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Abstract. This article is devoted to the reformulation of an isothermal version of the quantum
hydrodynamic model (QHD) derived by Degond and Ringhofer in J. Stat. Phys. 112 (2003), 587–
628 (which will be referred to as the quantum Euler system). We write the model under a simpler
(differential) way. The derivation is based on an appropriate use of commutators. Starting from the
quantum Liouville equation, the system of moments is closed by a density operator which minimizes
the quantum free energy. Some properties of the model are then exhibited and most of them rely on
a gauge invariance property of the system. Several simplifications of the model are also written for
the special case of irrotational flows. The second part of the paper is devoted to a formal analysis
of the asymptotic behavior of the quantum Euler system in three situations: at the semiclassical
limit, at the zero-temperature limit and at a diffusive limit. The remarkable fact is that in each
case we recover a known model: respectively the isothermal Euler system, the Madelung equations
and the entropic quantum drift-diffusion model. Finally, we give in the third part some preliminary
numerical simulations.
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1. Introduction. Various works have been devoted in the past decade to the
derivation of quantum hydrodynamic models for semiconductors in order to simulate
nanoscale devices such as tunneling diodes or lasers. The interest in such models
comes from the fact that they are supposed to describe quantum transport in highly
collisional situations and to be computationally less expensive than corresponding
quantum microscopic models, such as the Schrödinger equation or the Wigner equa-
tion [1, 6, 23, 24, 25]. It is known since Madelung [22] that the Schrödinger equation
can be reformulated in a fluid dynamic way. Indeed, using WKB wave functions
ψ =

√
neiS/~ enables us to obtain a system on the density n(t, x) and the velocity

u = ∇S(t, x) which is formally equivalent to the Schrödinger equation and takes the
form of a pressureless Euler system, with an additional term involving the so-called
Bohm potential proportional to ∆(

√
n)/

√
n (see (3.6), (3.7)). Unfortunately, this

approach is essentially devoted to pure-state quantum mechanics, since it is difficult
to adapt it in order to take into account many-body effects and statistical mechan-
ics. In this sense, one can say that the Madelung equations are the zero-temperature
quantum hydrodynamic equations.

To design quantum hydrodynamic models with temperature effects, the route
which has been usually followed consists in incorporating to classical fluid models
some “quantum” correction terms, based on the Bohm potential [13, 14, 15, 16, 17, 19].
However, such approaches are not obvious to justify from physical principles. More-
over, quantum corrections involving the Bohm potential produce high order terms in
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these systems and make their resolution difficult, from the mathematical and numer-
ical points of view.

In 2003, Degond and Ringhofer [11] proposed a different manner to derive quan-
tum hydrodynamic models, by closing the systems of moments thanks to a quantum
entropy minimisation principle. This systematic approach, which is an extension of
Levermore’s moment method [21] to the framework of quantum mechanics, seems
very fruitful, although it is still formal. Following this first paper, an entropic quan-
tum drift-diffusion model has been derived in [10] and after reformulation thanks to
elementary algebra in [9], it has been possible to go further in its analysis and to
discretize it numerically in [12]. Numerical comparisons of this model with exist-
ing quantum transport models in [8] showed that it is a good candidate model for
quantum device simulations in diffusive regimes.

Here, we are interested in the hydrodynamic regime with a quantum Euler sys-
tem, which is nothing but an isothermal version of the quantum hydrodynamic model
derived in [11]. Let us shortly present this model (more detail can be found in Sec-
tion 2, where the derivation of this system is revisited). From the Wigner equation,
integrations with respect to the momentum variable p ∈ Rd (d being the dimension
of the momentum space, d = 3 in this paper) enable to obtain equations for the first
two moments n(t, x) (the mass density) and n(t, x)u(t, x) (the current density), both
densities being functions of the space variable x ∈ R3 and the time variable t ∈ R:

∂tn + div(nu) = 0,(1.1)
∂t(nu) + div(nu⊗ u + P) + n∇V = 0,(1.2)

where V denotes an applied potential. Of course, this system of equations is not
closed, since the pressure tensor P is still expressed in terms of the microscopic Wigner
function f(t, x, p):

P =
∫

Rd

(p− u)(p− u) f(t, x, p)
dp

(2π~)d
,(1.3)

where ~ is the dimensionless Planck constant. The quantum Euler model is thus
complete only as soon as the closure assumption is made precise. We close the system
by replacing the expression (1.3) of P by another one in terms of n and nu:

P =
∫

Rd

(p− u)(p− u) feq
n,nu

dp

(2π~)d
,(1.4)

where feq
n,nu is the so-called local equilibrium, depending only on n and nu in a non

local (and non explicit) way. It is precisely defined in Section 2 as follows: feq
n,nu =

W [%eq
n,nu], where W is the Wigner transform and %eq

n,nu is the local equilibium density
operator obtained thanks to an entropy minimization principle. TheWigner transform
W and the equilibium density operator %eq

n,nu will be precisely defined in the next
section.

Needless to say, presented in this manner, this quantum Euler model (1.1), (1.2),
(1.4) is rather involved and not easy to handle numerically. The aim of this paper is
triple. First, as it was done for the entropic quantum drift-diffusion model in [9], we
reformulate (in Section 2) this system in a simpler (differential) and more tractable
way, and we prove directly a few properties of this model. Note that, to do this, we
rederive the model thanks to the entropy minimization principle without using the
Wigner formalism, which has in itself an interest since this approach is easily adaptable
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to systems set on bounded domains (subject to adequate boundary conditions). We
also show some properties of the model, which, for most of them, rely on a gauge
invariance property of the system and we write several simplifications of the model
for the special case of irrotational flows.

Second, we investigate in Section 3 several asymptotic limits for this model,
which enable us to make some links with other models: the isothermal Euler sys-
tem at the semiclassical limit in section 3.1 (during this asymptotics, we also recover
a model obtained by Jüngel and Matthes in [20]), the Madelung equations at the zero-
temperature limit (section 3.2) and the entropic quantum drift-diffusion model of [10]
at the diffusive limit (section 3.3). Note also that, in this section 3.3, we consider the
quantum Euler model with a relaxation term and suggest that this additional term
drives the system to global quantum equilibria.

Third, we present as preliminary results in section 4 some numerical simulations
to illustrate the model on a simple device. A future article will be devoted to the
study of the numerical scheme employed here and comparisons with other models will
be performed.

The main results of this paper are thus Theorem 2.5, reformulating the quantum
Euler system, Proposition 2.8, dealing with the special case of irrotational flows,
and Theorems 3.3, 3.5, 3.8 and 3.9 dealing with its asymptotic approximations. We
wish to precise that the arguments presented in this article are formal. A precise
mathematical framework in which this analysis could be made rigorous is still to be
found.

We finish this introduction by giving some possible applications of the Quantum
Euler model. We first have in mind the semiconductor industry where engineers
have first introduced Hydrodynamics models with ~2 quantum corrections in order to
simulate nanoscale devices. One nanoscale device of interest is the so-called Resonant
Tunneling Diode [4]. The use of these models have permitted to exhibit interesting
features of RTD such as negative resistance or hysteresis [5, 18]. The Quantum Euler
model could be also used in quantum chemistry [3], or other areas of physics such as
quantum optics, the study of superfluidity, etc...

2. Derivation of the model and main properties. In this section, we recall
how the strategy of Degond and Ringhofer [11] enables to derive a closed system of
moment equations with a constant temperature. The key ingredient is a free energy
(instead of an entropy) minimization principle. It gives rise to the notion of local
equilibrium microscopic state which is chosen in order to close the system of moments.
This argument is shortly presented in subsection 2.2 and in the beginning of subsection
2.3. The quantum Euler system is then rewritten under a simplified form in Theorem
2.5, which gathers the main new result of this section.

2.1. Notations. By a density operator, we shall always mean a positive, Her-
mitian, trace-class operator acting on L2(R3). Let us define the first moments of a
density operator %, i.e. the mass density n and the current density nu, by duality,
considering scalar test functions φ and vector ones Φ. We set

∀φ ∈ C∞0 (R3)
∫

nφ dx = Tr{%φ},(2.1)

∀Φ ∈ C∞0 (R3)3
∫

nu·Φ dx = Tr
{
%W−1[p · Φ]

}
= −i~Tr

{
%

(
Φ · ∇+

1
2
(divΦ)

)}

(2.2)
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(in the right-hand sides, φ, Φ and divΦ are the multiplication operators). Note that
an immediate consequence of (2.1) and (2.2) is the following property which will be
useful later:

∀Φ − i

~
Tr{%(Φ · ∇)} =

∫
nu · Φ dx +

i~
2

∫
n divΦ dx.(2.3)

In (2.2), W−1 denote the inverse Wigner transform (or Weyl quantization). For
the sake of completeness, let us recall the definition of the Wigner transform and
the inverse Wigner transform. The Wigner transform maps operators on L2(R3) to
symbols, i.e. L2(R3×R3) functions of the classical position and momentum variables
(x, p) ∈ R3 × R3. More precisely, one defines the integral kernel of the operator % to
be the distribution %(x, x′) such that % operates on any function ψ(x) ∈ L2(R3) as
follows:

%ψ(x) =
∫

%(x, x′)ψ(x′)dx′.

Then, the Wigner transform W [%](x, p) is defined by:

W [%](x, p) =
∫

%

(
x− 1

2
η, x +

1
2
η

)
e

iη·p
~ dη.(2.4)

The Wigner transform can be inverted and its inverse is defined for any function
f(x, p) as the operator acting on ψ(x) ∈ L2(R3) as:

W−1[f ]ψ(x) = (2π~)−3

∫
f

(
x + y

2
, p

)
ψ(y)e

ip(x−y)
~ dp dy.(2.5)

We end this section by expressing a few commutator identities that are used in
the sequel of this article. Let φ(x), ψ(x), Φ(x), Ψ(x) be test functions (the capital
letters are used for vector functions while the lower case letters are used for scalar
ones). Then, the following equalities hold:

[φ, ψ] = 0,(2.6)
[φ, Ψ · ∇] = −Ψ · ∇φ,(2.7)

[Φ · ∇, Ψ · ∇] = ((Φ · ∇)Ψ− (Ψ · ∇)Φ) · ∇,(2.8)
[φ, ∆] = −∆φ− 2∇φ · ∇.(2.9)

We also recall the cyclicity of the trace, where a, b, c are three operators:

Tr{[a, b]c} = Tr{[c, a]b} = Tr{[b, c]a}.

2.2. Local equilibria via entropy minimization. Let s be a strictly convex
continuously differentiable function on R+. We define the quantum entropy by:

S(%) = Tr{s(%)}.(2.10)

We intend to describe the effect of the interaction of a quantum system, subject to a
potential V , with a thermal bath at temperature T . To this aim, it is convenient to
introduce the quantum free energy defined by:

G(%) = TS(%) + E(%) = Tr {Ts(%) +H%} .(2.11)
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where H = −~22 ∆ + V is the Hamiltonian.
The main assumption concerning the interaction between the system and the

thermal bath is that the first two moments n and nu are conserved during these
interactions. According to this statement, we now claim the quantum free energy
minimization principle in the following definition (the reader can refer to [11] for
details):

Definition 2.1. Let the functions n and nu be given. Consider the following
constrained minimization problem:

min {G(%) such that % is a density operator satisfying (2.1) and (2.2)} .(2.12)

The solution, if it exists, is called the local equilibrium density operator associated to
n and nu. Lagrange multiplier theory for the constrained problem (2.12) (see [11])
shows that there exist a scalar function A and a vector function B, both real valued
and defined on R3, such that this local equilibrium density operator takes necessarily
the form:

%eq
n,nu = (s′)−1

(
− 1

T
H(A,B)

)
,(2.13)

where H(A,B) is the following modified Hamiltonian:

H(A,B) = W−1

[
1
2
(p−B)2 + A

]
=

1
2

(i~∇+ B)2 + A.(2.14)

This definition is obviously incomplete if no assumption is made on n and nu. In
fact, this result has to be understood only at a formal level. Several crucial questions
remain open: in which functional spaces n and nu have to be chosen, in which spaces
A and B have to be sought, or the question of existence and uniqueness of A and
B. Throughout this paper, we shall postpone this delicate question of realizability
of moments, assuming that, as soon as the minimization problem (2.12) has to be
solved, n and nu are such that the associate functions A and B are uniquely de-
fined. In fact, since we are dealing with trace-class operators, the mass and current
densities n and nu vanish at the infinity and it seems reasonable to assume that the
modified Hamiltonian H(A,B) has always a compact resolvent and thus a discrete
spectrum (λp(A,B))p∈N and a complete set of (normalized) eigenfunctions denoted
by (ψp(A,B))p∈N. According to these assumptions, one can rewrite the mass density
and the current density associated to %eq

n,nu in terms of the eigen-elements of H(A,B):

n(A,B) =
∑

p∈N
(s′)−1

(
−λp(A,B)

T

)
|ψp(A,B)|2,(2.15)

(nu)(A,B) =
∑

p∈N
(s′)−1

(
−λp(A,B)

T

)
Im

(
~∇ψp(A,B)ψp(A,B)

)
.(2.16)

Remark 2.2 (Towards a numerical method to compute A and B). The constitu-
tive equations (2.15)–(2.16) provide no explicit relation between the extensive quanti-
ties (n, nu) and the associate intensive quantities (A,B). Nevertheless, we can provide
a practical method to compute A0 and B0 associated to given n0 and n0u0.

Consider the change of variable Ã = −A−B2/2 and B̃ = B so that the following
Hamiltonian H̃(Ã, B̃) is now linear in (Ã, B̃):

H̃(Ã, B̃) = H(A,B) = −~
2

2
∆ + i~B̃ · ∇+ i~/2 divB̃ − Ã,
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and consider the following functional:

Σ̃(Ã, B̃) = TTr
{

s∗(− 1
T

H̃(Ã, B̃))
}

:= Σ(A,B),(2.17)

where s∗ is the convex conjugate function of s defined such that (s∗)′ = (s′)−1 (note
that this functional, called the Massieu-Planck potential, is in fact the Legendre dual
of the quantum free energy [2]). The Gâteaux derivative of Σ̃ can be computed (using
a formula which can be found for instance in [11] or [10]) and gives:

δΣ̃
δÃ

= n(A,B) ;
δΣ̃
δB̃

= (nu)(A,B).(2.18)

Let define now the following functional:

J(Ã, B̃) = Σ(A,B)−
∫

n0Ã dx−
∫

n0u0 · B̃ dx,(2.19)

so that the Gâteaux derivative of J is given by:

δJ

δÃ
= n(A,B)− n0 ;

δJ

δB̃
= (nu)(A,B)− n0u0.(2.20)

We deduce that if J admits a critical point (Ã0, B̃0), then the functions A0 = −Ã0 −
(B̃0)2/2 and B0 = B̃0 are associated to n0 and n0u0 according to Definition 2.1. Note
that the functional J is strictly convex due to the fact that s∗ is strictly convex, that
H̃(Ã, B̃) is linear in (Ã, B̃), and that the two integrals are linear in (Ã, B̃). This
remark allows us to elaborate a numerical method based on a minimization algorithm
to compute A0 and B0 corresponding to given n0 and n0u0.

Lemma 2.3 (Gauge invariance). Let S(x) be a smooth function. Then, we have:

exp
(

iS

~

)
H(A,B) exp

(
− iS

~

)
= H(A,B +∇S).(2.21)

As a consequence we have the following identities:

n(A,B +∇S) = n(A,B) ; (nu)(A, B +∇S) = (nu)(A,B) + n(A,B)∇S,(2.22)

which relates the density and velocity for two values of B differing by a gradient.
Proof. To prove identity (2.21), we remark that

exp
(

iS

~

)
(i~∇+ B) exp

(
− iS

~

)
= i~∇+ B +∇S.

Hence

exp
(

iS

~

) (
1
2
(i~∇+ B)2 + A

)
exp

(
− iS

~

)
=

1
2
(i~∇+ B +∇S)2 + A,

which is (2.21).
As a consequence, the eigenvalues of H(A, B) and H(A,B +∇S) are the same.

Also, if two operators are conjugate, any function of these two operators are also
conjugate by the same conjugation operator. This implies that:

exp
(

iS

~

)
s∗

(
− 1

T
H(A,B)

)
exp

(
− iS

~

)
= s∗

(
− 1

T
H(A,B +∇S)

)
,(2.23)



ON THE ISOTHERMAL QUANTUM EULER MODEL 7

where s∗ is the convex conjugate function of s defined such that (s∗)′ = (s′)−1.
Therefore, the eigenvalues of s∗

(− 1
T H(A,B)

)
and s∗

(− 1
T H(A,B +∇S)

)
are the

same and we have the following equality for the functional Σ defined in (2.17):

Σ(A, B +∇S) = Σ(A,B),(2.24)

and in particular, we have:

δΣ
δA

(A,B +∇S) =
δΣ
δA

(A,B) ;
δΣ
δB

(A, B +∇S) =
δΣ
δB

(A, B).(2.25)

Using the formula of the Gâteaux derivative of Σ given in (2.18) and the chain rule
leads to:

δΣ
δA

= −n ;
δΣ
δB

= nu− nB,(2.26)

where n and nu shortly denote here n(A,B) and (nu)(A,B), so that identities (2.22)
stem directly from (2.25) and (2.26).

We end this subsection by giving a lemma which will be needed in the proof of
the main result (Theorem 2.5) of the next subsection. This lemma expresses the very
strong result that u and B are not equal but differ by a vector field which is a curl
divided by the density.

Lemma 2.4. Let n, nu, A, B be given according to Definition 2.1. Then we have

div(nu) = div(nB).(2.27)

Proof. The proof of this lemma is a direct consequence of (2.24) and (2.26). We
have indeed for any test function S(x):

lim
t→0

(
t−1(Σ(A,B + t∇S)− Σ(A,B))

)
= 0

=
∫

δΣ
δB

· ∇S dx

=
∫

(nu− nB) · ∇S dx,

meaning that div(nu− nB) = 0 almost everywhere.

2.3. The quantum Euler system. At the microscopic scale, a quantum system
evolving in R3 and subject to a potential V (t, x) can be described by a time-dependent
density operator satisfying the quantum Liouville equation:

i~∂t% = [H, %] + i~Q(%),(2.28)

where [H, %] = H%− %H is the commutator of the Hamiltonian H = −~22 ∆ + V with
the density operator % and ~ is the scaled Planck constant. In the right-hand side
of this equation, we have introduced a collision term Q(%). The precise form of this
operator will not play an important role in this article. The key property that we
request is that it drives the system to the local equilibria defined in the previous
section. This is a consequence of the two following assumptions:
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(i) mass and momentum are conserved during collision, i.e. for any density op-
erator % we have

∀ϕ,Φ Tr{Q(%)ϕ} = 0 and Tr
{
Q(%)

(
Φ · ∇+

1
2
(divΦ)

)}
= 0.(2.29)

(ii) the quantum free energy is dissipated, except for the density operator in the
kernel of Q, which is explicitely described as follows:

Q(%) = 0 iff ∃(A, B) such that % = (s′)−1

(
− 1

T

(
1
2
(i~∇+ B)2 + A

))
.

(2.30)
For %(t) solving (2.28), let us write the equations satisfied by the corresponding

moments n and nu. To this aim, we first take the trace of the Liouville equation (2.28)
against a test function φ. Using (2.29), the cyclicity of the trace and the commutator
equalities (2.6)–(2.9), we get

∫
φ∂tn dx = Tr{φ∂t%} = − i

~
Tr{φ [H, %]} = − i

~
Tr

{
φ

[
−~

2

2
∆ + V, %

]}

= − i

~
Tr

{[
φ,−~

2

2
∆ + V

]
%

}
= − i~

2
Tr {(∆φ + 2∇φ · ∇)%} .

Now we can use property (2.3) to write:
∫

φ ∂tn dx = − i~
2

∫
n∆φ dx +

∫
nu · ∇φ dx +

i~
2

∫
ndiv(∇φ) dx =

∫
nu · ∇φ dx.

This is the weak formulation of the equation of conservation of mass:

∂tn + div(nu) = 0.(2.31)

In order to obtain the second moment equation, we compose the collisional Liouville
equation (2.28) with the operator W−1(p · Φ) = −i~(Φ · ∇ + 1

2 (divΦ)). Thanks to
(2.29), we obtain

∀Φ
∫

Φ · ∂t(nu) dx = −Tr
{

[H, %]
(

Φ · ∇+
1
2
(divΦ)

)}
.(2.32)

It is readily seen that, with no further assumption, the right-hand side of (2.32) cannot
be expressed in terms of n, nu and the test function Φ only. We just recover here
the fact that the system (2.31), (2.32) – which is equivalent to (1.1), (1.2), (1.3) after
Wigner transformation – is not closed.

Hence, by analogy with Levermore’s methodology [21] and according to [11], we
modify this system by replacing % in the right-hand side of (2.32) by the Ansatz
%eq

n,nu, which plays the role of a Maxwellian here. This Ansatz corresponds to the
modeling assumptions (i) and (ii) made on Q, and represents the most likely quantum
microscopic state which possesses the moments n and nu, according to the statistics
that has been chosen, i.e. the function s. We point out the fact that %eq

n,nu depends
locally in time but globally in space on n and nu. Let us now gather the equations
forming the quantum Euler model. This system is composed of the two equations
governing the time evolution of n and nu, (2.31) and

∀Φ
∫

Φ · ∂t(nu) dx = −Tr
{

[H, %eq
n,nu]

(
Φ · ∇+

1
2
(divΦ)

)}
,(2.33)
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coupled to the constitutive equations

%eq
n,nu = (s′)−1

(
− 1

T
H(A,B)

)
= (s′)−1

(
− 1

2T
(i~∇+ B)2 − A

T

)
.(2.34)

∀φ Tr{%eq
n,nu φ} =

∫
nφ dx,(2.35)

∀Φ − i~Tr
{

%eq
n,nu

(
Φ · ∇+

1
2
(divΦ)

)}
=

∫
nu · Φ dx.(2.36)

The main result of this section is the following:
Theorem 2.5. The above described quantum Euler system (2.31), (2.32), (2.34),

(2.35), (2.36) is formally equivalent to the following system of equations:

∂tn + div(nu) = 0,(2.37)
∂t(nu) + div(nu⊗B) + n(∇B) · (u−B) + n∇(V −A) = 0,(2.38)

where the extensive quantities n and nu and the associated intensive ones A and B
are linked by the following constitutive equations:

n =
∑

p∈N
(s′)−1

(
−λp

T

)
|ψp|2, nu =

∑

p∈N
(s′)−1

(
−λp

T

)
Im (

~∇ψp ψp

)
,(2.39)

and where (λp, ψp)p∈N denotes the complete set of eigenvalues and normalized eigen-
vectors of the modified Hamiltonian defined by

H(A,B) =
1
2

(i~∇+ B)2 + A.(2.40)

Moreover, the time evolution of the macroscopic quantum free energy

G(t) = Tr
{

Ts(%eq
n,nu) +

(
−~

2

2
∆ + V

)
%eq

n,nu

}
, where %eq

n,nu is defined by (2.34),

(2.41)
is simply given by:

d

dt
G(t) =

∫
n ∂tV dx.(2.42)

Proof. Let us first prove (2.38). Noticing that the HamiltonianH can be rewritten
as:

H = H(A,B)− ihB · ∇ − i~
2

(divB) + V −A− 1
2
B2

and that H(A,B) commutes with %eq
n,nu (denoted shortly % in the sequel of the proof),

we obtain from (2.33):
∫

Φ · ∂t(nu) dx = Tr
{

(Φ · ∇)
[
i~B · ∇+

i~
2

(divB)− V + A +
1
2
B2, %

]}

+
1
2
Tr

{
(divΦ)

[
i~B · ∇+

i~
2

(divB)− V + A +
1
2
B2, %

]}

= (I) + (II) + (III) + (IV )
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with

(I) = i~Tr{[Φ · ∇, B · ∇]%}, (II) = − i~
2

Tr{[divB, Φ · ∇]%}

(III) = Tr
{[

V −A− 1
2
B2, Φ · ∇

]
%

}
, (IV ) =

i~
2

Tr{[divΦ, B · ∇]%}.

It remains to make these four terms more explicit. The use of the commutator equality
(2.8) and the use of property (2.3) give:

(I) = i~Tr {% ((Φ · ∇)B − (B · ∇)Φ) · ∇}
= −

∫
nu · ((Φ · ∇)B − (B · ∇)Φ) dx− i~

2

∫
ndiv((Φ · ∇)B − (B · ∇)Φ) dx.

A direct computation of the commutators (using (2.7)) in (II), (III) and (IV ) gives
then:

(II) =
i~
2

Tr {((Φ · ∇)divB)%} =
i~
2

∫
n(Φ · ∇)divB dx,

(III) = −Tr
{(

Φ · ∇
(

V −A− 1
2
B2

))
%

}
= −

∫
n(Φ · ∇)

(
V −A− 1

2
B2

)
dx,

(IV ) = − i~
2

Tr{B · ∇divΦ%} = − i~
2

∫
nB · ∇divΦ dx.

It is easy to check that the sum of (II), (IV ) and of the imaginary part of (I) vanishes,
it remains:
∫

Φ · ∂t(nu) dx = −
∫

nu · ((Φ · ∇)B− (B · ∇)Φ) dx−
∫

nΦ · ∇
(

V −A− 1
2
B2

)
dx,

which after an integration by parts gives the second equation of the quantum Euler
system (2.38). This last equation reads componentwise (we use Einstein’s convention
for the implicit summation on j):

∂t(nui) + ∂j(nuiBj) + n(uj −Bj)∂iBj + n∂i(V −A) = 0.

Finally, let us show the equation (2.42) for the quantum free energy. To do so,
we recall that the derivative of the quantum entropy S(%) = Tr{s(%)} with respect to
% is (see [11]):

dS(%) · δ% = Tr{s′(%)δ%}.

The derivative of the quantum free energy G defined by (2.11) with respect to % is
then:

dG(%) · δ% = Tr {(Ts′(%) +H)δ%} .(2.43)

It allows to compute the derivative of G = G(%(t)) with respect to t which is given
by:

d

dt
G = Tr {(Ts′(%) +H)∂t%}+

∫
n∂tV dx,(2.44)
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where we remarked that Tr {(∂tV )%} =
∫

n∂tV dx. Then, we use the Ansatz

% = (s′)−1

(
− 1

T
H(A,B)

)
,

which gives

Tr {(Ts′(%) +H)∂t%} = Tr {(−H(A, B) +H)∂t%}
= Tr

{(
−ihB · ∇ − i~

2
(div(B)) + V −A− 1

2
B2

)
∂t%

}

=
∫ (

B · ∂t(nu) + ∂tn

(
V −A− 1

2
B2

))
dx.

Using the two equations of the quantum Euler system (2.37), (2.38), we obtain:

Tr {(Ts′(%) +H)∂t%} =
∫

B · (−div(nu⊗B)− n(∇B) · (u−B)− n∇ (V −A)) dx

−
∫

div(nu)
(

V −A− 1
2
B2

)
dx.

The first line in the right-hand side can be simplified after integrations by parts:
∫

(−Bi∂j(nuiBj)− nBi(uj −Bj)(∂iBj)− nBi∂i(V −A)) dx

=
∫

div(nB)
(

V −A− 1
2
B2

)
dx.

So we finally obtain:

Tr {(Ts′(%) +H)∂t%} = −
∫

div(nu− nB)
(

V −A− 1
2
B2

)
dx.

This last term vanishes using Lemma 2.4, and finally (2.44) yields (2.42).
Let us now write several equivalent formulations of the second equation (2.38),

that will be useful further. Direct calculations using (2.37), (2.38) and (2.27) lead to
the following equations, which can replace (2.38) in the whole quantum Euler system:

∂t(nu) + div(nu⊗ u) + n(∇× u)× (B − u) + n∇
(

V −A− 1
2
|B − u|2

)
= 0,(2.45)

or ∂tu + (B · ∇)u + (∇B) · (u−B) +∇(V −A) = 0,(2.46)

or again, ∂tu + (∇× u)×B +∇
(

u ·B − 1
2
B2 + V −A

)
= 0.(2.47)

Remark 2.6. If we choose for the entropy function s(%) the Boltzmann entropy:

s(%) = %(log %− 1),(2.48)

then the corresponding solution of the quantum free energy minimization problem
(2.13) is the equilibrium introduced in [11] as a “quantum equilibrium” and refered
as “quantum Maxwellian” in [9]:

%m = exp
(
− 1

T
H(A,B)

)
.(2.49)
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The macroscopic quantum free energy corresponding to the Boltzmann entropy reads
(dropping the constant term

∫
nTdx):

Tr
{

Ts(%m) +
(
−~

2

2
∆ + V

)
%m

}
=

∫ (
nu ·B + n

(
V −A− 1

2
B2

))
dx.(2.50)

We have shown in Theorem 2.5 that if the electric potential V is independent of time,
then this quantum free energy is conserved. In the case where the electrical potential
is the sum of an external potential V ext independent of time and a selfconsistent
potentiel V s linked to the charge density by the Poisson equation:

−α2∆V s = n,(2.51)

with α the scaled Debye length, then the conserved quantity reads:
∫ (

nu ·B + n

(
V ext −A− 1

2
B2

))
dx +

α2

2

∫
|∇V s|2 dx.

2.4. Special case of irrotational flows. We conclude this section by dealing
with the special case of irrotational flows. Before giving the main proposition which
is Proposition 2.8, we state the following lemma:

Lemma 2.7. Let n, nu, A, B be given according to Definition 2.1. Assume
moreover that u is an irrotational vector field, i.e. that there exists S(x) such that
u = ∇S. Then B is defined by

B = u = ∇S(2.52)

and we have

%eq
n,nu = eiS/~ %eq

n,0 e−iS/~,(2.53)

where the two equilibrium density operators %eq
n,nu and %eq

n,0 are given according to Def-
inition 2.1. If we note n(A,B) the density associated to A and B, we have moreover:

n(A,B) = n(A, 0).(2.54)

Proof. See Appendix A.
Proposition 2.8. Let n, nu satisfy the quantum Euler system (2.37)–(2.40).

Then ω = ∇× u satisfies formally the following transport equation:

∂tω +∇× (ω ×B) = 0.(2.55)

Moreover, assume that at t = 0 the velocity is irrotational, i.e. that we have

ω(t = 0) = ∇× u(t = 0) = 0,(2.56)

and that the solution of (2.37)–(2.40) is smooth. Then for all time we have ω =
∇× u = 0. In this case, the quantum Euler system (2.37)–(2.40) can be rewritten as
follows:

∂tn + div(nu) = 0,(2.57)
∂t(nu) + div(nu⊗ u) + n∇(V −A) = 0,(2.58)
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where n and A are coupled by the constitutive equation:

n =
∑

p∈N
(s′)−1

(
−λp

T

)
|ψp|2,(2.59)

and where (λp, ψp)p∈N denotes the complete set of eigenvalues and normalized eigen-
vectors of the modified Hamiltonian defined by

H(A, 0) = −~
2

2
∆ + A.(2.60)

Proof. The equation for the curl (2.55) is a direct consequence of (2.47). Now,
multiply (2.55) by ω and integrate on R3. Straightforward calculations lead to the
following equation, governing the evolution of the L2 norm of ω:

d

dt

∫
|ω|2 dx = −

∫
(divB) |ω|2 dx +

∫
(∇B) : (ω ⊗ ω) dx.(2.61)

Hence, applying a Cauchy-Schwarz inequality, we get

d

dt

∫
|ω|2 dx ≤ C ‖∇B‖L∞

∫
|ω|2 dx,

which gives ω ≡ 0 as soon as ω(t = 0) = 0, by the Gronwall lemma. Then ∇× u = 0
implies that the results of Lemma 2.7 hold true for all time. Hence u = B, together
with (2.38) (or (2.45)), gives (2.58), while n(A,B) = n(A, 0) is equivalent to (2.59),
(2.60), and the proof is complete.

Remark 2.9. In this situation of irrotational flows, the “quantum part” of the
model is simpler than in the general case of Theorem 2.5, since the underlying min-
imization problem is (A.1) given in Appendix, with only the constraint of the first
moment n, instead of (2.12). In the specific case of dimension 1, the flow is obvi-
ously generically irrotational, so the quantum Euler system always appears under the
reduced form (2.57)–(2.60).

3. Formal asymptotics. We investigate here various asymptotic approxima-
tions of the quantum Euler system as dimensionless parameters go to zero. Our
aim here is to draw some connections between this model and several other existing
models. All the proofs given in this section use formal arguments.

3.1. Semiclassical asymptotics. If we choose for the entropy function s the
Boltzmann entropy (2.48), then an ~ expansion of the “quantum Maxwellian” %eq

n,nu

can be performed. By keeping in this expansion the terms up to the order O(~2), one
gets formally some approximate constitutive equations linking (n, nu) and (A, B):

Lemma 3.1 (formal). Let n, nu, A, B be smooth functions linked according to
Definition 2.1 with the entropy function s being the Boltzmann entropy (2.48). As the
dimensionless Planck constant ~ goes to 0, the quantities A and B admit the following
asymptotic expansions:

A = T ln n0 − T ln n +
~2

6
∆
√

n√
n
− ~

2

24
|ω|2 +O(~4),(3.1)

nB = nu +
~2

12
∇× (nω) +O(~4),(3.2)
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where we have denoted ω = ∇ × u and n0 is the effective density of state n0 =(
T

2π~2
)3/2.

Proof. See Appendix B.
Remark 3.2. In reduced dimension d = 2 or d = 1, the expression of the effective

density of state n0 has to be replaced by n0 =
(

T
2πh2

)d/2. Then, inserting these
equations (3.1), (3.2) in (2.37), (2.45), one gets an approximate quantum Euler model.

Theorem 3.3 (Semiclassical formal limit). Let the entropy function s be the
Boltzmann entropy (2.48). Then, as the dimensionless Planck constant ~ goes to 0,
the quantum Euler system admits the following asymptotic expansion:

∂tn + div(nu) = 0,(3.3)

∂t(nu) + div(nu⊗ u) + T∇n + n∇V − ~
2

6
n∇

(
∆
√

n√
n

)
+

+
~2

12
ω × (∇× (nω)) +

~2

24
n∇(|ω|2) = O(~4),(3.4)

where we have denoted ω = ∇× u.
It is readily seen from (3.3) and (3.4) that, as ~→ 0, the quantum Euler system

converges formally to the isothermal Euler system. Moreover, if we drop the terms
O(~4) in (3.3), (3.4), the obtained model is the so-called quantum hydrodynamic
model [19], up to additional terms depending only on ω = ∇ × u. For irrotational
flows, we recover the quantum hydrodynamic model. These observations were already
made in [20]. We point out the fact that, if the obtained equations (3.3), (3.4) are
rigourously equivalent to the ones obtained by Jüngel and Matthes, i.e. (5) and (6)
of [20], the method to get them is simpler here and does not require an expansion of
the second order moments (1.4) of the Wigner function.

3.2. The zero temperature limit. An opposite limit to the semiclassical
asymptotics is the zero-temperature limit. Before investigating the formal limit of
(2.37)–(2.40) as T → 0, let us claim that, when B is a gradient, the functions A and
B can always be explicitely deduced from the ground state of the modified Hamilto-
nian. Indeed, straightforward (formal) calculations lead to the following lemma:

Lemma 3.4. Let A and B be given real functions, respectively scalar and vec-
tor valued, and assume the existence of a scalar potential ϕ(x) such that B = ∇ϕ.
Consider the operator

H(A, B) =
1
2
(i~∇+ B)2 + A

and assume that the problem of minimization of the energy

min
|ψ|L2=1

∫
(H(A,B)ψ)ψ dx = min

|ψ|L2=1

∫ (
1
2
|i~∇ψ + Bψ|2 + A |ψ|2

)
dx

is attained on the ground state ψ0 =
√

n0 eiS0/~. Then we have the identities

A =
~2

2
∆
√

n0√
n0

− C, B = ∇S0 ,(3.5)

where C is a constant (the Lagrange multiplier corresponding to the constraint).
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Proof. We remark that the energy of a wavefunction ψ =
√

n eiS/~ can be rewrit-
ten in terms of n and S:

∫ (
1
2
|i~∇ψ + Bψ|2 + A |ψ|2

)
dx =

∫ (
1
2

n |∇(S − ϕ)|2 +
~2

2
|∇√n|2 + A n

)
dx.

By writing that (n0, S0) minimizes this expression and that
√

n0 solves the corre-
sponding Euler-Lagrange equation, we get

A =
~2

2
∆
√

n0√
n0

− C, ∇(S0 − ϕ) = 0

where C is the Lagrange multiplier corresponding to the equality constraint (|ψ|L2 =
1) and the proof is complete. Note that, since ψ0 is a ground state, by Krein-Rutman’s
theorem we have n0 > 0 everywhere, hence we do not have to introduce a Lagrange
multiplier for the positivity constraint.

We can now claim the following formal result:
Theorem 3.5 (Zero temperature formal limit). Assume that the entropy function

s is such that lim+∞(s′)−1 = +∞ and lim−∞(s′)−1 = 0. Assume that the solution
(nT , nT uT , AT , BT ) of the quantum Euler system (2.37)–(2.40) with temperature T ,
admits a non trivial limit (n, nu, A, B) as the dimensionless temperature T goes to
zero. Then these functions satisfy the Madelung equations:

∂tn + div(nu) = 0,(3.6)

∂tu + (u · ∇)u +∇V − ~
2

2
∇

(
∆
√

n√
n

)
= 0,(3.7)

A =
~2

2
∆
√

n√
n
− C, B = u ,(3.8)

where C is a constant and the system is described by a pure-state:

%(x, x′) = ψ(x)ψ(x′),(3.9)

with

ψ =
√

n eiS/~ and ∇S = u.

Proof. By assumption, if AT and BT admit a smooth limit, the modified Hami-
tonian defined by (2.40) does not behave singularly and its eigenvalues (λT

p )p∈N and
eigenfunctions (ψT

p )p∈N also converge to some limits as T → 0. The limit ground state
ψ0 is not degenerate. Therefore, it follows from the assumption on s and from (2.39)
that λT

0 must converge to 0, otherwise n would be either infinite, or zero (note that
the limit density n is assumed to be non trivial). Due to the gap between the first
eigenvalue λ0 and the other ones λp, p > 0 (this gap is supposed to be a consequence
of the fact that AT and BT admit a smooth limit, as well as the non degeneracy
of the ground state – this is a strong assumption), we have −λp/T → −∞ and one
can deduce from (2.39) that the occupation factor of the state ψp converges to 0 if
p > 0. Consequently, the limit density operator is that of a pure-state, given by (3.9).
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Remark that one must have the following asymptotic behavior for the ground state
energy λT

0 :

λT
0 ∼ −Ts′

(∫
ndx

)
as T → 0.

Since at the limit the dynamic is given by the ground state, the corresponding velocity
is a gradient: u = ∇S, thus by Lemma 2.7, we have B = ∇S. Next, by applying
Lemma 3.4 we obtain (3.8). Finally, by inserting these relations in (2.46), we obtain
the Madelung equation (3.7).

Remark 3.6. The Boltzmann distribution (s′)−1 = exp corresponding to the
entropy s(%) = % ln(%) − % satisfies the assumption of Theorem 3.5. But the Fermi-
Dirac distribution does not. In this case, since the occupation factors converge to 1
as −λp/T tends to −∞, one can see that the limit density operator may not be a
pure-state but rather a finite rank projector

%(x, x′) =
K∑

k=1

ψk(x)ψk(x′),

which unfortunately does not enable to obtain the simplified constitutive equations
(3.8).

3.3. System with relaxation, long-time behavior, diffusive limit. In this
section, we come back to the derivation of the quantum Euler system and modify the
microscopic description. We rewrite the quantum Liouville equation (2.28), assuming
now that the collision operator is composed of two parts, in order to take into account
the coexistence of different types of collisions:

∂t% = − i

~
[H, %] +

1
ε
Q0(%) +

1
τ
Q1(%).(3.10)

The mean collision times ε and τ are both assumed to be small, but such that ε ¿ τ ,
which means a hierarchy between the collision phenomena. The predominant collision
operator Q0 is supposed to be similar as in section 2.3, satisfying the same two
assumptions (i) and (ii), whereas the new operator Q1 models collisions which do not
preserve momentum. To make the analysis simpler, we choose for Q1 the quantum
BGK operator that was introduced in [10]. It reads

Q1[%] = %eq
n,0 − % ,

since one can see (e.g. in the proof of Lemma 2.7 in the Appendix A) that the
equilibrium function with vanishing current %eq

n,0 realizes the following minimization
problem with mass density constraint:

min
{

G(%) such that ∀φ Tr{%φ} =
∫

nφ dx

}
.(3.11)

In [10], the diffusive limit of (3.10) without the Q0 operator was performed and
lead to a model called the entropic quantum drift-diffusion (eQDD) system (the study
of this model was continued in [9, 12, 8]). In this section, we follow a different route,
that will finally lead to the same model. We perform formally successively two limits.
First, in the first Theorem 3.8 of this section, we make ε tend to 0 in (3.10), which
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corresponds to the hydrodynamic asymptotics. The so-obtained model is the quantum
Euler system with a relaxation term induced by the new collision operator Q1. We
show that this model is entropic and that its equilibria are the usual global quantum
equilibria. Then, we let τ tend to 0, which corresponds to the diffusive asymptotics.
During this step performed in Theorem 3.9, we recover the eQDD model. In order
to prepare this second step, it is now more convenient to rescale the time variable in
(3.10), setting t = t′/τ (and then dropping the prime):

τ∂t% = − i

~
[H, %] +

1
ε
Q0(%) +

1
τ
Q1(%).(3.12)

Before giving the main result of this section (Theorem 3.8), let us give a lemma
which will be needed in the proof:

Lemma 3.7. Let n, nu, A, B be given according to Definition 2.1. Then we have
∫

nu ·B dx ≥ 0,(3.13)

and this integral vanishes if and only if u = B = 0.
Proof. See Appendix C.
Theorem 3.8 (Hydrodynamic formal limit). Consider a solution of the quan-

tum Liouville equation (3.12), denoted by %ε,τ . As ε goes to 0, this density operator
converges formally to the solution

%τ = (s′)−1

(
− 1

T
H(A,B)

)

of the following quantum Euler system with relaxation:

τ∂tn + div(nu) = 0,(3.14)

τ∂t(nu) + div(nu⊗B) + n(∇B) · (u−B) + n∇(V −A) = −1
τ

nu,(3.15)

n =
∑

p∈N
(s′)−1

(
−λp

T

)
|ψp|2, nu =

∑

p∈N
(s′)−1

(
−λp

T

)
Im (

~∇ψp ψp

)
,(3.16)

where (λp, ψp)p∈N denotes the complete set of eigenvalues and normalized eigenvectors
of the modified Hamiltonian defined by

H(A,B) =
1
2

(i~∇+ B)2 + A.(3.17)

Assume now that the potential V is independent of time. Then the above model is
entropic, i.e. dissipates the quantum free energy defined by (2.11):

d

dt
G(%τ (t)) = − 1

τ2

∫
nu ·B dx ≤ 0.(3.18)

This suggests that its solution %τ converges at t → +∞ to the global quantum equilibria

%∞ = (s′)−1

(
− 1

T

(
−~

2

2
∆ + V − µF

))
,
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where the Fermi level µF is a constant.
Proof. The first part of this theorem is mainly an adaptation of the proof of

Theorem 2.5. Indeed, by multiplying (3.12) by ε and using ε ¿ τ , we obtain formally
that

Q0(%ε,τ ) → 0 as ε → 0.

Hence, if %ε,τ converges to a certain %τ , then we have Q0(%τ ) = 0, and the assumption
(2.30) made on Q0 implies the existence of A and B such that

%τ = (s′)−1

(
− 1

T

(
(i~∇+ B)2 + A

))
,

or, in other terms, that %τ = %eq
n,nu. To conclude, it remains to write the equations

satisfied by the two first moments of %ε,τ and to close this system thanks to this
expression. The same calculations as for Theorem 2.5 lead to (3.14) and (3.15),
taking care of the right-hand sides, which are obtained from Q1 by remarking that

∀φ Tr {Q1(%)φ} = Tr
{
(%eq

n,0 − %)φ
}

= 0,

∀Φ − i~Tr
{Q1(%)

(
Φ · ∇+ 1

2 (divΦ)
)}

= −i~Tr
{
(%eq

n,0 − %)
(
Φ · ∇+ 1

2 (divΦ)
)}

= − ∫
nu · Φ dx,

thanks to the definition of %eq
n,0 and by (2.2).

Moreover, by adapting the proof of (2.42) in Theorem 2.5, one gets easily the
equation (3.18) for the evolution of the free energy. Note that the nonpositivity of
this term is not trivial and comes from the inequality (3.13) of Lemma 3.7. Finally,
by simply considering (3.18), we claim that, as t → +∞, the relaxation term created
by Q1 drives the system to equilibria such that

∫
nu ·B dx = 0. Hence, by the second

part of Lemma 3.7, these equilibria must be such that nu = 0. Then, from (3.15), we
get n∇(V −A) = 0 and A = V − µF .

Theorem 3.9 (Diffusive formal limit). Consider a solution %τ of the quantum
Euler model with relaxation (3.14)–(3.17). Then, as τ goes to zero, %τ converges
formally to the solution

% = (s′)−1

(
− 1

T
H(A, 0)

)
(3.19)

of the quantum drift-diffusion system:

∂tn− div (n∇(V −A)) = 0,(3.20)

n =
∑

p∈N
(s′)−1

(
−λp

T

)
|ψp|2,(3.21)

where (λp, ψp)p∈N denotes the complete set of eigenvalues and normalized eigenvectors
of the modified Hamiltonian defined by

H(A, 0) = −~
2

2
∆ + A.(3.22)
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Proof. Multiplying (3.15) by τ , one can see that nu = O(τ). Hence, from Lemma
2.7, and assuming that the relation between (n, nu) and (A, B) is smooth, we infer
B = O(τ). As a first consequence, we obtain that %τ converges to a certain % given
by (3.19). Secondly, by using again (3.15) and identifying the terms of order zero in
τ , we get

−1
τ

nu = n∇(V −A) +O(τ).(3.23)

By inserting this identity into (3.14) and passing to the limit τ → 0, we deduce (3.20).

Remark 3.10. The eQDD model, obtained as the limit of an entropic model,
is also entropic. Let us give the expression of the corresponding entropy flux. At
the diffusive limit τ → 0, (3.23) shows that u/τ converges to the gradient function
−∇(V −A), so Lemma 2.7 gives that, asymptotically, we have B = u. Therefore, one
deduces from (3.18) that the solution of the eQDD system (3.20)–(3.22) satisfies

d

dt
G(%(t)) = −

∫
n|∇(V −A)|2 dx ≤ 0.

We recover here an identity that was shown in [10] and, again, the fact that the
equilibria are such that V −A is constant.

4. Numerical results. We have implemented a 1D numerical scheme for solving
the quantum Euler system with relaxation coupled to the Poisson equation on the
domain Ω = [0, 1] in the case where the entropy s is the Boltzmann entropy. As
noticed in Remark 2.9, the quantum Euler system in one dimension takes the reduced
form (2.57)–(2.60). Let ∆t > 0 be the time step and ∆x = 1/N(N ∈ N) the space
grid size. The grid is composed of the points xi = i∆x for 0 ≤ i ≤ N + 1 and we
note the unknowns at time t = k∆t as vectors nk = (nk

i )0≤i≤N+1, uk = (uk
i )0≤i≤N+1,

Ak = (Ak
i )0≤k≤N+1, V s,k = (V s,k

i )0≤i≤N+1. For the sake of readability, we also
introduce as intermediate unknowns the density and velocity fluxes noted jk+1/2 =
(jk+1/2

i )0≤i≤N+1 and ϕk+1/2 = (ϕk+1/2
i )0≤i≤N+1. The discretized model reads for

1 ≤ i ≤ N :

τ
nk+1

i − nk
i

∆t
+

j
k+1/2
i − j

k+1/2
i−1

∆x
= 0,(4.1)

τ
uk+1

i − uk
i

∆t
+

ϕ
k+1/2
i+1 − ϕ

k+1/2
i

∆x
= −uk+1

i

τ
,(4.2)

j
k+1/2
i = nk

i uk+1
i(4.3)

ϕ
k+1/2
i =

(
uk

i

)2

2
+ V ext

i + V s,k+1
i −Ak+1

i(4.4)

−α2 V s,k+1
i+1 − 2V s,k+1

i + V s,k+1
i−1

∆x2
= nk+1

i(4.5)

nk+1
i =

∑

1≤p≤N

e−
λp(Ak+1)

T |ψp,i(Ak+1)|2,(4.6)

where (λp(Ak+1), ψp(Ak+1))1≤p≤N denotes the eigenvalues and normalized eigenvec-
tors of the N × N matrix discretizing the modified Hamiltonian (We put Dirichlet
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conditions on the eigenfunctions):

H(Ak+1, 0) = − ~2

2∆x2




−2 1 0 . . .

1
. . . . . . 0

0
. . . . . . 1

... 0 1 −2




+ Diag
(
(Ak+1

i )1≤i≤N

)
.

We use for boundary conditions a zero-flux condition which reads:

ϕ
k+1/2
N+1 = ϕ

k+1/2
N ; ϕ

k+1/2
0 = ϕ

k+1/2
1 .

This scheme draws its inspiration from the ones used for the entropic Quantum
Drift-Diffusion model in [12, 8]. In order to solve this scheme, we first eliminate uk+1

i ,
j

k+1/2
i and ϕ

k+1/2
i in equation (4.1) using equations (4.2), (4.3) and (4.4). Then

we write nk+1
i as a function of Ak+1 in (4.1) using equation (4.6). We obtain a

non linear (and not local) sytem with unknowns Ak+1
i and V s,k+1

i . It can be shown
that this system has a good variational formulation (inspired by Remark 2.2) and
can be solved using the Newton algorithm. A future article will be devoted to the
study of this scheme. A validation of the model is also needed and comparisons will
be performed with other existing models stated above (the quantum hydrodynamics
model, the Schrödinger model and the entropic quantum drift-diffusion model).

The values of the parameters are given in Table 4.1. We choose for initial den-
sity n0(x) a density concentrated on the left of the device and for initial velocity
u0(x) = 0. The external potential V ext is chosen to be a double barrier (in fact, the
device here is a simplified Resonant Tunneling Diode without doping) and Figures
4.2, 4.3 show the evolution of the electron density nk on the left, and the velocity
uk on the right for k = 1, 4, 20, 100 and 200. We can see electrons going through
the barriers by tunneling effect. At time step k = 200 the system seems to achieve
an equilibrium. This is confirmed by next Figure 4.1 which shows that the free en-
ergy G(k) =

∫ (
nk

(
V ext −Ak + (u2

2 )k
))

dx + α2

2

∫ |∇V s,k|2 dx does not evolve any
more. We can see on this last graph that, as expected, the free energy is a decreasing
function of time.
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Figure 4.1. Evolution of the free energy Gk as a function of the time iteration k.
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∆x ∆t ~2/2T α2 τ
0.01 0.005 0.02 0.1 0.1

Table 4.1
Values of the parameters for the numerical simulation.
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Figure 4.2. Numerical solution of the quantum Euler model with relaxation: k = 0 corresponds
to the initial data while k = 1 and k = 4 correspond to the solution of the scheme after 1 and 4
iterations. Left: density nk(x) (solid line) and total electrical potential (V s,k + V ext)(x) (dashed
line) as functions of the position x. Right: velocity uk(x) as function of the position x.
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Figure 4.3. Numerical solution of the quantum Euler model with relaxation after 20, 100 and
200 iterations. Left: density nk(x) (solid line) and total electrical potential (V s,k +V ext)(x) (dashed
line) as functions of the position x. Right: velocity uk(x) as function of the position x.
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5. Conclusion and perspectives. In this paper, we have rewritten in a sim-
pler and differential way the isothermal version of the quantum hydrodynamic model
derived in [11]. A remarkable gauge invariance property for this system has been ex-
hibited. As a by-product, a constraint between the velocity u and its adjoint variable
B has been discovered. Several equivalent formulations of the model are possible.
We have then written some formal asymptotics of the model as dimensionless param-
eters tend to zero. It appears formally that the semiclassical limit of the model is
the Classical isothermal Euler system while the zero temperature limit of the model
gives the Madelung equations, finally, the diffusive limit permits to show a link with
the recently derived entropic Quantum Drift-Diffusion model. We have also written
several simplifications of the model when the velocity is irrotational, since in this case,
u = B and the problem depends on A only, which reduces the size of the moment
reconstruction problem (i.e. the inversion of the mapping A → n). This simplifi-
cation allows to perform one-dimensional numerical simulations on a simple device.
These preliminary numerical simulations seem to indicate that the model gives mean-
ingful results in realistic situations. The study of the numerical scheme to her with
comparisons with other models will be presented in a future article. An analytical
computation of the closure relations in the case of the full QHD model (as done for
the isothermal case) is certainly at reach but need further investigations.

Appendices. In these appendices, we write the proofs of several useful lemmas
giving relations between the pairs (n, nu) and (A, B), as soon as they are linked
according to Definition 2.1.

Appendix A. Proof of Lemma 2.7. Consider the following minimization
problem with the only constraint of first moment:

min {G(%) such that % is a density operator satisfying (2.1)} .(A.1)

Following [10] and with assumptions similar to the ones done in subsection 2.2, this
minimization problem (A.1) is attained on a density operator which reads

%0 = (s′)−1

(
− 1

T
H(α, 0)

)
,

where α is a scalar function and H(α, 0) is still defined according to (2.14). Due to
the fact that the Wigner function of %0 is even (see [10]), this density operator carries
no current, i.e. for any test function Φ we have

−i~Tr
{

%0

(
Φ · ∇+

1
2
divΦ

)}
= 0.(A.2)

This is enough to conclude that %0 = %eq
n,0 (following Definition 2.1) or, equivalently,

that (following the definitions (2.15), (2.16))

n(α, 0) = n, (nu)(α, 0) = 0.

Denote now

%S = (s′)−1

(
− 1

T
H(α,∇S)

)
.

Applying the Gauge invariance of Lemma 2.3, we have:

H(α,∇S) = eiS/~H(α, 0) e−iS/~,
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it is immediate to deduce from elementary functional calculus that

%S = eiS/~ %0 e−iS/~.

Note then that, by definition, the mass density and the current density corresponding
to %S are respectively n(α,∇S) and (nu)(α,∇S) and, as a direct consequence of
(2.22), we have

n(α,∇S) = n(α, 0) = n, (nu)(α,∇S) = (nu)(α, 0) + n∇S = nu.

Therefore, according to the property of uniqueness of the Lagrange multipliers A and
B assumed in subsection 2.2, we deduce that A = α and B = ∇S and the proof is
complete.

Remark A.1. Note that we can prove the last part of the lemma, n(A,B) =
n(A, 0), by a direct computation of the derivative of n =

∑
p(s

′)−1(−λp

T ) |ψp|2, (where
(λp, ψp)p∈N are the eigenelements of the Hamiltonian H(A,B)). A perturbation cal-
culus gives us:

dn(A, B) · (δA, δB) =
∑
p,q

T
(s′)−1(−λp

T )− (s′)−1(−λq

T )
λp − λq

Re

[( ∫
− i~

2
δB · ∇ψqψp

+
i~
2

δB · ∇ψpψq + (δA + B · δB)ψpψq dx
)

ψpψq

]
,(A.3)

where T
(s′)−1(−λp

T )−(s′)−1(−λq
T )

λp−λq
conventionally equals −((s′)−1)′ if λp = λq. Now,

assume that u = B = ∇S and let us note ψ̃p = e−iS/~ψp. It is straightforward to
check that the sequence (ψ̃p)p∈N forms an orthogonal basis of real eigenfunctions of
the Hamiltonian H(A, 0), so that we can write ψp = eiS/~ψ̃p with ψ̃p real. Then ,
substituting this last equality in (A.3) and using the fact that B = ∇S, we get:

dn(A, B) · (δA, δB) =
∑
p,q

T
(s′)−1(−λp

T )− (s′)−1(−λq

T )
λp − λq

( ∫
δAψ̃pψ̃q dx

)
ψ̃pψ̃q,(A.4)

and we see that the derivative of the density with respect to B is zero, so that n(A,B) =
n(A, 0). Note that we use this property in order to solve our numerical scheme in 1D
(see section 4). We use indeed the derivative of the density (A.4) in the Newton
algorithm.

Appendix B. Proof of Lemma 3.1. In order to perform expansions (3.1) and
(3.1), we are going to use the Wigner formalism in which the density and the current
density are given according to:

n =
∫
Exp

(
− 1

T

(
1
2
(p−B)2 + A

))
dp

(2π~)3
,(B.1)

nu =
∫

p Exp
(
− 1

T

(
1
2
(p−B)2 + A

))
dp

(2π~)3
,(B.2)

where Exp is the quantum exponential Exp = W ◦exp ◦W−1 introduced in [10]. Using
Proposition 5.3 of [10] which gives the ~ expansion of Exp(a) for an arbitrary symbol
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a, we find for the symbol − 1
T

(
1
2 (p−B)2 + A

)
the following expansion:

Exp
(
− 1

T

(
1
2
(p−B)2 + A

))
= exp

(
− 1

T

(
1
2
(p−B)2 + A

))[
1 +

+
~2

8T 2

(
−∆A + ∆B · (p−B) + ∂iBj(∂jBi − ∂iBj)

+
1

3T
(∂ijA− ∂ijB · (p−B) + ∂iB · ∂jB)(pi −Bi)(pj −Bj)

+
2

3T
∂iBj(pi −Bi)(∂jA− ∂jB · (p−B)) +

1
3T
|∇A−∇Bj(pj −Bj)|2

)]
+O(~4),

where ∂i denotes the partial derivative ∂/∂xi and where we used Einstein’s summation
convention. It remains to calculate the integrals (B.1) and (B.2). We use the fact
that:

∫
e−p2/(2T )dp = (2πT )3/2,

∫
e−p2/(2T )pidp = 0,

∫
e−p2/(2T )pipjdp = T (2πT )3/2δij ,

∫
e−p2/(2T )pipjpkdp = 0,

∫
e−p2/(2T )pipjpkpldp = T 2(2πT )3/2(δijδkl + δikδjl + δilδjk),

and we notice that ∂iBj(∂jBi − ∂iBj) = −|∇ × B|2 to obtain the expansion of the
density:

n = n0e
−A/T

[
1 +

~2

24T

(
−2∆

(
A

T

)
+

∣∣∣∣∇
(

A

T

)∣∣∣∣
2

− 1
T
|∇ ×B|2

)]
+O(~4).(B.3)

In order to calculate the second integral (B.2), we write:

nu =
∫

(p−B) Exp
(
− 1

T

(
1
2
(p−B)2 + A

))

+B Exp
(
− 1

T

(
1
2
(p−B)2 + A

))
dp

(2π~)3
,

=
∫

(p−B) Exp
(
− 1

T

(
1
2
(p−B)2 + A

))
dp

(2π~)3
+ nB,

and computing this last integral for a component nuk, we obtain:

nuk = nBk +
~2

12
n0e

−A/T

(
−∂i(∂kBi − ∂iBk)− ∂i

(
−A

T

)
(∂kBi − ∂iBk)

)
+O(~4).

Then, we use the fact that n = n0e
−A/T +O(~2) and that A = T ln n0− ln n +O(~2)

to obtain

nuk = nBk − ~
2

12
∂i (n(∂kBi − ∂iBk)) +O(~4)



26 P. DEGOND, S. GALLEGO, F.MÉHATS

which is nothing else but the component value of the expansion:

nu = nB − ~
2

12
∇× (n∇×B) +O(~4).(B.4)

The desired expressions of the expansions of A and B are a direct consequence of
(B.3) and (B.4) noticing that

−2∆
(

A

T

)
+

∣∣∣∣∇
(

A

T

)∣∣∣∣
2

= 4
∆
√

n√
n

+O(~2).

Appendix C. Proof of Lemma 3.7. The starting point is the following fact
remarked in the above proof of Lemma 2.7 (Appendix A). The density operator %eq

n,0

realizes the minimum of the problem (A.1), i.e. we have

G
(
%eq

n,nu

)−G
(
%eq

n,0

) ≥ 0,

where we recall that the free energy was defined in (2.11). Since G is a convex
differentiable function of %, we deduce that

dG(%eq
n,nu) · (%eq

n,nu − %eq
n,0

) ≥ G
(
%eq

n,nu

)−G
(
%eq

n,0

) ≥ 0.

Now, by using the expression (2.43) of the derivative of G with respect to % and
recalling that

%eq
n,nu = (s′)−1

(
− 1

T
H(A,B)

)
,

we get

Tr
{
(−H(A,B) +H)

(
%eq

n,nu − %eq
n,0

)} ≥ 0,

i.e.

Tr
{(

−ihB · ∇ − i~
2

(divB) + V −A− 1
2
B2

) (
%eq

n,nu − %eq
n,0

)} ≥ 0.

Therefore, the desired result (3.13) stems directly from (2.1) and (2.2). From the
strict convexity of s, it is clear that this integral vanishes only in the case nu ≡ 0.
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