

S1 Fig. Results from the experimental specificity analysis.

(TIF)

S1 File. Results from the theoretical specificity analysis as conducted using BLAST. Indi-

vidual primers were evaluated for specificity by analyzing max score, % query coverage,
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E value, and % identity.

(XLSX)

S2 File. Direct amplification results. An excel datasheet is included with the results from

direct amplification of all environmental samples.

(XLSX)
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