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Abstract

An isotone pure strategy equilibrium exists in any game of incom-
plete information in which (1) each player i’s action set is a finite
sublattice of multi-dimensional Euclidean space, (2) types are multi-
dimensional and atomless, and each player’s interim expected pay-
off function satisfies two “non-primitive conditions” whenever others
adopt isotone pure strategies: (3) single-crossing in own action and
type and (4) quasisupermodularity in own action. Similarly, given
that (134) and (2’) types are multi-dimensional (with atoms) an iso-
tone mixed strategy equilibrium exists. Conditions (34) are satisfied in
supermodular and log-supermodular games given affiliated types, and
in games with independent types in which each player’s ex post pay-
off satisfies (a) supermodularity in own action and (b) non-decreasing
differences in own action and type. These results also extend to games
with a continuum action space when each player’s ex post payoff is
also continuous in his and others’ actions.

∗I am grateful to Susan Athey, Eddie Dekel, John McMillan, Barry Nalebuff, Robert
Wilson, and two anonymous referees for helpful suggestions and most especially to Paul
Milgrom for introducing me to lattice theory. This research has been supported by the John
Olin Foundation through a grant to the Stanford Institute for Economic Policy Research,
as well as by the State Farm Companies Foundation. E-mail: mcadams@mit.edu. Post:
MIT Sloan School of Management, E52-448, 50 Memorial Drive, Cambridge MA 02142
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1 Introduction

Monotone methods have proven to be powerful in the study of games with
strategic complementarity. For example, Milgrom and Roberts (1990) and
Vives (1990) show that supermodular games possess several useful proper-
ties, including existence of pure strategy equilibrium, monotone compara-
tive statics on equilibrium sets, and coincidence of the predictions of vari-
ous solution concepts such as Nash equilibrium, correlated equilibrium, and
rationalizability. Milgrom and Shannon (1994) generalize these results to
games with strategic complementarity including, as Athey (1998) shows, log-
supermodular games with affiliated types. This paper adds to this literature
by providing sufficient conditions for existence of a monotone pure (mixed)
strategy equilibrium in settings with multidimensional actions and multi-
dimensional atomless (atom) types. A player’s pure strategy is monotone,
technically “isotone”, iff his action is non-decreasing along every dimension
of his action space as his type increases along any dimension of his type
space. A mixed strategy is isotone, similarly, if all actions played by a higher
type are greater than or equal to all actions played by a lower type. The
sufficient conditions for these existence results are satisfied in the two most
widely studied sorts of games with strategic complementarity, supermodular
games and log-supermodular games, given affiliated types. Isotonicity is im-
portant since it often provides testable empirical implications. For instance,
in the Cournot-with-advertising example discussed in Section 1.1, lower pro-
duction and advertising costs are each associated with (weakly) higher sales
and advertising levels.

This paper departs from the usual strategic complements framework, how-
ever, and considers a broad class of games in which only some of the require-
ments of strategic complementarity are satisfied. Strategic complementar-
ity requires two sorts of monotone relationships between strategic variables:
“strategic complementarity between actions” and “complementarity within
own action”. This paper extends a new approach pioneered by Athey (2001)
to develop monotone methods that apply to games of incomplete information
which may fail to exhibit strategic complementarity between actions but in
which payoffs satisfy “monotone incremental returns in own type”.1 (Mil-

1Formally, strategic complementarity between actions = single-crossing in own action
and others’ actions, complementarity within own action = quasisupermodularity in own
action, and monotone incremental returns in own type = single-crossing in own action and
own type. Athey (2001) refers to monotone incremental returns in own type given any
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grom and Shannon (1994) do not require monotone incremental returns in
own type to prove existence of a pure strategy equilibrium but, naturally,
they can not guarantee existence of an isotone equilibrium.)

In a setting with one-dimensional actions and one-dimensional types,
Athey (2001) shows that a non-decreasing pure strategy equilibrium exists in
any finite game in which each player’s interim expected payoff satisfies mono-
tone incremental returns in own type given any non-decreasing strategies by
others. This paper generalizes this result in a setting with multi-dimensional
actions and multi-dimensional types, showing that an isotone pure strategy
equilibrium exists in any finite game in which each player’s interim expected
payoff satisfies complementarity in own action and monotone incremental
returns in own type given any isotone strategies by others. This result gener-
alizes to games with a continuum action space whenever each player’s ex post
payoff is also continuous in his and others’ actions, just as Athey (2001)’s
results generalize in this case.

The rest of the paper is organized as follows. Section 1.1 continues the
introduction, showing how a corollary of the main existence result can be
applied in an example with a continuum action space and differentiable pay-
offs. Section 2 lays out the basic model of incomplete information games with
finite action spaces and atomless types and provides definitions of important
terms. Section 3 states the main theorem as well as interesting corollaries
and three sets of sufficient primitive conditions. Section 4 provides the proof
of the main Theorem and related discussion, followed by some concluding
remarks and an appendix.

1.1 Illustration in games with differentiable payoffs

Consider an incomplete information game in which n players each receive a
signal ti = (t1i , ..., t

h
i ) ∈ [0, 1]h and choose an action ai = (a1

i , ..., a
k
i ) ∈ [0, 1]k.

Define each player’s interim expected payoff function πint
i given others’ pure

strategies a−i(·) as follows:

πint
i (ai, ti; a−i(·)) ≡

∫
[0,1]h(n−1)

πpost
i (ai, a−i(t−i), ti, t−i)f(t−i|ti)dt−i

where πpost
i is his ex post payoff and f(·|ti) is the conditional p.d.f. of others’

types given that player i’s type is ti. Suppose also that πpost
i (a, t), f(t−i|ti) are

non-decreasing strategies by others as “the single-crossing condition”.
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smooth functions (of a, t and of ti, respectively) so that πint
i is differentiable

in ai, ti. A specialized version of Corollary 2 of the main theorem applies to
this class of games:

Corollary. Suppose that, for each bidder i = 1, ..., n and all isotone strategy
profiles a−i(·) of others,

(1)
∂2πint

i

∂aj1
i ∂aj2

i

(·, a−j1,j2
i , ti; a−i(·)) ≥ 0 for all a−j1,j2

i , ti, 1 ≤ j1 < j2 ≤ k

(2)
∂2πint

i

∂aj1
i ∂tj

2

i

(·, a−j1
i , t−j2

i ; a−i(·)) ≥ 0 for all a−j1
i , t−j2

i , 1 ≤ j1 ≤ k, 1 ≤ j2 ≤ h.

Then an isotone pure strategy equilibrium exists.

((1) implies assumption (A4) of the Theorem, (2) implies (A5).) For illus-
tration purposes it is simplest to consider examples in which player types
are independent, since then the cross-partial inequalities (1),(2) on expected
payoffs are implied directly by the corresponding cross-partial inequalities on
ex post payoffs.

Example (Cournot with 2 advertising channels, n firms). Consider an
undifferentiated product Cournot competition game in which n risk-neutral
firms each choose a quantity qi and levels of two sorts of advertising e1

i , e
2
i

to expand the size of the total market. In the pharmaceutical context, for
example, drug companies advertise to patients through media advertising and
to doctors through detailing (such as office visits from company reps). Firms
also receive possibly multi-dimensional independent private information ti,
where higher own type implies (weakly) lower own advertising and production
costs. In particular, suppose that (i) D (p; e) = D(p)+γ(e) is total demand,
(ii) φi (e, t) is firm i’s advertising cost function, and (iii) ci(qi; t) is firm i’s
production cost function,2 where q, e, t refer to vectors of all firms’ quantities,
advertising levels, and types. Firm i’s ex post payoff is

πpost
i (q, e, t) = πi(q, e, t) ≡ qip (q, e)− ci (qi; t)− φi (e, t)

2For simplicity, suppose further that all functions are smooth and that ∂D
∂p ≤ 0, ∂D

∂e ≥ 0,
∂ci

∂ti
≤ 0, and ∂φi

∂ti
≤ 0. In particular, this implies that ∂p

∂q ≤ 0 and ∂p
∂e ≥ 0, hence that

∂2πi

∂qi∂ti
≥ 0 and ∂2πi

∂ei∂ti
≥ 0. Also, ∂2πi

∂ei∂qi
≥ 0 since advertising increases marginal revenue.
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where p (q, e) is the market-clearing price. If there were just one advertis-
ing channel, an isotone pure strategy equilibrium would always exist in this
example3 since

∂2πi

∂qi∂ei

≥ 0,
∂2πi

∂qi∂ti
≥ 0,

∂2πi

∂ei∂ti
≥ 0.

Given two advertising channels, however, an isotone equilibrium may fail
to exist if ∂2πi

∂e1
i ∂e2

i
6≥ 0. In this way, the results of this paper clarify the

effect of omitted strategic variables on monotone equilibrium relationships
between own action and own type. If the econometrician observes only one
of the channels (say detailing) in this augmented Cournot game, then she
will conclude that lower costs are associated with more detailing and more
production. This relationship may not hold in the actual underlying game,
however, if the marginal returns to detailing are not monotone in media
advertising levels. On the other hand, this is the only unobserved interaction
that matters to this monotone conclusion.

Example (Cournot with 1 advertising channel, 2 firms). This special
case of the previous example is a supermodular game in the sense of Milgrom
and Roberts (1990) if ∂2πi

∂ei∂ej
≥ 0. By providing existence of an equilibrium

in the alternative that ex post payoff does not satisfy this condition, the
results of this paper help the econometrician to test for supermodularity in
this game.

2 Model: Incomplete Information Games

This Section lays out the model of incomplete information games with atom-
less types and finite action spaces. Assumptions are numbered by (A#).
Corollaries to the main theorem apply to related models having atom types
and/or a continuum action space. These models are presented in the Ap-
pendix.

3Note that existence of an isotone equilibrium does not provide the basis for monotone
comparative statics. For example, suppose that a change in the tax code lowers all firms’
costs. In the new isotone equilibrium, some firms may produce and/or advertise less than
they did in the original equilibrium.
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2.1 Actions and Lattices

(A1) Each player i = 1, ..., n has a common action set L ⊂ Rk that
is a finite sublattice of k-dimensional Euclidean space with respect to
the product order on Rk.4

Definition (∨, ∧). Let (L,≥) be a partially ordered set and let S ⊂ L.
The least upper bound of S, ∨S, is the unique element of L – if it exists! –
satisfying ∨S ≤ c ⇔ a ≤ c for all a ∈ S and all c ∈ L. The greatest lower
bound of S, ∧S, is the unique element of L satisfying ∧S ≥ c ⇔ a ≥ c for all
a ∈ S and all c ∈ L. When S = {a, b}, I use the notation a ∨ b and a ∧ b.

Definition (Lattice, Sublattice, Complete). A lattice (L,≥,∨,∧) is a
partially ordered set (L,≥) such that a∨ b, a∧ b ∈ L for all a, b ∈ L. L1 ⊂ L
is a sublattice of L iff (L1,≥,∨,∧) is a lattice with respect to the same order
and operators as on L. L is complete if ∨S,∧S ∈ L for every subset S ⊂ L.

Every finite lattice is complete (Birkhoff (1967)).

Definition (Product order). Let x′ = (x′1, ..., x
′
k), x = (x1, ..., xk) be ele-

ments of Rk. x′ ≥ x in the product order iff x′m ≥ xm for all m = 1, ..., k. Rk

forms a lattice with respect to the product order:

(x′1, ..., x
′
k) ∨ (x1, ..., xk) = (max {x′1, x1} , ..., max {x′k, xk})

(x′1, ..., x
′
k) ∧ (x1, ..., xk) = (min {x′1, x1} , ..., min {x′k, xk})

A typical action is ai ≡
(
a1

i , ..., a
k
i

)
≡

(
am

i , a−m
i

)
, for m = 1, ..., k. A

typical action profile is a ≡ (a1, ..., an) ≡ (ai; a−i) ∈ Πn
i=1L. Similar subscript,

superscript, and bold notation will be used consistently throughout the paper
to refer to types and strategies as well as actions. For each m = 1, ..., k, define

Lm ≡
{
am

i ∈ R :
(
am

i , a−m
i

)
∈ L for some a−m

i ∈ Rk−1
}

By definition, L ⊂ Πk
m=1Lm. (I do not assume that L = Πk

m=1Lm.) For easy
reference, let Lm = {0, 1, ..., |Lm| − 1}.

4All results are easily generalizable to settings in which players have different action
sets that may be of different dimensionality. Similarly, the assumption of a common type
space is purely for expositional simplicity.
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2.2 Types and Strategies

(A2) Player i’s type ti is drawn from common support T = [0, 1]h and
t has an atomless joint distribution with a continuous density function
f(t) : [0, 1]nh → R+.

The type space is endowed with the product order.

Definition (Pure strategy, Isotone pure strategy). A pure strategy ai(·)
specifies an action ai(ti) ∈ L for each type ti ∈ T . A pure strategy ai(·) is
isotone iff t′i > ti implies ai(t

′
i) ≥ ai(ti).

Ii denotes the space of all of player i’s isotone pure strategies, I−i = Πj 6=iIj

the space of others’ isotone pure strategy profiles, and I = Πn
i=1Ij the space

of isotone pure strategy profiles.

2.3 Payoffs

Player i’s ex post payoff (or utility) Πpost
i (a, t) depends on the vector of types

and the vector of actions.

(A3) Πpost
i is bounded.

His interim expected payoff given his own type, similarly, depends on his
action and others’ strategies:

Πint
i (ai, ti; a−i(·)) = E

t−i

∣∣ti [
Πpost

i (ai, ti; a−i(t−i), t−i)|ti
]

Definition (Quasisupermodular). Let (L,≥,∨,∧) be a lattice and Θ an
index set. g : L×Θ → R is quasisupermodular in x iff

g(x′; θ) ≥ (>)g(x′ ∧ x; θ) ⇒ g(x′ ∨ x; θ) ≥ (>)g(x; θ)

for all x′, x ∈ L and all θ ∈ Θ. (Weak inequality implies weak inequality and
strict inequality implies strict inequality.)

(A4) Πint
i (ai, ti; a−i(·)) is quasisupermodular in ai for all ti ∈ T and all

a−i(·) ∈ I−i. (The relevant index set is Θ = T × I−i.)
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Definition (Single-crossing property). Let (L,≥,∨,∧) be a lattice, (T,≥)
a partially ordered set, and Θ an index set. g : L× T ×Θ → R satisfies the
Milgrom-Shannon single-crossing property in (x; t) or, simply, single-crossing
in (x; t) iff

g(x′, t; θ) ≥ (>)g(x, t; θ) ⇒ g(x′, t′; θ) ≥ (>)g(x, t′; θ)

for all x′ > x ∈ L, all t′ > t ∈ T , and all θ ∈ Θ.

(A5) Πint
i (ai, ti; a−i(·)) satisfies single-crossing in (ai; ti) for all a−i(·) ∈

I−i. (The relevant index set is Θ = I−i.)

2.4 Best Response and Equilibrium

Let
BRi (ti, a−i(·)) ≡ arg max

a∈L
Πint

i (a, ti; a−i(·))

denote player i’s best response action set when others follow pure strategies
a−i(·). Define bidder i’s isotone-restricted best response correspondence

BR≥
i : I−i → P (Ii)

a−i(·) 7→ {ai(·) ∈ Ii : ai(ti) ∈ BRi (ti, a−i(·)) for all ti ∈ T}.

(P(X) denotes the set of all subsets of X.) a∗(·) ∈ I is an isotone pure
strategy equilibrium iff

a∗i (·) ∈ BR≥
i

(
a∗−i(·)

)
for all i.

3 Existence of Isotone Equilibrium

Theorem 1. Under assumptions A1-A5, an isotone pure strategy equilibrium
exists.

Corollary 1. Under assumptions A1, A2’,A3-A5, an isotone mixed strategy
equilibrium exists.

See page 16 for A2’, which replaces the atomless type assumption with one
of finitely many atom types. That is to say, each player’s type has finite
support. An isotone mixed strategy is a sort of mixed strategy equilibrium
that has a lot of monotone structure. If t′i > ti, then all actions played with
positive probability by type t′i are greater than or equal to all actions played
by type ti. Isotone mixed strategy equilibrium is defined in the Appendix.
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Corollary 2. Under assumptions A1’, A2-A5, and A6, an isotone pure strat-
egy equilibrium exists.

Corollary 3. Under assumptions A1’, A2’, A3-A5, and A6, an isotone
mixed strategy equilibrium exists.

See page 16 for A1’ and A6. A1’ replaces the finite lattice action set assump-
tion with an assumption that each player’s action set is the unit cube [0, 1]k.
A6 adds the requirement that each player’s ex post payoff is continuous in
own and others’ actions.

3.1 Sufficient primitive conditions for A4,A5

I gather here three sets of primitive conditions that others’ work proves are
sufficient for interim expected payoff to satisfy quasisupermodularity in own
action and single-crossing in own action and type. I refer the reader to this
other work for the formal definitions of such standard terms as affiliated,
supermodular, log-supermodular, and non-decreasing differences.

Types are affiliated and Πpost
i (ai, ti; a−i, t−i) is supermodular in (a, tj)

for all j. In this case, Athey (2002) proves that Πint
i (ai, ti; a−i(·)) is

supermodular in (a, ti).

Types are affiliated and Πpost
i (ai, ti; a−i, t−i) is log-supermodular in

(a, t). In this case, Athey (2001) proves that Πint
i (ai, ti; a−i(·)) is log-

supermodular in (a, ti).

Types are independent and Πpost
i (ai, ti; a−i, t−i) is supermodular in ai

with non-decreasing differences in (ai, ti). In this case, expected payoff
Πint

i (ai, ti; a−i(·)) is supermodular in ai and has non-decreasing differ-
ences in (ai, ti). See Topkis (1979).

In Milgrom and Roberts (1990) and Vives (1990), a supermodular game is one
in which Πpost

i (ai, ti; a−i, t−i) is supermodular in a, with no conditions placed
on the distribution of types. Thus, these sufficient primitive conditions are
only satisfied in a subclass of supermodular (and log-supermodular) games.
This stands to reason, of course, since I prove that an isotone pure strategy
equilibrium exists.
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4 Proof of Theorem 1

4.1 Monotonicity Theorem

Theorem 1 is essentially a corollary of Milgrom and Shannon (1994)’s pow-
erful Monotonicity Theorem. Indeed, in my view, the main contribution
of this paper is to uncover an amazing amount of structure possessed by
arg maxx g(x, t) when x is multidimensional and g satisfies its conditions.
This structure in turn happens to be exactly what is required to extend
Athey (2001b)’s ingenious approach to proving existence of monotone pure
strategy equilibrium in the multi-dimensional action case. It seems worth-
while, then, to discuss these prior contributions and thereby indicate what
I feel is at the heart of my contribution. First, I state a specialized (and
weakened) version of the Monotonicity Theorem.5

Theorem. (Milgrom and Shannon (1994)) Let g : L × T → R, where
(L,≥,∨,∧) is a complete lattice and (T,≥) a partially ordered set. Then
arg maxx∈L g(x, t) is a complete sublattice for all t and increasing in the strong
set order if g is quasisupermodular in x and satisfies single-crossing in (x; t).

Definition (Strong set order). Let (L,≥,∨,∧) be a lattice. The strong
set order ≥L is a partial ordering on P(L), the space of subsets of L. For
A, A′ ⊂ L, A′ ≥L A iff a′ ∈ A′, a ∈ A implies that a′ ∨ a ∈ A′, a′ ∧ a ∈ A.

Definition (Increasing in the strong set order). Let (L,≥,∨,∧) be a
lattice and (T,≥) a partially ordered set. A correspondence g : T → P(L) is
increasing in the strong set order iff g(t′) ≥L g(t) whenever t′ > t.

Given assumptions A4,A5, for any fixed profile a−i(·) of others’ isotone
pure strategies, one may apply the Monotonicity Theorem to the interim
expected payoff function πint

i (·, ·; a−i(·)) : L× T → R. Thus, BRi (ti, a−i(·))
(shorthand BRi(ti)) is a complete sublattice for all ti and increasing in the
strong set order. Since L is finite, this set of best response actions is always
non-empty. Theorem 4.1 also implies directly that an isotone best response
strategy always exists. Proof: ∨BRi(·) is an isotone best response pure
strategy. (i) ∨BRi(ti) is a best response action for each ti since BRi(ti) is

5Milgrom and Shannon (1994) have a stronger “if and only if” formulation that also
accounts for how the arg maxx g(x, t) set varies with a constraint S ⊂ L. I do not leverage
this aspect of their result, since each player’s action set is fixed.

10



a sublattice. (ii) ∨BRi(·) is isotone since BRi(·) is increasing in the strong
set order. For any t′i > ti, (∨BRi(t

′
i)) ∨ (∨BRi(ti)) = z ∈ BRi(t

′
i). But

z > ∨BRi(t
′
i) unless ∨BRi(t

′
i) ≥ ∨BRi(ti).

4.2 Order-interval inclusivity

In the context of one-dimensional actions, the meaning and strength of this
structure on the best response set is relatively easy to grasp. In this case,
every subset of actions is a complete sublattice and increasingness in the
strong set order has a simple, equivalent formulation.

Fact. Suppose that X is a finite totally ordered set and that B(t) ⊂ X 6= ∅
for all t. Then B(t) is increasing in the strong set order iff (1) min B(t) and
max B(t) are non-decreasing in t and (2) x ∈ B(t) ∩B(t′′) implies x ∈ B(t′)
for all t < t′ < t′′.

Thus, the set of types ti for whom ai ∈ BRi(ti) is order-interval inclusive,
for all ai ∈ L.

Definition (Order-interval inclusive). 6 Let (T,≥) be a partially ordered
set. S ⊂ T is order-interval inclusive if t′′ > t′ > t and t′′, t ∈ S implies that
t′ ∈ S.

The labelled regions in Figures 1, 2 on page 13 provide several examples of
order-interval inclusive subsets of [0, 1]2. (Note that an order-interval inclu-
sive set need not be connected.) Order-interval inclusivity is also intimately
linked to (1) the definition of an isotone strategy and (2) the convexity of the
set of isotone strategies with respect to certain convex combination operators
as well as (3) the convexity of the set of isotone best response strategies in
the one-dimensional case.

For each dimension m = 1, ..., k of the action space and each j = 0, 1, ..., |Lm|,
define

Xm
i (j, ai(·)) ≡ {ti ∈ [0, 1]h : am

i (ti) < j}
Am

i (j, ai(·)) ≡ ∪t−1
i ∈[0,1]h−1cl

(
{ti ∈ C(t−1

i ) : am
i (ti) < j}

)
.

where C(t−1
i ) ≡ {(x, t−1

i ) : x ∈ [0, 1]} and cl(X) is the closure of X. When
there can be no confusion, I drop notational reference to the strategy ai(·). By

6I have not found this concept defined in previous work. I chose “order-interval inclu-
sive” since t′′ > t ∈ S implies that the order-interval [t, t′′] ⊂ S.
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definition, let Xm
i (|Lm| = Am

i (|Lm|) = T . (All types play an action less than
|Lm|.) Xm

i (j) is the less-than set of types that play an action whose m-th
coordinate is strictly less than j. Am

i (j) is a closely related set that happens to
be convenient for technical purposes. Note that Xm

i (j) ⊆ Am
i (j) ⊆ cl(Xm

i (j))
and any pair of these sets has zero measure symmetric difference (union minus
intersection).

Lemma 1. ai(·) is an isotone strategy iff (i) Am
i (j, ai(·)) is order-interval

inclusive for all m, j ∈ Lm and (ii) 0 ∈ Am
i (0, ai(·)).

Proof. ai(·) is isotone iff am
i (·) is non-decreasing for m = 1, ..., k. Suppose

that t′ > t but j = am
i (t′) < am

i (t) = j′ where j′ > j. Since 0 ∈ Am
i (0) and

Am
i (j + 1) is order-interval inclusive, every type t such that 0 < t < t′ must

play an action in the set {0, ..., j}, contradicting j′ > j.

4.3 Athey Map and Convexity of Isotone Strategies

Define equivalence classes of isotone strategies as follows. a′i(·), ai(·) are
equivalent iff the symmetric difference of Am

i (j, a′i(·)), Am
i (j, ai(·)) has zero

measure for all m = 1, ..., k and all j ∈ Lm. (In all equivalent strategies,
the boundaries of the less-than sets in the type space coincide and the same
action is played by types who are not on any of these boundaries.)

This representation of equivalence classes of strategies as less-than sets in
the type space is an extension of Athey’s representation of strategies as vec-
tors. (Each vector component in Athey’s representation corresponds to the
degenerate boundary between the regions in [0, 1] playing two consecutive ac-
tions.) Indeed, when invoking Glicksberg’s Fixed Point Theorem, I leverage
the fact that this “Athey map” Ai is a homeomorphism between the space
of strategy classes and a convex, compact subset of an (infinite-dimensional)
vector space, where the domain and range are both endowed with the topol-
ogy of pointwise convergence.7 Note that interim expected payoffs are contin-
uous in the players’ strategies when endowed with the topology of pointwise
convergence. Consequently, the “projection” of the isotone-restricted best
response correspondence via the Athey map,

A−1 ◦BR≥ ◦ A ≡
(
A−1

1 ◦BR≥
1 ◦ A−1, ..., A

−1
−n ◦BR≥

n ◦ A−n

)
7Each less-than set Am

i (j) is identified with its upper boundary which in turn may be

represented by the vector
(
max

(
Am

i (j) ∩ C(t−1
i )

))t−1
i ∈[0,1]h−1

.
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has a closed graph.8 Since an isotone best response strategy always exists,
A−1 ◦ BR≥ ◦ A is non-empty valued. Also note that properties (i) and
(ii) of Lemma 1 are preserved under the pointwise limit, so the range of
A−1 ◦ BR≥ ◦ A is closed in the product space Πk=1,...,m,j∈Lm,θ∈Θ[0, 1]. Since
this product space is itself compact in the topology of pointwise convergence
by Tychonoff’s Theorem, A−1 ◦BR≥ ◦ A has compact range.

Now, with respect to the partition [0, 1]h = ∪t−1
i ∈[0,1]h−1C(t−1

i ), one may
define a convex combination operation on the space of isotone strategies as
follows. For any two given isotone strategies a′i(·),ai(·), define the “convex
combination strategy” ai(·; α) ≡ αa′i(·) + (1 − α)ai(·) by taking the “line-
by-line” convex combination of the less than sets corresponding to strategies
a′i(·), ai(·):

Am
i (j;ai(·; α)) ≡

∪t−1
i

(
α

(
Am

i (j; a′i(·)) ∩ C(t−1
i )

)
+ (1− α)

(
Am

i (j; ai(·)) ∩ C(t−1
i )

))
where for X, Y ⊂ C(t−1

i ), αX + (1 − a)Y represents the usual convex com-
bination of sets. (When X = [0, max X], Y = [0, max Y ], αX + (1 − α)Y =
[0, α max X +(1−α) max Y ].) For example, Figures 1 and 2 illustrate α = .5
convex combination of two strategies when T = [0, 1]2 and L = {0, 1, 2}.
The number 0,1,2 in each region of the type-space is the action played in
that region.

@
@

@
@@

0 1

1
2

0

1

Figure 1: Two isotone strategies

A
A

A
AA

0 1

1 2

Figure 2: Convex combination

Lemma 2. {Am
i (j, a(·; α))}m,j∈Lm satisfies conditions (i,ii) of Lemma 1 when-

ever {Am
i (j, a′(·))}m,j∈Lm and {Am

i (j, a(·))}m,j∈Lm satisfy these conditions.

Proof. In the Appendix.

8I thank an anonymous referee for suggesting this space-saving approach for proving
the closed graph property.
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Thus, the map A−1 ◦BR≥ ◦ A has convex range.
More important than the convexity of the set of isotone strategies is the

convexity of the set of isotone best response strategies, i.e. the fact that
A−1 ◦ BR≥ ◦ A is convex-valued. In the case of one-dimensional actions,
this fact also follows immediately from order-interval inclusivity: The set of
types who play a given action in the strategy ai(·; α) is a subset of the smallest
order-interval inclusive set containing the union of the sets of types who play
that action in strategies a′i(·) and ai(·). In my view, this is the fundamental
structure at the heart of Athey (2001)’s lovely proof in the one-dimensional
action case.

When actions are multi-dimensional, however, order-interval inclusivity
of the set of types who find each given action to be a best response is not
nearly sufficient to conclude that the set of isotone best response strategies
is convex.

Example. L = {0, 1, 2} × {0, 1} × {0, 1, 2}, T = [0, 1]. Let a−i(·) be a given
profile of others’ isotone pure strategies and let BRi(ti) ≡ BRi(ti; a−i(·)), the
set of best response actions for type ti. Consider two isotone pure strategies:

a′i(ti) = (0, 0, 1) for all ti ∈ [0, 1/2)

= (1, 1, 2) for all ti ∈ [1/2, 1]

ai(ti) = (2, 0, 0) for all ti ∈ [0, 1/2)

= (2, 1, 0) for all ti ∈ [1/2, 3/4)

= (2, 1, 1) for all ti ∈ [3/4, 1]

The Athey map suggests the following (self-explanatory) tabular representa-
tion of these strategies:

a′i(·) j = 0 j = 1 j = 2
m = 1 [0, 1/2] [1/2, 1] [1, 1]
m = 2 [0, 1/2] [1/2, 1] N/A
m = 3 [0, 0] [0, 1/2] [1/2, 1]

ai(·) j = 0 j = 1 j = 2
m = 1 [0, 0] [0, 0] [0, 1]
m = 2 [0, 1/2] [1/2, 1] N/A
m = 3 [0, 3/4] [3/4, 1] [1, 1]

Taking a convex combination (α = .5), one gets

14



ai(·; .5) j = 0 j = 1 j = 2
m = 1 [0, 1/4] [1/4, 1/2] [1/2, 1]
m = 2 [0, 1/2] [1/2, 1] N/A
m = 3 [0, 3/8] [3/8, 3/4] [3/4, 1]

In strategy ai(·; .5), all types in (0, 1/4) play (0, 0, 0), types in (1/4, 3/8) play
(1, 0, 0), types in (3/8, 1/2) play (1, 0, 1), types in (1/2, 3/4) play (2, 1, 1), and
types in (3/4, 1) play (2, 1, 2). Note that several actions played in the convex
combination strategy are not played in either of the two original strategies.
Indeed, revealed preference and the order-interval inclusivity structure pro-
vide no useful leverage by themselves in proving that the new strategy is a
best response.

Rather, I leverage an even more powerful structure that is based (in
part) on the observation that, for each m = 1, ..., k and j ∈ Lm, the set of
types who have some best response action whose m-th coordinate equals j
is order-interval inclusive. The specific idea of the proof of Theorem 2 is
to consider first the strategies derived from a′i(·), ai(·) by taking the g.l.b.
and the l.u.b. of the actions played in both strategies. Then leverage the
increasing in the strong set order property to enlarge the set of actions that
are best responses for type ti. For example, consider a type ti ∈ (3/8, 1/2).
By the lattice property, type ti finds (2, 0, 1) = (0, 0, 1)∨ (2, 0, 1) to be a best
response whereas types greater than ti find (1, 1, 0) = (1, 1, 2) ∧ (2, 1, 0) to
be a best response. Now we can use increasingness in the strong set order to
conclude that (2, 0, 1)∧ (1, 1, 0) = (1, 0, 0) ∈ BRi(ti). Repeating the process,
with attention focused only on those actions with initial coordinates (1, 0),
my proof demonstrates that there is a best response action whose initial
coordinates are (1, 0, 1), as desired. (An induction argument applies to any
number of action dimensions.)

Convexity of the set of isotone best response strategies is at the heart of
the paper, so I label it as a Theorem:

Theorem 2. A−1 ◦BR≥ ◦ A is convex-valued.

Proof. In the Appendix.

Once all preceding Lemmas and Theorems have been proven, I may apply
Glicksberg (1952)’s Fixed Point Theorem to A−1 ◦BR≥ ◦A. A fixed point of
this correspondence corresponds to a profile of equivalence classes of isotone

15



strategies. As a final step, Part 4 of the proof of Theorem 3 suffices to imply
that some selection from these classes is an isotone equilibrium.

5 Concluding Remarks

This paper shows how two non-primitive conditions, (i) quasisupermodu-
larity in own action and (ii) single-crossing in own action and type of in-
terim expected payoff whenever others follow isotone strategies, are sufficient
for existence of an isotone pure strategy equilibrium in a very general set-
ting with finitely many multi-dimensional actions and a continuum of multi-
dimensional types. Furthermore, these conditions are satisfied in a variety
of important classes of games such as supermodular and log-supermodular
games with affiliated types. This includes games such as my Cournot-with-
advertising example in which there is a lot of monotone structure but not all
of the requirements of strategic complementarity hold. Another interesting
application studied by McAdams (2001) is to multi-unit auctions of iden-
tical objects with multi-unit demand. Although strategic complementarity
fails in wholesale fashion in the uniform-price and pay-as-bid auctions, for
instance, each player’s bid turns out to be additively separable in his bid
for a first unit, for a second unit, and so on. This additive separability is a
very strong form of complementarity in own action, implying condition (i).
Given independent types and risk-neutral bidders, McAdams (2001) proves
that bidders’ expected payoffs satisfy (ii) as well.

Appendix

Atom Types and/or Continuum Action Space

Alternative / Additional Model Assumptions

(A1’) Player i’s action set is [0, 1]k.

(A2’) Player i’s type ti is drawn from finite support in (0, 1)h.

(A6) Πpost
i (a, t) is continuous in a for all t.

Definition (Mixed strategy, isotone mixed strategy). A mixed strat-
egy αi(·, ·) specifies a probability distribution over actions αi(·, ti) for each
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type ti. An isotone mixed strategy is one in which t′i > ti, αi(a
′
i, t

′
i) > 0, and

αi(ai, ti) > 0 imply that a′i ≥ ai.

A profile of isotone mixed strategies α(·, ·) is an equilibrium iff αi(ai, ti) > 0
implies that ai ∈ BRi(ti; α−i(·, ·)).

Proof of Corollary 2

Using a well understood technique9, each type ti in the model with atoms can
be associated with a region of types in an equivalent model without atoms. In
this equivalent model, an isotone pure strategy equilibrium exists by Theorem
1. This implies that in the original model a mixed strategy equilibrium exists
in which (i) the set of actions played with positive probability by any given
type is a totally ordered set and (ii) t′i > ti implies that all actions played
by type t′i are greater than or equal to all actions played by ti. But (ii) is
precisely the definition of an isotone mixed strategy equilibrium. (So I have
proven that the mixed strategy equilibrium is isotone and all actions played
by each type are comparable.)

Proof of Corollaries 3,4

These results follow directly from Theorem 2 in Athey (2002), so I omit
details. The only difference is that each player’s action is multi-dimensional,
so the only step that does not obviously immediately carry through is the
conclusion that any sequence of isotone pure strategy profiles aj(·) has a
subsequence that converges to an isotone pure strategy profile a∗(·). But it
is straightforward to apply Helly’s Selection Theorem to the sequences am

j (·)
separately, each of which has a subsequence converging to am

∗ (·).

Proof of Lemma 2

Define A
m

i (j, ai(·); t−1
i ) ≡ max

(
Am

i (j, ai(·)) ∩ C(t−1
i )

)
. {Am

i (j, ai(·))}m,j∈Lm

satisfy conditions (i,ii) iff conditions (a,b) are satisfied

(a) Am
i (j, a(·)) ∩ C(t−1

i ) = [0, A
m

i (j, ai(·); t−1
i )]× t−1

i for all t−1
i .

(b) t̃−1
i > t−1

i implies that A
m

i (j, ai(·); t̃−1
i ) ≤ A

m

i (j, ai(·); t−1
i ).

9See for instance footnote 8 in Milgrom (1981).
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“⇒”: (a) follows immediately from order-interval inclusivity of Am
i (j, ai(·)) 3

0. (b) follows from isotonicity. Suppose to the contrary that A
m

i (j, ai(·); t−1
i ) <

x < A
m

i (j, ai(·); t̃−1
i ). Then am

i

(
x, t−1

i

)
≥ j whereas am

i

(
x, t̃−1

i

)
< j, violating

the fact that am
i (·) is non-decreasing. “⇐”: (ii) follows immediately from (a)

for t−1
i = 0. Now let t̃i ≥ ti. For order-interval inclusivity of Am

i (j, ai(·)) it
suffices to show that am

i (t̃i) < j implies am
i (ti) < j for all m, j ∈ Lm. But

then
t−1
i ≤ t̃−1

i ≤ A
m

i (j, ai(·); t̃−1
i ) ≤ A

m

i (j, ai(·); t−1
i )

implying that am
i (ti) < j. (The second inequality follows from am

i (t̃i) < j, the
third from (b).) Finally, properties (a,b) are clearly preserved by convex com-
bination: whenever (a,b) are satisfied by {Am

i (j, a′i(·))} and {Am
i (j, ai(·))},

then they are satisfied by {Am
i (j, a′i(·; α))} as defined in Section 4.

Proof of Theorem 2

Preliminaries: The type space has partition T = {C(t−1
i )}t−1

i ∈[0,1]h−1
, where

C(t−1
i ) ≡ {(x, t−1

i ) : x ∈ [0, 1]}. This partition induces a convex combination
operation of the equivalence classes of isotone strategies, as defined in Section
4. Let ai(·; α) be any isotone strategy in the class gotten by taking a convex
combination with weights α, 1− α on the classes containing a′i(·), ai(·). All
equivalent strategies specify the same action for all types in the interior of
the regions Am

i (j, ai(·; α) for k = 1, ...,m, j ∈ Lm. In Parts 1-3, I will prove
that the action ai(ti; α) is a best response action for such types. Then in
Part 4 I will construct an equivalent isotone strategy âi(·; α) that specifies a
best response action for all types.

In the proof of Lemma 2 I used the notation A
m

i,t−1
i

(j; ai(·)) to denote the

l.u.b. of the types in the one-dimensional subset C(t−1
i ) that play an action

whose m-th dimension is strictly less than j. (As type increases through
such a so-called “switching point”, the m-th coordinate of the action played
switches from one strictly less than j to one that is weakly greater than j.)
Let Di denote the set of all such switching points. For all types ti 6∈ Di, I
will prove that the action played by that type is a best response given only
that the actions played by types in C(t−1

i ) in strategies a′i(·), ai(·) are all best
response actions. Without loss, then, I may focus entirely on the
one-dimensional set of types C(t−1

i ) and, indeed, drop all reference to
t−1
i . Thus, for Parts 1-3, I will treat the notationally simpler case in which

T = [0, 1]. (All superscripts are dropped and any reference to the full set of
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types refers instead to the subset C(t−1
i ).)

For a given type t̂i /∈ Di, I need to show that ai(t̂i; α) ≡
(
a1(α), ..., ak(α)

)
belongs to the set BRi(t̂i) of best response actions. Define

BRm
i (ti) ≡

{
am ∈ Lm :

(
am, a−m

)
∈ BRi(ti) for some a−m ∈ L−m

}
Part 1: For the duration of this part, fix m ∈ {1, ..., k}. I make five points
which will be referred to throughout the proof as “the first point”, “the
second point”, etc... First, define notation related to revealed preference.
Given that ai(·), a′i(·) are best response strategies, revealed preference implies
that am(α) ∈ BRm

i (ti) for all types ti who play an action with am(α) as its
m-th coordinate in either strategy. By the definition of switching points, this
includes all types ti ∈ int

(
Sam(α)(ai(·))

)
∪ int

(
Sam(α)(a′i(·))

)
where

Sam(α)(ai(·)) ≡
[
A

m

i (am(α), ai(·)), A
m

i (am(α) + 1, ai(·))
]

Sam(α)(a′i(·)) ≡
[
A

m

i (am(α), a′i(·)), A
m

i (am(α) + 1, a′i(·))
]

Sam(α)(ai(·)) is the closure of the order-interval of types who play an action
with m-th coordinate am(α) in the strategy ai(·). Similarly, Sam(α)(a′i(·))
contains types who play an action with m-th coordinate am(α) in the strategy
a′i(·). Define the following shorthand:

Hm ≡
[
t̂i, 1

]
∩

(
Sam(α)(a′i(·)) ∪ Sam(α)(ai(·))

)
Lm ≡

[
0, t̂i

]
∩

(
Sam(α)(a′i(·)) ∪ Sam(α)(ai(·))

)
Hm (Lm) is mnemonic for “types that are Higher (Lower) than t̂i that play
an action equal to am(α) on the m-th dimension in either strategy a′i(·) or
ai(·)”. (Lm should not be confused with the action lattice L = Πk

m=1Lm.)
Note that these sets are closed and that all types ti in the interior of

Hm ∪ Lm have a best response action whose m-th coordinate equals am(α).
(By construction, the action played by such a type must have m-th coordinate
equal to am(α) in either strategy a′i(·) or ai(·). Types not in the interior –
i.e. at a switching point – may not have such a best response action.)

Second, reduce the problem to 1/2-1/2 convex combinations. The set of
types ti 6∈ Di such that ai (ti, α) = am(α) is the interior of the interval

Sam(α)(âi(·; α)) ≡ αSam(α)(ai(·)) + (1− α)Sam(α)(a′i(·))

where this is the usual convex combination of sets. (Endpoints of this interval
are switching points at which the player’s action jumps along the m-th dimen-
sion.) In particular, for any such type ti, the action ai(ti; α) = ai(ti; α̃) for all
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α̃ in a neighborhood of α. Thus, I only need to prove that ai(ti; α) ∈ BRi(ti)
for α belonging to a dense subset of [0, 1]. By an induction argument, there-
fore, it suffices to prove that ai(ti; 1/2) ∈ BRi(ti) (i.e. for α = 1/2). Base
step: ai(ti; α) ∈ BRi(ti) for all ti when α ∈ {0, 1} since a′i(·), ai(·) are best re-
sponse strategies. Induction step which I will address in the rest of the proof:
a∗i (ti; α) ∈ BRi(ti) for all ti whenever a∗i (ti; α+ ∂), a∗i (ti; α− ∂) ∈ BRi(ti) for
all ti. (a∗i (·; α) is the well-defined isotone best response pure strategy con-
structed in Part 4 of the proof.) Note that the induction step is equivalent to
proving that a∗i (ti; 1/2) ∈ BRi(ti) for all ti whenever a′i(ti), ai(ti) ∈ BRi(ti)
for all ti (by shifting and rescaling α− ∂ → 0 and α + ∂ → 1).

Third, some type has a best response action whose m-th coordinate equals
am(1/2). Since t̂i /∈ Di, one of the intervals Sam(1/2)(a′i(·)), Sam(1/2)(ai(·))
must have non-empty interior. Thus, there must be some type ti so that either
am

i (ti) = am(1/2) or a
′m
i (ti) = am(1/2), implying that am(1/2) ∈ BRm

i (ti).
Fourth, define 4m and derive some of its important properties. Since

t̂i /∈ Di,
t̂i ∈ int

(
Sam(α)(ai(·; 1/2))

)
where Sam(1/2)(ai(·; 1/2)) was defined in the first point. Thus,

W ≡ Hm ∩
(
2t̂i − Lm

)
also has non-empty interior. Define

4m ≡ max W − t̂i

In words, 4m is the maximum length y such that t̂i−y ∈ Lm and t̂i+y ∈ Hm.
Key properties of 4m include:

• 4m > 0: Follows from the fact that W has non-empty interior and
min W ≥ t̂i. (This fact will be used in Part 2 when I argue that types
t̂i − 4m + ε and t̂i + 4m − ε have a best response action with m-th
coordinate equal to am(1/2).)

• It can not be that both t̂i − 4m = max Lm and t̂i + 4m = min Hm:
Otherwise, by definition of 4m, one of the sets Lm, Hm must be a sin-
gleton and t̂i /∈ int

(
Sam(α)(ai(·; 1/2))

)
, a contradiction. (For example,

if |Lm| = 1 and t̂i +4m = min Hm, then t̂i = min Sam(α)(ai(·; 1/2)).)

• max
{
am′

i (ti), a
m
i (ti)

}
≤ am(1/2) for all ti < t̂i − 4m: This and the

next facts follow immediately from the definition of 4m.
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• min
{
am′

i (ti), a
m
i (ti)

}
≤ am(1/2) for all ti < t̂i +4m.

• max
{
am′

i (ti), a
m
i (ti)

}
≥ am(1/2) for all ti > t̂i −4m.

• min
{
am′

i (ti), a
m
i (ti)

}
≥ am(1/2) for all ti > t̂i +4m.

By the second of these bulleted observations, either t̂i − 4m + ε ∈ Lm or
t̂i +4m − ε ∈ Hm for small enough ε. This implies that either

max{am
i

(
t̂i −4m + ε

)
, a

′m
i

(
t̂i −4m + ε

)
} = am(1/2) or

min{am
i

(
t̂i +4m − ε

)
, a

′m
i

(
t̂i +4m − ε

)
} = am(1/2)

and hence that

am(1/2) ∈ BRm
i

(
t̂i −4m + ε

)
∪BRm

i

(
t̂i +4m − ε

)
Fifth, define the meet and join strategies a∧i (·), a∨i (·) and derive some of

their important properties. Reorder the dimensions of player i actions with
a permutation ρ on {1, ..., k} so that

ρ(m1) ≥ ρ(m2) ⇔4m1 ≥ 4m2

where the positive constants 4m were defined in the fourth point. To sim-
plify notation, relabel dimensions so that ρ(m) becomes m. Under this new
reordering, then, m1 ≥ m2 ⇔ 4m1 ≥ 4m2 . Now, for each non-negative
z /∈ {41, ...,4m}, note that there exists m(z) ∈ {1, ..., k} such that

4m < z for all m ≤ m(z),4m > z for all m > m(z)

For each such z, consider the actions

a∨i
(
t̂i − z

)
≡ a′i

(
t̂i − z

)
∨ ai

(
t̂i − z

)
a∧i

(
t̂i + z

)
≡ a′i

(
t̂i + z

)
∧ ai

(
t̂i + z

)
Note that a∨i (·) is defined over [0, ti]\

{
t̂i −41, ..., t̂i −4k

}
whereas a∧i (·)

is defined over [t̂i, 1]\
{
t̂i +41, ..., t̂i +4k

}
. a∨i

(
t̂i − z

)
∈ BRi

(
t̂i − z

)
and

a∧i
(
t̂i + z

)
∈ BRi

(
t̂i + z

)
since the set of best response actions is a sublattice.

Furthermore, by the bulleted observations in the fourth point,

a∨i
(
t̂i −4m − ε

)
≤ am(1/2), a∨i

(
t̂i −4m + ε

)
≥ am(1/2)

a∧i
(
t̂i +4m − ε

)
≤ am(1/2), a∧i

(
t̂i +4m + ε

)
≥ am(1/2)

21



for all ε > 0. Thus, since m > m(z) implies that 4m > z, t̂i −4m < t̂i − z
and t̂i +4m > t̂i − z and therefore that

am∨
i

(
t̂i − z

)
≥ am(1/2) for all m > m(z)

am∧
i

(
t̂i + z

)
≤ am(1/2) for all m > m(z)

Similarly, since m ≤ m(z) implies 4m < z,

am∨
i

(
t̂i − z

)
≤ am(1/2) for all m ≤ m(z)

am∧
i

(
t̂i + z

)
≥ am(1/2) for all m ≤ m(z)

Part 2: For a given m ∈ {1, ..., k}, define

m ≡ lim
ε→0

m (4m − ε)

m ≡ lim
ε→0

m (4m + ε)

where m(·) is defined in the fifth point above. Thus, m ≤ m ≤ m, 4m =
... = 4m, 4j < 4m for all j < m, and 4j > 4m for all j > m. Define the
shorthand

âm> ≡ a∧i
(
t̂i +4m + ε

)
∧ a∨i

(
t̂i −4m + ε

)
ãm> ≡ âm> ∨ a∧i

(
t̂i +4m − ε

)
âm< ≡ a∨i

(
t̂i −4m − ε

)
∨ a∧i

(
t̂i +4m − ε

)
ãm< ≡ âm< ∧ a∨i

(
t̂i −4m + ε

)
(a∧i (·), a∨i (·) are defined in the fifth point above, 4m in the fourth.) I use
an m subscript here not to confuse the fact that ãm>, etc.. as actions are
vectors: ãj

m> is the j-th coordinate of the action ãm>.
The key step is to show that

ãm> ∈ BRi

(
t̂i +4m − ε

)
, ãm< ∈ BRi

(
t̂i −4m + ε

)
for some small ε > 0. First,

âm> ∈ BRi

(
t̂i −4m + ε

)
since BRi (·) is increasing in the strong set order, a∧i

(
t̂i +4m + ε

)
∈

BRi

(
t̂i +4m + ε

)
, and a∨i

(
t̂i −4m + ε

)
∈ BRi

(
t̂i −4m + ε

)
. And again,
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since BRi (·) is increasing in the strong set order and a∨i
(
t̂i +4m − ε

)
∈

BRi

(
t̂i +4m − ε

)
, I conclude that

ãm> ∈ BRi

(
t̂i +4m − ε

)
By similar logic,

âm< ∈ BRi

(
t̂i +4m − ε

)
, ãm< ∈ BRi

(
t̂i −4m + ε

)
Now, I complete this part of the proof by showing that

ãj
m< ≥ aj(1/2) ≥ ãj

m> for all j < m

ãj
m< = aj(1/2) = ãj

m> for all m ≤ j ≤ m

ãj
m< ≤ aj(1/2) ≤ ãj

m> for all j > m

These facts all follow from properties of the meet and join strategies a∧i (·),
a∨i (·). For j < m and small enough ε, the following types are ranked:

t̂i −4m − ε < t̂i −4m + ε < t̂i −4j <

< t̂i +4j < t̂i +4m − ε < t̂i +4m + ε

inducing the following rankings among the j-th dimension of actions played
by those types:

(a1): aj∨
i

(
t̂i −4m + ε

)
≤ aj(1/2)

(a2): aj∧
i

(
t̂i +4m − ε

)
≥ aj(1/2)

(a3): aj∧
i

(
t̂i +4m + ε

)
≥ aj(1/2)

(a4): aj∨
i

(
t̂i −4m − ε

)
≤ aj(1/2)

(a13) imply that âm> ≤ aj(1/2); (a123) that ãm> ≥ aj(1/2). Similarly, (a24)
imply that âm< ≥ aj(1/2); (a124) that ãm< ≤ aj(1/2).

Now take j > m. In this case, the type rankings are

t̂i −4j < t̂i −4m − ε < t̂i −4m + ε <

< t̂i +4m − ε < t̂i +4m + ε < t̂i +4j

inducing the following rankings among the j-th dimension of actions:

(b1): aj∨
i

(
t̂i −4m + ε

)
≥ aj(1/2)

(b2): aj∧
i

(
t̂i +4m − ε

)
≤ aj(1/2)

(b3): aj∧
i

(
t̂i +4m + ε

)
≤ aj(1/2)

(b4): aj∨
i

(
t̂i −4m − ε

)
≥ aj(1/2)

23



(b13) imply that âm> ≤ aj(1/2); (b123) that ãm> ≤ aj(1/2). Similarly, (b24)
imply that âm< ≥ aj(1/2); (b124) that ãm< ≥ aj(1/2).

Finally, consider m ≤ j ≤ m. Here,

t̂i −4m − ε < min{t̂i −4j, t̂i +4j} < t̂i −4m + ε <

< t̂i +4m − ε < max{t̂i −4j, t̂i +4j} < t̂i +4m + ε

inducing the relationships

(c1): aj∨
i

(
t̂i −4m + ε

)
≥ (=)aj(1/2)

(c2): aj∧
i

(
t̂i +4m − ε

)
= (≤)aj(1/2)

(c3): aj∧
i

(
t̂i +4m + ε

)
≥ aj(1/2)

(c4): aj∨
i

(
t̂i −4m − ε

)
≤ aj(1/2)

In the fourth point above, I proved that either

a∨i
(
t̂i −4j + ε

)
= aj(1/2) or

a∧i
(
t̂i +4j − ε

)
= aj(1/2)

In the first case, (c13) imply that âj
m> = aj(1/2); (c123) that âj

m> = aj(1/2);
(c24) that âm< ≤ aj(1/2); (c124) that ãm< = aj(1/2). In the second case,
(c13) imply that âj

m> ≥ aj(1/2); (c123) that âj
m> = aj(1/2); (c24) that

âm< = aj(1/2); (c124) that ãm< = aj(1/2).
Part 3: Now I am ready to prove that a(1/2) ∈ BRi

(
t̂i
)
. First of all,

BRi

(
t̂i
)
6= ∅ since the action space is finite. Let ȧ ∈ BRi

(
t̂i
)
. Next, note

from previous results that

a ≡ a∨i (z) ≥ a(1/2) ≥ a∧i (z) ≡ a

where z ∈
(
t̂i −41, t̂i

)
and z ∈

(
t̂i, t̂i +41

)
. As I argued earlier, a ∈ BRi(z)

and a ∈ BRi(z). Thus,

a ≤ a ∨ ȧ ∈ BRi

(
t̂i
)
, a ≥ a ∧ ȧ ∈ BRi

(
t̂i
)

This fact establishes the base step of the induction argument that completes
the proof:

Base step (j = 0): a, a ∈ BRi

(
t̂i
)
, where am ≤ am(1/2) ≤ am for

m = 1, .., k.
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Induction step: Suppose that
(
a(1/2), ..., aj(1/2), aj+1, ..., ak

)
,(

a(1/2), ..., aj(1/2), aj+1, ..., ak
)
∈ BRi

(
t̂i
)
, where am ≤ am(1/2) ≤ am

for m = j + 1, .., k. Then
(
a(1/2), ..., aj+1(1/2), aj+2, ..., ak

)
,(

a(1/2), .., aj+1(1/2), aj+2, .., ak
)
∈ BRi

(
t̂i
)
, where am ≤ am(1/2) ≤

am for m = j + 2, .., k. (The new aj+2, ..., ak and aj+2, ..., ak may be
different than before.)

Under the presumption of the induction step, since t̂i + 4j+1 − ε > t̂i and
a∨i

(
t̂i +4j+1 − ε

)
∈ BRi

(
t̂i +4j+1 − ε

)
I have that

ă ∈ BRi

(
t̂i +4j+1 − ε

)
where ă ≡ a∧i

(
t̂i +4j+1 − ε

)
∧

(
a(1/2), .., aj(1/2), aj+1, .., ak

)
. By its con-

struction, ă has the required form of a lower bound on a(1/2) that coincides
on the first j + 1 dimensions:

ă =
(
a(1/2), .., aj+1(1/2), aj+1, .., ak

)
For observe that

ăm = am(1/2) for all m = 1, ..., j since am∧
i

(
t̂i −4j+1 + ε

)
≥ am(1/2);

ăj+1 = aj+1(1/2) since aj+1∧
i

(
t̂i −4j+1 + ε

)
= aj+1(1/2); and

ăm ≤ aj+1(1/2) since am∧
i

(
t̂i −4j+1 + ε

)
≤ aj+1(1/2) for m = j +

2, .., k.

Similarly, t̂i − 4j+1 + ε < t̂i and a∨i
(
t̂i −4j+1 + ε

)
∈ BRi

(
t̂i −4j+1 + ε

)
imply that

à ∈ BRi

(
t̂i −4j+1 + ε

)
where à ≡ a∨i

(
t̂i −4j+1 + ε

)
∨

(
a(1/2), .., aj(1/2), aj+1, .., ak

)
has the re-

quired form of a upper bound on a(1/2) that coincides on the first j + 1
dimensions:

à =
(
a(1/2), .., aj+1(1/2), aj+1, .., ak

)
For observe that

àm = am(1/2) for all m = 1, ..., j since am∨
i

(
t̂i −4j+1 + ε

)
≤ am(1/2);

àj+1 = aj+1(1/2) since aj+1∨
i

(
t̂i −4j+1 + ε

)
= aj+1(1/2); and
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ăm ≥ aj+1(1/2) since am∨
i

(
t̂i −4j+1 + ε

)
≥ aj+1(1/2) for m = j +

2, ..., k.

Part 4: From Parts 1-3, ai(ti; α) ∈ BRi(ti) for all ti /∈ Di. Now, for each
ti define

a(ti; α) ≡ lim
ε→0

ai (ti − ε; α)

a(ti; α) ≡ lim
ε→0

ai (ti + ε; α)

When ε is small enough, the action ai(ti; α) is well-defined and, in fact,
constant over the intervals [ti − ε, ti) and (ti, ti + ε]. Thus, these limits exist.
Furthermore, the order interval

[a(ti; α), a(ti; α)] ≡ {a : a(ti; α) ≤ a ≤ a(ti; α)}

is non-empty and increasing in the strong set order. Why? ai(·; α) is isotone
over the types ti /∈ Di at which it is defined and, for any two given types t̃i
and ti, there exists ε > 0 such that

t̃i − ε, t̃i + ε, ti − ε, ti + ε /∈ Di

ai

(
t̃i − ε; α

)
= a(t̃i; α), ai

(
t̃i + ε; α

)
= a(t̃i; α)

ai (ti − ε; α) = a(ti; α), ai (ti + ε; α) = a(ti; α)

Since ai(·; α) is isotone when restricted to types not in Di, I conclude that
a(t̃i; α) ≥ a(ti; α), a(t̃i; α) ≥ a(ti; α) and hence that the order interval[
a(t̃i; α), a(ti; α)

]
is increasing in the strong set order. Furthermore, for the

same reason, a(ti; α) ≤ a(ti; α) and I conclude that this order interval is
non-empty.

Now, define the strategy a∗i (·; α) as follows:

a∗i (ti; α) ≡ max (BRi(ti) ∩ [a(ti; α), a(ti; α)])

Since BRi(·) and [a(·; α), a(·; α)] are both sublattices and increasing in the
strong set order, part (2) of Lemma 3 implies that there intersection is a
sublattice and increasing in the strong set order. Furthermore, part (1) of
Lemma 3 implies that their intersection is non-empty. Thus, the maximum
of this intersection is well-defined and isotone. Finally, note that the strategy
a∗i (·; α), so defined, coincides with ai(·; α) on all types ti /∈ Di. Hence, a∗i (·; α)
is an isotone best response pure strategy.
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Lemma 3. Suppose that BRi(ti) is a sublattice, increasing in the strong set
order, and non-empty for all ti. Then:

1. Suppose that a1 ∈ BRi (t
1
i ), a3 ∈ BRi (t

3
i ), a1 ≤ a3, and t1i < t2i < t3i .

Then there exists a2 ∈ BRi (t
2
i ) such that a1 ≤ a2 ≤ a3.

2. Suppose that X(ti) is a sublattice and increasing in the strong set order.
Then BRi(ti)∩X(ti) is a sublattice (possibly empty) and increasing in
the strong set order.

Proof. (1) z ∈ BRi (t
2
i ) by non-emptiness. Since t2i > t1i , z ∨ a1 ∈ BRi (t

2
i )

since BRi(·) is increasing in the strong set order. Since t2i < t3i , similarly,
(z∨a1)∧a3 ∈ BRi (t

2
i ). a1 ≤ (z∨a1)∧a3 ≤ a3, so one may set a2 = (z∨a1)∧a3.

(2) Suppose that a1, a2 ∈ BRi(ti) ∩ X(ti). Then a1 ∨ a2, a1 ∧ a2 ∈
BRi(ti) ∩X(ti) since BRi(ti), X(ti) are sublattices. Similarly, suppose that
a1 ∈ BRi(t

1
i )∩X(t1i ), a2 ∈ BRi(t

2
i )∩X(t2i ). Then a1∧ a2 ∈ BRi(t

1
i )∩X(t1i ),

a1 ∨ a2 ∈ BRi(t
2
i ) ∩ X(t2i ) since BRi(ti), X(ti) are increasing in the strong

set order.
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